
On the Use of Input/Output Queries for Code Search

Kathryn T. Stolee
Department of Computer Science

Iowa State University

kstolee@iastate.edu

Sebastian Elbaum
Department of Computer Science and Engineering

University of Nebraska–Lincoln

elbaum@cse.unl.edu

Abstract—Context: Programmers frequently compose key-
word queries as they use information search engines to look
for source code. This syntactic approach to code search is often
imprecise and results in wasted efforts looking through irrelevant
results. Semantic code search approaches aim to address this
weakness by formulating queries that specify behavior, rather
than keywords. A recent approach uses input/output examples as
queries that illustrate the behavior of desired code. The technical
feasibility of this approach has been illustrated, yet the impact
of the change in the query model has not been assessed.

Objective: We explore the cost and accuracy of using input/output
queries for code search from the perspective of the programmer,
considering two programming languages, Yahoo! Pipes and SQL.

Method: We perform a controlled user study with 109 participants
from two groups, students and Mechanical Turk, to assess the
cost and accuracy of using input/output search queries.

Results: Our results show that programmers can compose in-
put/output queries in the targeted domains with over 92% average
accuracy and in less than two minutes.

Conclusion: The use of input/output queries does not seem to
limit the early promise of semantic searches that depend on it.

I. INTRODUCTION

Consider a programmer who wants to extract salary in-
formation for employees from a database using SQL. The
programmer has two tables, one called employee with fields
[id, name, address], and another called payroll with
fields [id, account, salary]. The goal - extracting salary
information - is quite syntactically different from the solution -
using an implicit join on the two tables based on id. Without
knowledge of the SQL language and relevant keywords (e.g.,
join, on), finding a solution with a keyword query is difficult.

Instead of a keyword query, a semantic approach to code
search requires a behavioral query. The most recent approaches
require example input(s) and output [1][2]. Using the previous
SQL example, the programmer could provide tables from a
working database as input and select the data that should exist
in the output (i.e., a table with fields [id, name, salary]).

Using input/output queries for code search has been shown
to be technically feasible in visual programming languages
such as Yahoo! Pipes, query languages like SQL, and object-
oriented languages like Java [2]. This previous work, however,
does not assess the impact of the change in query model. We
do not know whether these semantic queries can be composed
efficiently and accurately by programmers, which is critical to
the success of this code search approach in practice.

In this work we begin to evaluate the viability of input/out-
put queries in two programming languages, Yahoo! Pipes and

SQL, where searching for source code with keywords can be
challenging. Our key contribution is an assessment of the cost
and accuracy of formulating output from an input in Yahoo!
Pipes and SQL through a controlled quasi-experiment.

II. BACKGROUND

We introduce the two domain-specific, end-user program-
ming languages used in this study, Yahoo! Pipes and SQL.

A. Yahoo! Pipes
Yahoo! Pipes is a mashup language with over 90,000

users [3] and a public repository of over 100,000 artifacts [4].
These programs combine, filter, sort, annotate, and manipulate
RSS feeds. Programmers write Pipes programs in the Pipes
Editor, dragging and dropping predefined modules and connect-
ing them with wires to define the data and control flow. An
example pipe is shown in Figure 1. The Fetch Feed modules
provide lists of RSS feed items to the pipe. Each item is a
map data structure with key-value pairs. An example RSS feed
with only three items shown is in Figure 3. Each pipe can
have multiple source modules that access data sources (e.g.,
URLs), and one sink, the Pipe Output. In Figure 1, the pipe
concatenates two data sources with a Union module and retains
items that contain the word “tennis” using a Filter module.

1) Existing Search Capabilities: In the state-of-the-practice,
programmers can only search for pipes within the Pipes
environment by URLs accessed, tags, keyword, or modules.
Searches can return thousands of results, which is not surprising
as many mashups access common feeds or websites. Searching
through generic web search engines is not viable as the pipes
reside in a repository that has a proprietary format.

2) Input/Output Query Model: Our previous work has
suggested that input/output can be used as a query model when
searching a repository for existing Yahoo! Pipes programs [1].
In this domain, the inputs are URL(s) from which the approach
gathers RSS feeds forming input list(s), and the output is a
combined and modified list of items from the input list(s).

B. SQL
SQL select statements have been used for decades to support

data retrieval, operating on their own or being embedded into
applications. Given the simplicity of the SQL syntax and its
popularity, even well conceived syntactic searches for examples
will return many irrelevant results.

1) Existing Search Capabilities: Programmers can find
many resources related to SQL using information search engines.
In a survey of 109 programmers (administered as part of
the study that follows), 20 participants reported to use SQL
frequently. Those programmers all perform programming tasks
at least weekly and 70% search for code at least weekly.

2013 ACM / IEEE International Symposium on Empirical Software Engineering and Measurement

978-0-7695-5056-5/13 $26.00 © 2013 IEEE

DOI 10.1109/ESEM.2013.35

251

2013 ACM / IEEE International Symposium on Empirical Software Engineering and Measurement

978-0-7695-5056-5/13 $26.00 © 2013 IEEE

DOI 10.1109/ESEM.2013.35

251

Fig. 1. Example Yahoo! Pipes Program

2) Input/Output Query Model: When instantiating the
semantic search for SQL, our previous work has suggested that
the input and output are database table(s) [2]. The output table
would be selected column(s) and row(s) from the input table(s);
an example input table is shown in Figure 3. An example select
statement to retrieve the first three rows as output could be:

SELECT ∗ FROM t a b l e WHERE i d <= 3 ;

III. STUDY

In this section, we describe a controlled user study to assess
the use of input/output as a query format in Yahoo! Pipes and
SQL, toward the following research questions:

RQ1: How accurately can programmers compose input/out-
put specifications?

RQ2: How efficiently can programmers compose input/out-
put specifications?

A. Design
We designed an experiment with ten tasks. Each task

presents an input and a problem description and asks the
participant to select the expected output using checkboxes.
Five tasks were created for each domain. The posttest measures
were accuracy and time.

Figure 2 shows a task for Yahoo! Pipes. The problem
description is, “Select the third-most-recent item from the list,”
and the input list consists of five items. The expected output
is the third item. Figure 3 shows a task in SQL. With the
description, “Select the rows with a price per unit greater than
$1.00.” Rows 3, 5, 6, and 8 form the expected response.

Note that the participants only specify the output, yet we
aim to evaluate the input/output specification model as a whole.
The rationale for this choice is twofold. First, for the domains
being evaluated, the inputs can easily be obtained by the
programmer from their context (i.e., a URL for Yahoo! Pipes, or
a database table for SQL). Starting with an existing input with
the challenge of computing an output mimics how a semantic
search could work in practice for these domains. Second, by
fixing the input we can automate the accuracy assessment since
we know the expected output. This reduces the cost of executing
the experiment and the chances of accuracy measurement errors.
We discuss this threat to construct validity in more detail later.

B. Task Creation
Each task requires three objects: the problem description,

input, and expected output. To create realistic tasks, we begin
with programs (artifacts) from which these objects are created.

We collected five Pipes programs intended to be “typical”
based on structural uniqueness and popularity, and reused from

Select the the third most-recent item from the list

Title: As space junk falls, Russia hints at sabotage

Description:
A space probe stuck in orbit could fall back to Earth as soon as Sunday or Monday, though
most experts say the chance that debris will harm anyone on the surface is slim. And even as
the Russian space agency released new forecasts of the probe's...

Link: link

Date: Fri Jan 13 11:49:00 CST 2012

Title: Warm today; red-flag warning for mountains

Description:
Warm, dry winds will raise wildfire risk in the Santa Ana Mountains Friday, prompting a
red-flag warning from the National Weather Service. Gusts from the northeast as high as 45
to 50 mph could rake the windiest spots in canyons, passes and slopes...

Link: link

Date: Fri Jan 13 08:49:00 CST 2012

Title: Red-flag warning for Santa Ana Mountains

Description:
The National Weather Service has issued a red-flag wildfire warning for the Santa Ana
Mountains from midnight Thursday to 2 p.m. Friday,Â¬â€ prompted by expectations of
gusty winds and low humidity. High-pressure air over the Great Basin is ratcheting...

Fig. 2. Task 4 in Yahoo! Pipes

Select the rows with a price per unit greater than $1.00 from the table below, using the checkboxes next
to each row.

Id Fruit Variety Vendor Price Unit

1 Apple Fuji John's Produce $0.67 lb

2 Apple Jonathan John's Produce $0.84 lb

3 Apple Fuji Fran's Fruit $1.23 kg

4 Pear Green Anjou John's Produce $0.98 lb

5 Pear Bartlett Pearly Pears $2.01 kg

6 Grapes Champagne Eduardo's Uvas $5.21 kg

7 Bananas Plantain Pato's Plantains $0.50 lb

8 Melon Honeydew Oregon Melon, Inc. $1.10 lb

Fig. 3. Task 6 in SQL

a previous study [1]. The input was derived by extracting the
URL(s) and accessing the RSS feed(s). Executing the pipe
generates the output list, which is used as the oracle. The
problem description was generated by the researchers to reflect
the pipe semantics. Table I shows the problem descriptions for
Yahoo! Pipes Tasks 1-5, along with the input and output sizes.
To capture the behavior of the pipes while keeping the input
size reasonable, we limit the number of items from each RSS
feed to seven. String lengths were bound to 100 characters.

SQL artifacts were created since there is no existing
reference repository. Artifact creation was based on language
coverage, using common constructs in SQL select statements,
including inequality and conjunction in the WHERE clause,
the GROUP BY clause, and the count, distinct, and avg
functions. The input and output are generated so that the output
is returned when the statement is executed on the input; the
output forms the oracle. Problem descriptions were generated
by the researchers to reflect the semantics of the statement, as
shown in Table I for SQL Tasks 6-10. The input table is the
same for all SQL tasks, but the input sizes differ. Task 6 asks
the participant to select rows, so the input size is 8. Task 7
asks about columns and rows, forming 14 potential selections.

C. Participants
The participants in this study were solicited from two

populations, undergraduate computer science classes at UNL
and workers on Amazon’s Mechanical Turk [5]. Of the 109
participants, 43 came from junior/senior undergraduate classes
at UNL and 66 came from Mechanical Turk.

D. Implementation
This study delivery was based on the participant group.

Students performed the study in the classroom. Mechanical
Turk workers performed the study online. The first part of
the study involved a 10-question survey about programming
and search habits. The Mechanical Turk workers were paid

252252

TABLE I. EXPERIMENTAL TASKS DESCRIPTIONS AND RESULTS

Task Domain Problem Description Input Output Accuracy Timing (m:ss)
Size Size n Mean Median n2 Mean Median

1 Pipes
Select all records that show the Current Weather Conditions or the 10-Day
Forecast for Malibu, Exeter, or Camarillo

21 6 65 90% 94% 30 2:30 1:48

2 Pipes Select the four most-recent records that contain information about a hotel 21 4 63 87% 90% 24 3:48 2:55

3 Pipes
Select the first three records from each source, where the sources are
indicated using different background colors

14 9 65 93% 100% 29 1:20 0:46

4 Pipes Select the the third most-recent record from the list 5 1 72 96% 100% 30 1:14 0:47

5 Pipes
Select all records with the pink background, and those items from the grey
background with ”au” in the description

11 4 70 95% 100% 30 2:26 2:05

6 SQL Select the rows with a price per unit greater than $1.00 from the table. 8 4 72 99% 100% 30 0:41 0:34

7 SQL
Select the id, fruit, and variety for each item priced between $0.75 and $1.25
per unit from the table.

14 7 71 88% 93% 30 1:37 1:29

8 SQL Count the number items that are priced by kg (instead of lb) from the table. 5 1 63 86% 100% 21 1:08 0:52

9 SQL Compute the average price for each fruit from the table. 5 1 68 94% 100% 26 1:44 1:21

10 SQL Identify which vendors sell apples from the table. 5 1 72 92% 100% 30 1:22 1:03

whereas the student participants were not. Participation was
restricted to those who accepted the informed consent.1 Not
every participant completed every available task.

1) Classroom: The classroom implementation required
paper packets that delivered the IRB informed consent, survey,
and experimental tasks. Each packet was numbered at random.
Students had 15 minutes in total to complete as much of the
packet as possible. The first pages of the packets contained the
informed consent and survey. The experimental tasks followed
and the order was the same for all packets, starting with the
SQL Tasks 6 - 10, and then Yahoo! Pipes Tasks 1 - 5.

2) Mechanical Turk: The survey was implemented as a
qualification exam for Mechanical Turk participants. There
were additionally two competency questions about Yahoo! Pipes
and SQL that had to be answered with 50% accuracy. The
IRB form was signed electronically. A passing score and IRB
acceptance allowed the worker access to the experimental tasks.
Each experimental task in the study was implemented as a
human intelligence task, or HIT. Participants had a maximum
of 10 minutes to complete each HIT, and were paid $0.26 if
their work was accepted. To prevent participants from ‘gaming’
the tasks, 50% accuracy was required for payment. The study
was available for three weeks.

E. Metrics
Time and accuracy were collected per task. Time was

collected by the Mechanical Turk server; we did not collect per-
task timing for classroom participants. Accuracy was measured
by scoring the participant responses against the oracles. One
point was awarded for each input correctly selected or not
selected to be part of the output. The score awarded was a
percentage out of the total points (i.e., the input size). For
example, for an input with five items, if the oracle has item
3 selected and the participant selects items 2 and 3, the score
is 4/5 = 80%. In Mechanical Turk, the participant would have
gotten paid for this work since the score is at least 50%.

IV. RESULTS

A. Yahoo! Pipes
Accuracy and time for Tasks 1 - 5 are summarized in Table I.

The total number of participants per task is in the n column,
followed by the mean and median accuracy aggregated across
all participants (RQ1). An average of 67 participants performed

1The tasks, informed consent. and UNL Institutional Review Board approved
process can be found at http://cse.unl.edu/∼kstolee/iostudy/Study.html.

each Pipes task, with a range from 63 to 72. The average
accuracy was 92%; Task 4 had the highest average accuracy at
96%. Task 4 also had the smallest input and the smallest output;
it turns out there is a negative correlation between accuracy
and the input size (Spearman’s r = −0.2946), but not between
the accuracy and the output size (r = −0.0136).

For RQ2, n2 (the number of Mechanical Turk participants)
ranged from 24 to 30. The average time per task was 2:12, with
a range from 1:14 to 3:48. The timing appears to be dependent,
in part, on the size of the input. The Spearman correlation
between the time and input size reveals a strong relationship
r = 0.3565 (correlation for time and output was r = −0.0397).

To give more context to the timing data of formulating
an input/output query, consider that understanding pipes of
similar complexity may take on the order of 16 minutes [6].
Although full understanding of a pipe is not needed to discard
irrelevant matches, the cost of this pruning activity is such
that investing in a query that takes a couple of minutes but
only returns semantically relevant results seems promising. A
comprehensive study on the input/output query against other
query models will be one of the targets of our future work.

B. SQL
Accuracy and timing information for Tasks 6 - 10 are

summarized in Table I. An average of 69 participants completed
each of the SQL tasks. Across all SQL tasks, as with Yahoo!
Pipes, the average accuracy was 92% (RQ1). SQL participants
performed best on Task 6, with an average score of 99%. The
lowest accuracy came from Task 8, with an average of 86%
and a median of 100%. Since the input table was the same for
all the SQL tasks, we could not draw conclusions about the
relationship between accuracy and input size.

For RQ2, timing data reveals an average completion time
of 1:18. Participants provided the fastest responses on Task 6,
with an average of 41 seconds and a median of 34 seconds.
Task 9 took the longest, with an average of 1:44. In general,
longer times were associated with lower accuracy (Spearman’s
r = −0.1970). It likely took the participants longer to guess
the answer than if they knew the answer outright.

V. DISCUSSION

The focus of this work was on assessing the cost and
accuracy of using input/output queries, and we discuss the
implications and threats to validity in this section. In addition,
some interesting results emerged pertaining to the use of two
diverse populations, students and Mechanical Turk workers.

253253

TABLE II. DIFFERENCES IN RESULTS BASED ON IMPLEMENTATION.
H0 : μmt = μs

Task Mechanical Turk μmt Students μs p-value
YP 143 0.943 192 0.908 0.0095***

SQL 137 0.916 209 0.926 0.4160

Overall 280 0.929 401 0.917 0.2122
α = 0.1* α = 0.05** α = 0.01***

A. Comparing Results
Since this study involves two different implementations, we

examined any differences in accuracy based on the population.

1) Analysis: We segmented the results based on population
and computed the mean accuracy for each domain and overall.
The mean for Mechanical Turk is μmt and the mean for the
students is μs. We performed a Mann-Whitney-Wilcoxon2 test
with the null hypothesis, H0 : μmt = μs.

2) Results: Table II presents the results of this analysis.
Overall, no difference between the groups was observed. This
provides support for the use of large-scale and cost-effective
crowdsourcing environments like Mechanical Turk to support
empirical studies that serve at least to complement other studies.

Care needs to be taken, however, as the population gets
smaller or the requirements more specific. Splitting the analysis
by domain reveals some differences.

Yahoo! Pipes: We reject the null hypothesis that there is
no difference between the populations at α = 0.01. Student
performance is lower than Mechanical Turk performance, and
we conjecture this is a result of the delivery. For the students,
we used paper packets of tasks, while for the Mechanical Turk
participants we had online versions. For Task 2 and Task 3,
both of which showed significant differences at α = 0.01 and
α = 0.05, respectively, the list of input items spanned multiple
pages on paper. On the web version, the participants could
scroll and search for keywords with the browser find function.
This may have contributed to a lower student performance.

SQL: We did not reject the null hypothesis. However, the
average Mechanical Turk score was lower than the student
score, even though μmt may be artificially high, given that
we did not consider the results when the accuracy was less
than 50% (25 HITs were rejected). Among the students, only
three tasks were below 50%. So, there may be an unobserved
significant difference between the participant groups.

B. Threats to Validity
1) Internal: The results are subject to self-selection bias.

The participants chose which, and in what order, to complete
the tasks. Additionally, Mechanical Turk workers were only
paid if their accuracy was at least 50%. This was for quality
control, but it also biases the accuracy measurements.

Instrumentation may have played a role in the results. It
may have lead to increased accuracy since we are not over-
constraining the study context, on the other hand, some tasks
may be better suited for one context than another.

2) External: We have evaluated the input/output queries in
two domain-specific, end-user programming languages, Yahoo!
Pipes and SQL. The extent to which this query model extends
to other programming languages is yet to be explored.

2We tested the normality of the data using the Shapiro-Wilk test with a null
hypothesis that the population is normal. The null hypothesis was rejected at
α = 0.05, and so we used the non-parametric Mann-Whitney-Wilcoxon test.

We selected experimental tasks with the goal of representing
“typical” tasks. However, particularly for the SQL domain, the
tasks may not be representative of actual user tasks. Replication
of this study with other tasks is needed to generalize further.

The participants in our study were Mechanical Turk workers
and computer science undergraduate students. While only 8%
of the participants had no programming experience, these
populations may not be representative of programmers who
search for code in the evaluated domains.

3) Conclusion: Accuracy and timing data were highly
dependent on the quality and clarity of the problem description.
Despite best efforts, these measures may be unreliable.

4) Construct: Participants only specified the output in the
tasks. For the domains evaluated, the input can easily be
obtained from the programmer’s context, so this mimics how
our approach could be used in practice. In other domains, this
may not be the case so the format may not generalize.

Accuracy for Tasks 8, 9, and 10 may be inflated. We did
not collect results for tasks if the accuracy was lower than 50%
and omitted the results of 12, 8, and 5 participants, respectively.

VI. CONCLUSION

We have conducted what we understand to be the first
assessment on using input/output queries for search, which
are one of the key components of emerging semantic code
search techniques, and also of other approaches used in
program synthesis. The findings from our experiment with
109 participants performing up to ten experimental tasks reveal
that such queries can be performed with over 90% accuracy
and within a very reasonable time investment considering the
potential gains. That said, there are several areas of the study
that we would like to revisit and extend, as captured by the
discussion of the threats to validity. In addition, we realize
that code search is a complex process that is not just about
query formulation or result analysis, but a combination of
those activities under various contexts, tools, and programmer
activities. Hence, we would like to increase the scope of our
studies to incrementally incorporate such factors.

ACKNOWLEDGMENT

This work is supported in part by NSF Award SHF-1218265,
NSF Graduate Research Fellowship under CFDA-47.076, and
AFOSR Award #9550-10-1-0406.

REFERENCES

[1] K. T. Stolee and S. Elbaum, “Toward semantic search via smt solver,”
in Symposium on the Foundations of Software Engineering, 2012, pp.
25:1–25:4.

[2] K. T. Stolee, S. Elbaum, and D. Dobos, “Solving Semantic Searches
for Source Code,” University of Nebraska-Lincoln, Tech. Rep. TR-UNL-
CSE-2012-0012, November 2012.

[3] M. C. Jones and E. F. Churchill, “Conversations in Developer Com-
munities: A Preliminary Analysis of the Yahoo! Pipes Community,” in
International Conference on Communities and Technologies, 2009.

[4] “Yahoo! Pipes,” http://pipes.yahoo.com/, June 2012.

[5] “Amazon Mechanical Turk,” https://www.mturk.com/mturk/welcome,
June 2010. [Online]. Available: https://www.mturk.com/mturk/welcome

[6] K. T. Stolee, “Analysis and Transformation of Pipe-like Web Mashups for
End User Programmers,” Master’s Thesis, University of Nebraska–Lincoln,
June 2010.

254254

