Perspectives on Structuring a
Research Presentation
or
“One motto, three rules of thumb”

Claire Le Goues
SSSG, September 28, 2015

Repairing Programs with Semantic Code Search

Yalin Ke Kathryn T. Stolee

Clare Le Goues

Yuriy Brun

Department of Computer Science Scheel of Computer Science College of Information 2nd Compueter Science

fowz State University
{yke, kstolee } @iastate.odu

Abitract—Automated program repair can potentially reduce
debugging costs and improve software guality but recent studies

Carnegie Mellon Universaty
clegoues @ cs.cmu odu

Unsversity of Massachusetes, Amberst
brzn@ cs.umass edu

existing opem-source code © find correct implementations
immmm&»dnhtﬂu

bave druwn sttention to shortcomiogs in the quality of i
mwmmm.mmdmu—
of existing

for
mbnhnﬁacn&bydmndm.mbchcbyq:—

lacing the
wmwmmwwum-m
that the patches repair the bug sgainst program test suites, We
find that repairs 150 (19%) of 775 benchmark C

1. INTRODUCTION
Buggy software costs the global sconomy bellions of dollars
annuzlly (8], [60). Oze mzjor reason software defects 2re so
expensive is that software companies must dedicate consaderable
developer time [75] to manually finding and fixing bugs in
their software. Unfortunately, manual bug repair, the industry
standard, is largely unable %0 keep up with the volume of defects

previcusly
projects [11], [12], [24], we posit that, if 2 method or component
of a software system contains a defect, with high probebility,
mmum;mdzhnmmvmdmmm
in some publicly ible The
chﬂeng!hesmhmtomanallyﬁndanduend:
to repair bugs.
Our key iea is to use semantic code search [68] over

mh‘a&km&m;mm
predicated on our idez. SearchRepai

1) Encodes a harge database of buman- writer code fragments

as satisfabelity modalo theories (SMT) constrants on therr
mput-outpet befavior

’)w;ﬁabwmmm

3 Cmﬁtatilnpﬂ. w:lw@
profile that ch
SMT coostraints.

4) Searches the database, using state-of the-ant coostaimt
solvers, for fagments that satixfy such 2 profile. These
fragments become potential patches when contextzalized

mmmummmkm

potentially faulty code.
5 Mmm;ﬂm&mu
mmmfu:&dq—nﬂz&ﬁnnm

behavicr. This is 2

for automatic ir techniques (e.g-. [3). [7). [10).
[11], [15], [16]. (18], [19]. [21]. [28], [33]. [3S]. [35]. [42]).
[48]. [49]. [SO]. [S1]. [52]. [54]). [S6L [STL. [61]. [69]. [TOL. [73).
ndLmnmydwh:hmumbgm& evalimte

dmmmmmmtm

dmhﬁwshmnfyuhapﬁhh
fragments become potential patches when contextzalized
sally faulty code.

challenge

[11], [1S]. [16]. [18]. [191. 2
[48]. [49]. [SO]. [51]. [52]. [54]. [S6
[74]. [76]). many of whick use test 5

YOU ARE NOT PRESENTING THE PAPER.
YOU ARE PRESENTING THE WORK.

Program
repair via

semantic

Repairing Programs with Semantic Code Search

Yalin Ke Kathryn T. Stolee Claire Le Goues

Degartment of Computer Scieace School of Computer Scieace College of Information 2ad Competer Sciece
fows State University Carmegic Metlon Universty University of Massachsess, Amhent
{yke, edu

the large ‘code 1o find potential fixes.
The key challenges lie in efficently finding code semantically
sianilar identical) t cefective code sad thes sppropri-
ately integrating that code into » bugey program. We present
SearchRepair, that addresses. these challenges
by

- o input-output) localiziog &

) m.#m«mmﬁ
mmm‘m:m-—mm

1>uu¢m.emnmﬂwmem
3 Commrucs o exch st 3 ghweight et oupt

that the patches repair suites.

i repairs 150 (195) of 778 benchmark C
efects writiea by novice » are na repaired
by TrpAstoRepair, a0d AE. We commpare the quality of
the patches geserated by the fous Dy messring how

indepeades tests they pass, and

whereas G
programs pass 68.7%, 721%, 3nd 64.3% of the fests, repectively.
We conclude that Searchi repuins
than GeaProg, TrpAutoRepale, and AE. sad repairs some defects
thase tools cannot.
1. INTRODUCTION

are casts the glohal ecosomy billions of dollars

m"‘“) (8], [60). Oce major rezson softwane defects xme 50

expensive
dﬂvhpumnslummnnynadu;wmp@‘n

matue software projects [45]. and many defects, incl
those that are it sed foc lorg
geriods of e (121

the same tme, the expansion of the opes-source
m!mh:lsdmmnylmpﬁ:lymnﬂ:m
code databases, sach 2s GitHlub, BBocket, and

Besause mary progmams nclude routaes, daa 2 strucures, aed.

peojects (1], [12], [24]. we posit tat. if 2 method or component
2 software system contains 2 defect, with: high probubility.
there exists 2 similar but correct version of that comporent
in some accessible software project. search

pablicly Toe e

challenge e i bow 1o somaically i aad e sxch
o nepair bugs.

Our key idea is to use semantic code search [68] over

SMT constrainss.
n>&m~,ummndmnm
for fagments tat satisfy sac 2 profile. These
‘rm ‘potential pasches whes comseximalized
imcrd i i buggy gl eplcie e gl

Dotentally fty
‘)wuxxhpmlpﬁmhmu

Tomsie cer previoes

work i semantic code searc: [68] © C progam
Second, we adaoe spectrum localization [36] ©
regices of fuuky code and construct iput

o
mpﬁhmnawﬂnmmmn
SMT-ercoded code databuse. qmmm&p

~arisble reaming. ad

provided test suites.
Our goal with SearchRepeir is to produce high quality
patches while stll adéressicg = range of defocts. A

a-nmgzsu—:m’:mp’xm’q-s(q.nim.

[11]. [15]. [16]. [18]. [191. [21]. [28]. [33]. (35). [39). [42).

[48]. (491, [SO]. [S1]. [52]. [54]. [S6). [ST]. [61]. (69, [70}. (73).
‘whick use fest sustes to gde 3d

[74]. 6]\ many of whick use test et
toone following @ gemeraae and oo peakem
[them g laope momhens of

test suites cely ezcode 2 parsal
dml‘dnnx_ tat i acoording o 2 gves

lexrzing
 ovirising 10 2 ohjecive Fancton, whees b progm

Program
repair viz

with Semantic Code Search

1. INTRODUCTION
software costs the gioba! eccooeny billions of dollars
mﬂyﬂl.rmmemmm-‘m

deveoper e 75 10 mammlly g wod Exing bugs =
Unfortumstely. manual bug repeir. the industry

repair techziques (€5 Lm.
(191, [21]. (28], [ML 351 [39]. (€2
LIS‘I [561 ISTL. [61]. (691, I'Nl.ml.
W‘L nsu—y«r-u o guide and

o

Candidate repuins). although fyoically gemeral xd acalable, cfie.

Prodace poce quality pesches tat overfit o the specification

test suites used to guide patck generation (207, (S7). (65].
definition, test suites cely eecods 2

of correct behavior. A patch: hat is corsect acconSing © 2 £

ions to nepair bugs. ‘eemomezoz
Our key idea is to use semantic code search [68] over «mnmmmmnm

Repairing Programs with Semantic Code Search

Yalin Ke Kathryn T. Stolee Claire Le Goues Yuriy Brun
Depurtment of Computer Sciexce School of Computer Science College of Information 2d Competer Science

Jows State Usiversity Carnegie Mellon University Univensity of Massachusews, Amberst
{yke, } ol brea@cs smass.eds
program repaic caa poteatially existing cpen-source code © find cormect implementatices
P a2 icaprove saftware qualty but revent studies xmmmmmuumm
Bave drawn attention to shorscomicgs in the quality of astomati-

ately integrating that code into a buggy program. We present
SearchRepair, a repair techaique st addresses these challenges

by

as SMT coontraints oo input-output behavior, (2) localizing &

iven defiect to likely buggy program fragments and deciviog the
ode

«
(3) using séate-of-the-art constraint solvers W search the datatiase
for fragrments that satisfy that desired bebavior and replaciog the

uym—ymm-‘ﬂm_n‘mm-m
that the patches repsir the program test suites. We

find st S m.ﬁrnnnnmuu;dmwn
efects written by novice studeats, 20 of which are not repaired

mﬁ&-mn_rn—“rv——nﬂdi of the tests,
0 average, whereas G
Prograes pem 7%, TL1%, umﬁ«mmm

e ty repuirs

L INTRODUCTION
Buggy software costs the global eccnomy billions of dollars
amaually (5], 160). Oce major resson software defecs = 50
pensive is
aeloper tme [751 to manally finding and fixing bugs i

. the expansion of the cpen-source

‘movement kas led to mazy large, publicly accessible source

code databases, soch as Gatblub, BBocket, and SoceForge.
i daa

Because muny programs include routines, data structures, and
designs that have been previously implemented in other software
projects (1], [12], [24]. we posit tsat. if 2 method or component

of a software system contains a defect. with high probability,
there exists 2 similar but correct version of that compoent
in some pablicly accessible software project. The research:
challenge e i bow to, momasicaly find and we s
mplementations to repir bugs.

Our key iea is to ase semantic code search [68] over

actic keymorés, We develop SexreERepais sew
©n our idex
1) Encodes 3 arpe database of Buman writics code fragmenss
= mm&mm--mm
taput cutpus e
l‘ym:ﬂz&‘a:lhhdywym&m
3) &

5) Validases each potential petch against the program test
saite o derermine f it e epan the defect = quesien.
Tomake e, we r eximad ces previoes

repair via
semantic

search

&
(s
(o
&
&

YOU ARE NOT PRESENTING THE PAPER.
YOU ARE PRESENTING THE WORK.

* The audience will
only remember 3
things.

* Tell a story.

* Never confuse
your listeners.

WHAT SHOULD THOSE THREE
THINGS BE?

(Average audience member.)

CLG’s Goal

1. The exciting and 3. 1—2 major result(s).
important problem | am

solving. 4. “That paper/person

2. The key nugget of seems cool, | want to

awesomeness read it/talk to her!”
underlying the

approach. 14

Repairing Programs with Semantic Code Search

Yalin Ke Kathryn T. Swolee
Department of Computer Science
fowz State University
{yke, kstolee } @iastate. odu

Abitract- prog; repair can reduce
costs and loap guality but recent studies

Bave druwn attention to shortcomiogs in the quality of sstomati-
cally gesserated repairs. We propose 2 new kind of repair that eses
the large body of existing ope code o find p il fixes.
The key challenges lie in effickently finding code semantically
similar (but not identical) to defective code and then appropri.
auly ullv-umg that nﬂt mb B hum program, We present

@ repair que that addresses these challenges
by (1) ding a large of by ritten code fi
a SMT coostruints oo myuo—nuw Behavior, |.| Iarin-; B
given defect to likely boggy p iog the

desired input-output dehavior lol code o replace llmc fragmenss,
(3) usiog state-of-the-art constraint solvers o search the databose
for fragesents that satisfy that desired bebavior and replacing the
Bikely buggy code with these poteatial pasches, and (4) validating
that the patches repair the bug sgainst program test suites, We
find that SearchRepair repairs 150 (19%) of 778 benchmark C
defects written by novice students, 20 of which are not repaired
by GenProg, TrpAstoRepair, and AE. We compare the quality of
the patches geserated by the four technigues by messuring how
many indepessdent, mmcd-duhanpdr tests they pass, and
find that SearchR; o pans 9735 of the tests,
on average, ‘krm (xl?mg- I’r pAutoRepair-, and AE-repaired
programs pass 68.7%, 72.1%, and 64.2% of the tests, respectively.
We conclude that SeurchRepair produces higher-guality repairs
than GeaProg, TrpAutoRepair, and AE, snd repairs some defects
those tools cannot.

1. INTRODUCTION

Buggy software costs the global economy bellions of dollars
annuzlly (8], [60]. Oce major reason software defects 2re so
expensive is that software companies must dedicate consaderable
developer time [75] to manually finding and fixing bugs in
their software. Unfortumately, manual bug repair. the industry
standard, is largely unable to keep up with the volume of defects
in extant software [Z]. Despite their established detrimental
impzct oo @ company 's bottom lime, kmown defects ship in
mature software :m:uens [45], and many defects, including
those that are security-critical, remain unadéressed for long
periads of time [32).

At the same time, the expansion of the open-source
movement bas led to many large, publicly accessible source
code databases, soch as GitHub, BuBucket, and SourceForge.
Because many programs include routines, data structures, and
designs that have been previcusly implementad in other software
prosects [11], [12], [24], we posit that, if 3 metihod or component
of a software system contains a defect, with high probebility,
there exists 2 similar but correct version of that comporert
in scene publicly sccessible software project. The reseanch
challenge lies in how to automatically find and wse sxch
implementations to repair bugs.

Qur key idea is to use semantic code search [68] owver

Clare Le Goues
Scheel of Computer Science College of Information and Computer Science
Carnegie Mellon University

clegowes @ cs.cmu odu

Yurty Brun

Unsversity of Massachusetes, Amberst
brun@cs.omass edu

existing cpen-source code ®©o find correct implementations
of buggy components and methods, and use the results o
automancaily gemerate patches for software defects. Semantic
search identifies code by what it does, rather tham by 5=
tactic keywords. We develop SearchRepuir, 2 new techmigue
predicated on our idez. SearchRepair
1) Encodes a harge database of buman writes code fragments
as satisSabulity modulo theories (SMT) constraimts on their
mput o.:q:u be_xz\\er

X

4) Sayrhn the datbase, using state-of the-att coostamt
solvers, for fagments that satisfy such 2 pro€le. These
fragments become potential patches when coctextmakred
mur&dxmm:h.gpxgmumﬂzghr:r_l
potentially faulty code.

S5) Vailidases each potential pesch against the program test
suite to determine if it indeed repairs the defect o question.
To make SearcERepair possible, we Srst extend cer previoes

work in semantic code search [68] to C program fragments.

Second, we adape spectrum-based fazlt localization [36] o

identify candidate regices of fau s:\ﬁ:‘-‘ccccwzi-u
~umz:mclesm.ic.sx::mmﬁcm seaxch. Thisd, we
build the infx x 10 perform code search over the

S.\ﬂeuod:dcc&dxm.nmmmm:od:fngxx

to the defective context viz varizble remaming, and validate
wﬂma&d test suites.

Our goal with SearchRepeir is to produce
patches while stll adéressing 2 broad mange of
k:} feature of 2 high quality patch, whether bumas- or tool
gcnc—u:d. is that it gemeraiizes to the full, desived, often
unwritten specification of cormect program behavier. T‘-wn 2
";llz"gz .wwmmm.mslz- [3)

} 28 [

491, 1 [S7L. [61 0
18 f‘ﬁIL :u:\ ol’ut:..k use mxmmrx&nﬂt\m
'*:n:‘u::g efforts. Modern test-suite guided nepair technigues,
pamcularly | t:os: ro.lu;.l:e 2 gemerate and cizdare :xn{{:

w(mC.I.Jl" m"‘ that overfit L‘ vxcx.‘*.ntr

test suites used to guide petch generaticn [20]. [S7]. [65].

By definition, test suites cely excode 2 partial specification
of corect behawior. A patch that is cormect acconding 0 2 ghven
test suite may therefoes not be fully corpect when evaluated with
respect to 2 hypothetical full correctness specification. This is
anzlogous to the well-known mechine learning phenomenon
of overfiring to an cbjective function, where progzam

The exciting and
important problem |
am solving.

The key nugget of
awesomeness
underlying the
approach.

1—2 major result(s).

‘That paper/person
seems cool, | want to
read it/talk to her!”

15

Repairing Programs with Semantic Code Search

Yalin Ke Kathryn T. Swolee
Department of Computer Science
fowz State University
{yke, kstolee } @iastate. odu

Abitract—A repair can reduce
debugging costs and lmrmt mﬁwm quality but recent studies
bave drawn sttention to shortcomiogs in the quality of astomati-
cally geserated repairs. We propose 2 new kind of repair that eses
the large body of existing ope code o find p il fixes.
The key challenges lie in efficently finding code semantically
similar (but not ientical) to defective code and then appropri-
auly mlqrumg that code lnln B hum program, We present

@ repair that addresses these challenges
by (1) ing a large of by -ikn(nde
u\“Tmndnlmhnn',, tput beh (2) localizing »
given defect to likely boggy progr f and deriviog the

desired input-output dehavior for code o replace those hm
(3) usiog state-of-the-art constraint solvers o search the databose
for fragesents that satisfy that desired bebavior and replacing the
Bkely buggy code with these potential patches, and () validating
that the patches repair the bug sgainst program test suites, We
find that SearchRepair repairs 150 (19%) of 778 benchmark C
defects written by novice students, 20 of which are not repaired
by GenProg, TrpAstoRepair, aod AE. We compare the quality of
the patches geserated by the four technigues by messuring how
many independent, an(uu:d-d-rha <repair tests they pass, and
find that SearchRepair-repaired progr pans 9735 of the tesss,
on average, whereas GenProg-, l’rp\unoltcpdn and AE-repaired
programs pass 68.7%, T21%, and 64.2% of the tests, respectively.
We conclude that SearchRepair produces higher-guality repairs
than GeaProg, TrpAutoRepair, and AE, snd repairs some defects
those tools cannot.

I INTRODUCTION

Bugg\ mﬁv.x:r costs the global economy bellions of dollars
annuzll . [60). Oze major reason software defects 2re so
expensive is that software comp must dedicate considerzble
developer time [75] to man nding and fixing bugs in
their software. Unfortumately, manual bug repair. the industry
standard, is largely unable to keep up with the volume of defects
in extant software [2]. Despite their established detrimental
impact oo a company’s bottom lice, known defects shi
mature software projects [4. many defects, including
those that are security-critical, remain unadéressed for long
periods of time [32).

At the same time, the expansion of the open-source
movement bas led to many large, publicly accessible source
code databases, soch as GitHub, BuBucket, and SourceForge.
Because many programs include routines, data structures, and
designs that have ‘rn previcusly implemented in other software
prosects [11], [12], [24], we posit that, if 3 metihod or component
of a software system contains a defect, with high probebility,
there exists 2 similar but correct version of that componert
in some :uhb.l) accessible software

challenge lies in how to automatically
implementations to repair bugs.

Qur key idea is to use semantic code search [68] over

find and use such

Clare Le Goues
Schoeel of Computer Science
Carnegie Mellon University

clegowes @ cs.cmu odu

Yurty Brun
College of Information and Computer Science
University of Massachusetes, Amberst
brun@cs.omass edu

existing open-source code to find correct implementations
f buggy components and methods, and use the results o
automancally gemerate patches for software ef
searc :dc:t:ﬁu .:L\x tvy what it does, rather

ctic E
predicated on our \d:. SearchRepain

1) Mmsxmmw«nam:;c&:'rxem‘

wwr;u:vrn-.\x
) Localizes 2 defect to hikely I:ueg\'-or:n: fragments.

e b2

Constructs, foc cach fr:g'm al g
profile that characterizes desized umctioea] belavior 25
SMT coostraints.
4) Searches the dambase, using state-of the-art constraimt
solvers, for fagments that satisfy such 2 pro€le. These
fragments become potential patches when contextzalized
and inserted into the buggy regions, replacing the ongmal

w

pesch mst the Fam test
suite to determine if it indeed repairs the defect I question.
To make SearcERepair possible, we Srst extend cur previoes
work in semantic code seaxch [68] o C program fagments
Seccad, we adant spectrum-based fanit localization [36] o
identify candidate regices of faulty code and construct input
cutput profiles to use 25 izput to semantic seaxch. Thisd, we
build the infrastructure 0 perform semantic code search over the
SMT-encoded code database, adapt the retumed code fragment
to the defective context viz varizble recaming, and vabicase
agamst provaded test suites.
Our goal with SearchRepair is to produce
patches while stll adéressing

generated, is that it gemeraiizes to the full, desired, often
unwritten s"ccm-..nm of correct Frogram !e.-.vnv

patching efforts. Modern test-suite guided nepair technigues,
pn..llxh those following 2 'f-;r.x:t and vaiudare peradigm
ly vmn.:n:gm..h::m:g karge mumbers of
pairs), although geoeral and scalabie, ofter
;:r..\ixz aocn..l.!ma.k ".xo’-t“.(lnuaa.';::o-
wsxun:sw:»vmd:u..mncm 71 [65)

y definiticn, test suites cely emcode 2 mﬂ‘mm
of corect behanvior. A patch that is cormect acconding 0 2 gven
test suite may therefore not be fully correct wien evaluated with
respect to 2 hypothetical full correctness specification. This is
anzlogous to the well-known machine learning phenomenon
of overfizing to an objective function, where the progam

1. Automatic defect

repair that produces
high-quality patches.
The key nugget of
awesomeness
underlying the
approach.

1—2 major result(s).

‘That paper/person
seems cool, | want to
read it/talk to her!”

16

Repairing Programs with Semantic Code Search

Yalin Ke Kathryn T. Stolee
Department of Computer Science
fowz State University
{yke, kstolee } @iastate.odu

Abitract—A " repair can tially reduce
debugging costs and lwrmt software guality but recent studies
bave drawn sttention to shortcomiogs in the quality of astomati-
cally geserated repairs. We propose 2 new kind of repair that eses
the large body of existing ope code o find p il fixes,
The key challenges lie in efficently finding code semantically
similar (but not ientical) to defective code and then appropri-
aklv mlrm:mg that code mln » buggy program. We present

pair, @ repair that addresses these challenges
hp [}1] o large of b ritten code
s SMT coostruints oo input-output behavior, (2) localizing »
given defect to likely boggy program fragesents and deriviog the
desired input-output dehavior for code o replace those fragmenss,
(3) using state-of-the-art constraint solvers o search the database
for fragesents that satisfy that desired bebavior and replacing the
Bikely buggy code with these poteatial patches, and (4) validating
that the patches repair the bug sgainst program test suites, We
find that ScarchRepair repairs 150 (19%) of 778 benchmark C
defects written by novice students, 20 of which are not repaired
by GenProg, TrpAstoRepsir, aod AE. We compare the quality of
the patches geserated by the four technigues by messuring how
many Iudcpcaﬂenl. nn(mcd-d-rhu <repair tests they pass, and
find that SearchRepod or s 973% of the tests,
on average, whereas (xn?mx- l’rp\nnokcpdr- and AE.repaired
programs pass 68.7%, T21%, and 64.2% of the tests, respectively.
We conclude that SearchRepair produces higher-guality repairs
than GeaProg, TrpAutoRepair, and AE, snd repairs some defects
those tools cannot.

L. INTRODUCTION

Buggy software costs the global economy bellions of dollars
anquzlly (8], [60). Oce major reason software defects are so
expensive is that software companies must dedicate consaderzble
de\vlﬂpcr tme [75] to manually ing and f t
their software. Unfortunately, masuzl bug rep:
standard, is largely unable to keep up with the .
in extant software [2]. Despite their cml:iul-:-: dzmmcnul
impact oo a comg i i
mature software :mojca\ [45].
those that are security-critical, remain unadénessed for k.rb
periods of time [32).

At the same time, the expansion of the open-sourve
movement bas led to many large, publicly :.;n.cmh’g source
code databases, soch as GitHub, B.th.x:L and ScurceForge.
Because many ams include routines, dx.u structures, and
designs that have been previcusly implemented in other software
projpects [11], [12], [24], we posit that. if 2 method or component
of a software system contains a defect, with & probaby
there exists 2 similar but correct version of that ..on':x:r.zr(
in some publicly accessible software project. The reseanch
".tll:ngc lies in how to automatically find and wse such
implementations to repair bugs.

Qur key idea is to use semantic code search [68] owver

Clare Le Goues
Scheel of Computer Science College of In
Carnegie Mellon Universaty
clegowes @ cs.cmu odu

Yurty Brun
rmation 2ad Competer Science
University of Massachusetes, Amberst
brun@ cs.umass edu

c\un::g cpen-source code o find correct implementations
f buggy components and methods, and use the results o
.xuvn.'\ux.\ gemerate patches for software defects. Semantic
es code by what it does, mather thaz by sy=
tactic keywords. We develop SearchRepuir, 2 new techoigue
"'vu..x:-. 02 our idez. SearchRepain
1) Encodes a harge database of buman writes code fragments
as satisSak modzlo theeries (SMT) constraints on their
mput ot emmvor
Localizes 2 defect to hikely buggy program fagments.
Construc c each fragment, 2]
profile that characterizes desized
SMT coastrzints.
4) Searches the dambuse, using state-of
solvers, for fagments that satisfy such 2 pro€le. These
'nr-xxm DECEME DOLEREY. DXINS WIS COCiX .r_\l.ms

b2

.uln code.

A putz".n._l petch against the program test
suite o d:':m ifit —xj:es.‘ "q:u:n the defect m quv.xz:

S«co.. we adax spectrum-based fauit localization (36] to
identify candidate regices of fulty code and coostruct input
cutput profiles to wse 25 izput o semantic search. Third, we
build the infrastructure t0 perform semantic code search over the
SMT-encoded code database, achpt the returned code fragment
o the defective context viz varizble recaming, and validate
agaimst provaded test suites.

Our goal with SearchRepair is to produce &
patches while stll adéressi
key feature of 2 high quality ¢
generated, is that it gemeraiizes to the full, desived, o"':-
unwritten v"cnm...uuc of correct program k:\acr T‘—\ B2

pn hriy L‘nw fi —]C‘-ﬂe 2 generate and vaindase an.e...
ﬂ:\.:t:é s '.kn testing bepe :r.:."zn of

test suites used to md: patck generatica [20]. _" . [65

By definition, test suites cely excode 2 partial \vpe\"'::.:n:
of comect behavior. ;xx;-:.xxucrr:dxvx.x»-.. en
te5t sizite may therefors not be fully correct whers evaluaned sk
respect to 2 hypothetical full correctness specification. This is
-_-.dcgu.u to the well-known machine learning phenomenon
of overfiming to an cbjective function, where

1. Automatic defect
repair that produces
high-quality patches.

2. SMT-based semantic

search, which looks
for code based on
what it should do.

3. 1—2 major result(s).

4. “That paper/person

seems cool, | want to
read it/talk to her!”

17

Repairing Programs with Semantic Code Search

Yalin Ke Kathryn T. Swolee
Department of Computer Science
fowz State University
{yke, kstolee } @iastate. odu

Abitract—A repair can reduce
debugging costs and lmrmt mﬁwm quality but recent studies
bave drawn sttention to shortcomiogs in the quality of astomati-
cally geserated repairs. We propose 2 new kind of repair that eses
the large body of existing ope code o find p il fixes.
The key challenges lie in efficently finding code semantically
similar (but not ientical) to defective code and then appropri-
auly mlqrumg that code lnln B hum program, We present

@ repair that addresses these challenges
by (1) ing a large of by -ikn(nde
u\“Tmndnlmhnn',, tput beh (2) localizing »
given defect to likely boggy progr f and deriviog the

desired input-output dehavior for code o replace those hm
(3) usiog state-of-the-art constraint solvers o search the databose
for fragesents that satisfy that desired bebavior and replacing the
Bkely buggy code with these potential patches, and () validating
that the patches repair the bug sgainst program test suites, We
find that SearchRepair repairs 150 (19%) of 778 benchmark C
defects written by novice students, 20 of which are not repaired
by GenProg, TrpAstoRepair, aod AE. We compare the quality of
the patches geserated by the four technigues by messuring how
many independent, an(uu:d-d-rha <repair tests they pass, and
find that SearchRepair-repaired progr pans 9735 of the tesss,
on average, whereas GenProg-, l’rp\unoltcpdn and AE-repaired
programs pass 68.7%, T21%, and 64.2% of the tests, respectively.
We conclude that SearchRepair produces higher-guality repairs
than GeaProg, TrpAutoRepair, and AE, snd repairs some defects
those tools cannot.

I INTRODUCTION

Bugg\ mﬁv.x:r costs the global economy bellions of dollars
annuzll . [60). Oze major reason software defects 2re so
expensive is that software comp must dedicate considerzble
developer time [75] to man nding and fixing bugs in
their software. Unfortumately, manual bug repair. the industry
standard, is largely unable to keep up with the volume of defects
in extant software [2]. Despite their established detrimental
impact oo a company’s bottom lice, kmown defects ship in
mature software projects [4. many defects, including
those that are security-critical, remain unadéressed for long
periods of time [32).

At the same time, the expansion of the open-source
movement bas led to many large, publicly accessible source
code databases, soch as GitHub, BuBucket, and SourceForge.
Because many programs include routines, data structures, and
designs that have ‘rn previcusly implemented in other software
prosects [11], [12], [24], we posit that, if 3 metihod or component
of a software system contains a defect, with high probebility,
there exists 2 similar but correct version of that componert
in some :uhb.l) accessible software

challenge lies in how to automatically
implementations to repair bugs.

Qur key idea is to use semantic code search [68] over

find and use such

Clare Le Goues
Schoeel of Computer Science
Carnegie Mellon University

clegowes @ cs.cmu odu

Yurty Brun
College of Information and Computer Science
University of Massachusetes, Amberst
brun@cs.omass edu

existing open-source code to find correct implementations
f buggy components and methods, and use the results o
automancally gemerate patches for software ef
searc :dc:t:ﬁu .:L\x tvy what it does, rather

ctic E
predicated on our \d:. SearchRepain

1) Mmsxmmw«nam:;c&:'rxem‘

wwr;u:vrn-.\x
) Localizes 2 defect to hikely I:ueg\'-or:n: fragments.

e b2

Constructs, foc cach fr:g'm al g
profile that characterizes desized umctioea] belavior 25
SMT coostraints.
4) Searches the dambase, using state-of the-art constraimt
solvers, for fagments that satisfy such 2 pro€le. These
fragments become potential patches when contextzalized
and inserted into the buggy regions, replacing the ongmal

w

pesch mst the Fam test
suite to determine if it indeed repairs the defect I question.
To make SearcERepair possible, we Srst extend cur previoes
work in semantic code seaxch [68] o C program fagments
Seccad, we adant spectrum-based fanit localization [36] o
identify candidate regices of faulty code and construct input
cutput profiles to use 25 izput to semantic seaxch. Thisd, we
build the infrastructure 0 perform semantic code search over the
SMT-encoded code database, adapt the retumed code fragment
to the defective context viz varizble recaming, and vabicase
agamst provaded test suites.
Our goal with SearchRepair is to produce
patches while stll adéressing

generated, is that it gemeraiizes to the full, desired, often
unwritten s"ccm-..nm of correct Frogram !e.-.vnv

patching efforts. Modern test-suite guided nepair technigues,
pn..llxh those following 2 'f-;r.x:t and vaiudare peradigm
ly vmn.:n:gm..h::m:g karge mumbers of
pairs), although geoeral and scalabie, ofter
;:r..\ixz aocn..l.!ma.k ".xo’-t“.(lnuaa.';::o-
wsxun:sw:»vmd:u..mncm 71 [65)

y definiticn, test suites cely emcode 2 mﬂ‘mm
of corect behanvior. A patch that is cormect acconding 0 2 gven
test suite may therefore not be fully correct wien evaluated with
respect to 2 hypothetical full correctness specification. This is
anzlogous to the well-known machine learning phenomenon
of overfizing to an objective function, where the progam

3.

4.

Automatic defect
repair that produces
high-quality patches.
SMT-based semantic
search, which looks
for code based on
what it should do.

Empirically wins.

‘That paper/person
seems cool, | want to
read it/talk to her!”

18

Repairing Programs with Semantic Code Search

Yalin Ke Kathryn T. Swolee
Department of Computer Science
fowz State University
{yke, kstolee } @iastate. odu

Abitract—A repair can reduce
debugging costs and lmrmt software guality but recent studies
Bave druwn attention to shortcomiogs in the quality of sstomati-
cally geserated repairs. We propose 2 new kind of repair that eses
the large body of existing ope code o find p il fixes.
The key challenges lie in efficently finding code semantically
similer (but not identical) to defective code and thes appropri-
u«ly mwmg that mdr into a buggy program. We present

@ repair ique that addrosses these challenges
by (1) o & large of h ritten code
u\“Tmndumhon',, tput beh (2) localizing »
given defect to likely boggy program and deriviog the

desired input-output dehavior for code o replace those hm
(3) usiog state-of-the-art constraint solvers o search the databose
for fragesents that satisfy that desired bebavior and replacing the
Bikely buggy code with these poteatial pasches, and (4) validating
that the patches repair the bug sgainst program test suites, We
find that SearchRepair repairs 150 (19%) of 778 benchmark C
defects written by novice students, 20 of which are not repaired
by GenProg, TrpAstoRepair, aod AE. We compare the quality of
the patches geserated by the four technigues by messuring how
many independent, an(uu:d-d-rha <repair tests they pass, and
find that SearchRepair-repaired progr pans 9735 of the tesss,
on average, whereas GenProg-, I’rp\ubltcpnln and AE-repaired
programs pass 68.7%, T21%, and 64.2% of the tests, respectively.
We conclude that SearchRepair produces higher-guality repairs
than GeaProg, TrpAutoRepair, and AE, snd repairs some defects
those tools cannot.

L. INTRODU 0

Buggy mﬁv.a:r costs the global economy bellions of dollars
anquzlly (8], [60). Oce major reason software defects are so
expensive is that software companies must dedicate consaderzble
dn\:lopcr time [75] to man nding and fixing bugs in
their software. Unfortunately, masuzl bug Epain the industry
standard, is largely unable to k::p up with the volume of defects
in extant software [2]. Despite their established dcmmc'n...
impact oo a company's bottom line, kmown defects s
mature software 'JPOJCCI" [45], ané many defects, inc 73
those that are security-critical, remain unadéressed for Jong
periods of time [32).

At the same time, the expansion of the open-source
movement bas led to many large, publicly accessible source
code databases, soch as GitHub, BuBucket, and SourceForge.
Because many programs include routines, data structures, and
designs that have been previcusly implemented in other software
prosects [11], [12], [24], we posit that, if 3 metihod or component
of a software system contains a defect, with high probebility,
there exists 2 similar but correct version of that comporert
in some cuhb.l) accessible software

challenge lies in how to automatically
implementations to repair bugs.

Qur key idea is to use semantic code search [68] over

find and use such

Clare Le Goues
Scheel of Computer Science College of Information and Computer Science
Carnegie Mellon University

clegowes @ cs.cmu odu

Yurty Brun

University of Massachusetes, Amberst
brun@ cs.umass edu

existing open-source code to find correct implementations
of buggy components and methods, and use the results o
automancally genmerate patches for software defects. Semantic
search identifies code by what it does, rather tham by 5=
tactic keywords. We develop SearchRepuir, 2 new techmigue
predicated on our idex. Sc"*'.Rz;.w:

1) Enmun.x.u’r database of buman writier code fragments
modzlo theeries (SMT) constraints on their

input-output befavior.
) Localizes 2 defect to hikely I:uM'\ program fragments.
Constructs, for sach fr'.g'm 2 lightweight mput-output
profile that characterizes desited functionad belawior 25
SMT coastraints.
4) Searches the datbuse, using state-of the-ant coostraint

uhn for W.xs that enx’\ sxch 2 mh These

b2

w

- P nst the Fam test
suite to determine if it indeed repairs the defect o question.

To make SearcERepir possible. we Snit extend cer prsvioss
work in semantic code seaxch [68] o C program fagments
Second, we adapt gecmmb;scc fault localization [36] o
identify candidate regices of fulty code and coostruct input
cutput profiles to use 25 izput to semantic seaxch. Thisd, we
build the infrastructure t0 perform semantic code search over the
SMT-encoded code database, adapt the retumed code fragment
o the defective context viz varizble recaming, and validate
agamst provaded test suites.

Our goal with SearchRepeir is to produce &
patches while stll adéressing 2 broad mange of
k:\' feature of 2 high E whether Eumas- or tool
generated, is that it gemeraiizes to the full, desired, often
unwrnten s"ccm-..nm of cormect program !!..'\1« s 52

patching efforts. Modern test sisite g.u:zc emat technigues,
pn.ulxh those following 2 Jemerate gnd vafidate peradigm
2y mugnmamhunrm«
candidate repairs), although geoenal and scalable, often
produce poor-quality petc ot overfit © the an:x:.._:no"
uuumum.vm&u..mmcm 71 [65)

y definition, test suites cely en&xmﬂ%m
of corect behanvior. A patch that is cormect acconding 0 2 gven
test suite may therefoes not be fully corpect when evaluated with
respect to 2 hypothetical full correctness specification. This is
anzlogous to the well-known mechine learning phenomenon
of overfizing to an objective function, where the progam

1. Automatic defect
repair that produces
high-quality patches.

2. SMT-based semantic
search, which looks
for code based on
what it should do.

3. Empirically wins.

4. “Look, there she is,
hey, let’s go talk to

|”

her!

19

* Your audience will
only remember 3
things.

* Tell a story.

* Never confuse
your listeners.

Interesting.

Simple, and not
overly detailed.

Selectively repetitive.

Coherent narrative
arc.

CAimax

Exposition, conflict

* Important, interesting problem that | am
solving.
* Show, don’t tell: motivating example, story,
easy-to-grasp soundbites.
— Sometimes a reasonable place to delicately
mention related or previous work.

* Will guide/motivate the subsequent events of
the story; focus on one type of motivation.

Repairing Programs with Semantic Code Search

Yalin Ke Kathryn T. Swolee
Department of Computer Science
fowz State University
{yke, kstolee } @iastate. odu

Abitract- prog; repair can reduce
costs and loap guality but recent studies

Bave druwn attention to shortcomiogs in the quality of sstomati-
cally gesserated repairs. We propose 2 new kind of repair that eses
the large body of existing ope code o find p il fixes.
The key challenges lie in effickently finding code semantically
similar (but not identical) to defective code and then appropri.
auly ullv-umg that nﬂt mb B hum program, We present

@ repair que that addresses these challenges
by (1) ding a large of by ritten code fi
a SMT coostruints oo myuo—nuw Behavior, |.| Iarin-; B
given defect to likely boggy p iog the

desired input-output dehavior lol code o replace llmc fragmenss,
(3) usiog state-of-the-art constraint solvers o search the databose
for fragesents that satisfy that desired bebavior and replacing the
Bikely buggy code with these poteatial pasches, and (4) validating
that the patches repair the bug sgainst program test suites, We
find that SearchRepair repairs 150 (19%) of 778 benchmark C
defects written by novice students, 20 of which are not repaired
by GenProg, TrpAstoRepair, and AE. We compare the quality of
the patches geserated by the four technigues by messuring how
many indepessdent, mmcd-duhanpdr tests they pass, and
find that SearchR; o pans 9735 of the tests,
on average, ‘krm (xl?mg- I’r pAutoRepair-, and AE-repaired
programs pass 68.7%, 72.1%, and 64.2% of the tests, respectively.
We conclude that SeurchRepair produces higher-guality repairs
than GeaProg, TrpAutoRepair, and AE, snd repairs some defects
those tools cannot.

1. INTRODUCTION

Buggy software costs the global economy bellions of dollars
annuzlly (8], [60]. Oce major reason software defects 2re so
expensive is that software companies must dedicate consaderable
developer time [75] to manually finding and fixing bugs in
their software. Unfortumately, manual bug repair. the industry
standard, is largely unable to keep up with the volume of defects
in extant software [Z]. Despite their established detrimental
impzct oo @ company 's bottom lime, kmown defects ship in
mature software :m:uens [45], and many defects, including
those that are security-critical, remain unadéressed for long
periads of time [32).

At the same time, the expansion of the open-source
movement bas led to many large, publicly accessible source
code databases, soch as GitHub, BuBucket, and SourceForge.
Because many programs include routines, data structures, and
designs that have been previcusly implementad in other software
prosects [11], [12], [24], we posit that, if 3 metihod or component
of a software system contains a defect, with high probebility,
there exists 2 similar but correct version of that comporert
in scene publicly sccessible software project. The reseanch
challenge lies in how to automatically find and wse sxch
implementations to repair bugs.

Qur key idea is to use semantic code search [68] owver

Clare Le Goues
Scheel of Computer Science College of Information and Computer Science
Carnegie Mellon University

clegowes @ cs.cmu odu

Yurty Brun

Unsversity of Massachusetes, Amberst
brun@cs.omass edu

existing cpen-source code ®©o find correct implementations
of buggy components and methods, and use the results o
automancaily gemerate patches for software defects. Semantic
search identifies code by what it does, rather tham by 5=
tactic keywords. We develop SearchRepuir, 2 new techmigue
predicated on our idez. SearchRepair
1) Encodes a harge database of buman writes code fragments
as satisSabulity modulo theories (SMT) constraimts on their
mput o.:q:u be_xz\\er

X

4) Sayrhn the datbase, using state-of the-att coostamt
solvers, for fagments that satisfy such 2 pro€le. These
fragments become potential patches when coctextmakred
mur&dxmm:h.gpxgmumﬂzghr:r_l
potentially faulty code.

S5) Vailidases each potential pesch against the program test
suite to determine if it indeed repairs the defect o question.
To make SearcERepair possible, we Srst extend cer previoes

work in semantic code search [68] to C program fragments.

Second, we adape spectrum-based fazlt localization [36] o

identify candidate regices of fau s:\ﬁ:‘-‘ccccwzi-u
~umz:mclesm.ic.sx::mmﬁcm seaxch. Thisd, we
build the infx x 10 perform code search over the

S.\ﬂeuod:dcc&dxm.nmmmm:od:fngxx

to the defective context viz varizble remaming, and validate

wﬂma&d test suites.

Our goal with SearchRepeir is to produce
patches while stll adéressing 2 broad mange of
k:} feature of 2 high quality patch, whether bumas- or tool
gcnc—u:d. is that it gemeraiizes to the full, desived, often
unwritten specification of cormect program behavier. T‘-wn 2
";llz"gz .wwmmm.mslz- [3)

} 28 [

[9 L [S7). [61 0 !
18 f‘ﬁIL :u:\ ol’ut:..k use mxmmrx&nﬂt\m
'*:n:‘u::g efforts. Modern test-suite guided nepair technigues,
pamcularly | t:os: ro.lu;.l:e 2 gemerate and cizdare :xn{{:

w(mC.I.Jl" m"‘ that overfit L‘ vxcx.‘*.ntr

test suites used to guide petch generaticn [20]. [S7]. [65].

By definition, test suites cely excode 2 partial specification
of corect behawior. A patch that is cormect acconding 0 2 ghven
test suite may therefoes not be fully corpect when evaluated with
respect to 2 hypothetical full correctness specification. This is
anzlogous to the well-known mechine learning phenomenon
of overfiring to an cbjective function, where progzam

* Options:
— Example showing how
semantic search works.

— Example walking
through hypothetic
program repair/semantic
search combo use case.

— Compelling results
highlighting “quality
problem” in previous
results.

e But | will only choose

one of them.

29

CAimax

Inciting incident + rising action

Middle of story: Key technical insight.
High-level outline of the approach.

If you're not sure if a detail is high-level
enough, it’s probably not.

(More on how to approach “the middle” in 10
—11 slides)

Climax

* Results presentation: selected key results.

 Emphasis on the type of experimental
methodology used, experimental question(s)
— Calling back to your exposition!

— Remember: oral communication is often cyclic/
repetitive.

Falling action

* Observations/implications.

* Another place related work might make an
appearance.
* Possibly, future work.

— (CLG thinks this is pointless, but acknowledges the
existence/validity of opposing viewpoints.)

Conclusion/Denouement

e “Say what you’re going to say, then say it,
then say what you said.”

* Wrap up pithily.

 Remind me of the three things you want me
to remember.

* Your audience will
only remember 3
things.

* Tell a story.

* Never confuse
your listeners.

38

When confused, readers can:
* Pause, reflect.

* Reread confusing passage.
* Go back to review a previous section.
* Look something up.

When confused, listeners can:

* Possibly interrupt to ask a question.

* Furtively look it up.

* Give up and start reading their email.

39

SRR A
¢ u TR v

Qs
l““” o

Qum* /
S B

yalong®e

: ’/\.\\\\\B

N

N\
oA 0 N
7.4 NS

Why?

* Listener has to synthesize what you’re saying
into the story.

* |f she doesn’t know why you’re telling her
something, she won’t know where to “put” a
piece of information in the overall picture.

e Result: listener is anxious, and likely to forget
key pieces of information before they’re
needed!

i
| m p | iC I’ve done this several

Signpost as you go.
— “This is important, because...”

times already.

— Return to your outline slide, if you're using it.

Only introduce necessary information, and

only when it is necessary.

Strongly avoid forward references.

A
Strictly avoid use-before-

| violated this rule 11

slides ago.

DO NOT VISUALLY OVERWHELM
YOUR LISTENERS.

44

DO NOT VISUALLY OVERWHELM
YOUR LISTENERS.

DO NOT VISUALLY OVERWHELM
YOUR LISTENERS.

BEWARE THE RESULTS
PRESENTATION.

»
v, > fo o RS
0 :s .‘-fo ' l; : ;:3 0: RSSO

total: 310 defects fixed

§\\\\ |

......

N

P>

AN LA

e) -
AR ARG L DS,
RS e el
PSR S S A5

»‘ g 02‘o’o”o’o’o’o’o"fo’o’o >
QOSSP IO P I8,
A EEL
> 9 0’ o
3

s

48

How to read the graph?

(Slide borrowed from my student Mauricio.)

No Abstraction B Renamed IDs

— Exact Matches Only --- Hamming Dist. <=1 -:- Hamming Dist. <=2

Hamming Dist. <= 3

What % of this
project can be
reconstructed
from the

corpus?

% of redundancy in the project

Programming Language

Granularity(Tokens)

lhewNumber|=JoldNumberi[+/oldNumber2];]

49

Program

Description _Llgc | Bug Type

gcd
nullhttpd
zune
uniq
look-u
look-s
units
deroff
indent
flex

openldap

ccrypt
lighttpd
atris
php
wu-ftpd

leukocyte

tiff

imagemagick

example loop 153

webserve: “erflow (code) 578
exa[p”' 28 infinite o) 42
ter 1146 segmentation 34
1169 segmentation fa 45

1363 infinite loop 55

otric conversio 1504 segmentation fault 109
ocument processing 2236 segmentation fault 131
ode processing 9906 infinite loop 546
- exical analyzer generator 74 segmentation fault 230
. e
330

394

80

56

ability 2256

compute 0 = dult 360
image proce ston fault 108
image processing s>wrong output 2160

LOC | Bug Type

52

LOC | Bug Type

gcd example 22 infinite loop 153

53

LOC | Bug Type

gcd example 22 infinite loop 153
nullhttpd webserver 5575 heap buffer overflow (code) 578

54

Program

LoC__| Bug Type

gcd
nullhttpd
zune

example 22 infinite loop 153
webserver 5575 heap buffer overflow (code) 578
example 28 infinite loop 42

55

Program

gcd
nullhttpd
zune
uniq
look-u
look-s
units
deroff
indent
flex

Loc

example

webserver

example

text processing
dictionary lookup
dictionary lookup

metric conversion
document processing
code processing

lexical analyzer generator

22 infinite loop

5575 heap buffer overflow (code)

28 infinite loop
1146 segmentation fault
1169 segmentation fault

1363 infinite loop
1504 segmentation fault
2236 segmentation fault

9906 infinite loop
18774 segmentation fault

56

153
578
42
34
45
55
109
131
546
230

gcd
nullhttpd
zune
uniq
look-u
look-s
units
deroff
indent
flex
openldap
ccrypt
lighttpd
atris

php
wu-ftpd
leukocyte
tiff

imagemagick

example

webserver

example

text processing
dictionary lookup
dictionary lookup
metric conversion
document processing
code processing
lexical analyzer generator
directory protocol
encryption utility
webserver

graphical game
scripting language

FTP server
computational biology
image processing
image processing

infinite loop

heap buffer overflow (code)
infinite loop

segmentation fault
segmentation fault

infinite loop

d segmentation fault

segmentation fault
infinite loop

d segmentation fault

non-overflow denial of service
segmentation fault

heap buffer overflow (vars)

local stack buffer exploit
integer overflow

format string vulnerability
segmentation fault
segmentation fault

wrong output

153
578
42
34
45
55
109
131
546
230
665
330
394
80
56
2256
360
108
2160

* Your audience will
only remember 3
things.

* Tell a story.

* Never confuse
your listeners.

* The audience will
only remember 3

things.
You * Tell a sto
YOU ARE NOT PRESENTING THE PAPER. Te ry.
YOU ARE PRESENTING THE WORK. * Never confuse

your listeners.

SearchRepai~

Falling Ackion T

Resolution

(Average audience member.)

CLG’s Goal
1. The exciting and 3. 1—2 major result(s). Incbinglnit
important problem | am
solving. 4. “That paper/person
2. The key nugget of seems cool, | want to "
awesomeness read it/talk to her!” Exposition

underlying the
approach.

