Exploring the Use of Crowdsourcing to Support Empirical
Studies in Software Engineering

Kathryn T. Stolee, Sebastian Elbaum
Department of Computer Science and Engineering
University of Nebraska — Lincoln
Lincoln, NE, U.S.A.

{kstolee, elbaum}@cse.unl.edu

ABSTRACT

The power and the generality of the findings obtained through em-
pirical studies are bounded by the number and type of participat-
ing subjects. In software engineering, obtaining a large number of
adequate subjects to evaluate a technique or tool is often a major
challenge. In this work we explore the use of crowdsourcing as
a mechanism to address that challenge by assisting in subject re-
cruitment. More specifically, through this work we show how we
adapted a study to be performed under an infrastructure that not
only makes it possible to reach a large base of users but it also
provides capabilities to manage those users as the study is being
conducted. We discuss the lessons we learned through this experi-
ence, which illustrate the potential and tradeoffs of crowdsourcing
software engineering studies.

General Terms
Experimentation, Measurement

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics

Keywords

empirical studies, crowdsourcing

1. INTRODUCTION

Recruiting the necessary type and number of subjects is consis-
tently a great challenge when conducting empirical studies in soft-
ware engineering. As a community we understand the importance
of having enough subjects of the right kind in order to obtain stronger
and more general findings, yet achieving such ideal conditions is
rare and usually prohibitively expensive.

As a result, we tend to compromise by performing studies on a
sufficient number of subjects that may not exactly match what was
intended (e.g., observing students performing a project as part of
a computer science course instead of observing software engineers
actually practicing), by performing studies on a limited number of

subjects (e.g., evaluating a small sample of software engineers in
a micro-context), by performing studies without human subjects
(e.g., assessing the artifacts produced by software engineers), or by
applying a combination of those strategies.

In this paper we explore the use of crowdsourcing as an alternative
to address the challenge of recruiting the right type and number of
subjects to assess a software engineering technique or tool. The
basic idea behind crowdsourcing is to allow a client to leverage a
global community of users with different talents and backgrounds
to help perform a task (e.g., solve a problem, classify data, refine
a product, gather feedback) that would not be feasible without a
mass of people behind it [5]. The constant increase of people
with continuous web access and the rapid maturation of the infras-
tructure to bring clients and producers together has started to make
crowdsourcing a reality for some businesses. One of the largest and
most popular infrastructure and communities available, Mechanical
Turk [10], was developed and is supported by Amazon.com, and is
said to have over a hundred thousand tasks posted by clients and
thousands of workers signed up to complete them.

We note, however, that businesses are not the only ones starting
to realize the potential for crowdsourcing. Researchers in other
fields have started to use crowdsourcing to evaluate visualization
designs [4], conduct surveys that ask about peoples’ information
seeking behaviors [2, 16], and perform natural language annota-
tion tasks to train machine learning algorithms [14]. Furthermore,
toolkits and guidelines to facilitate the crowdsourcing of user stud-
ies in the area of human computing interaction are starting to emerge
[7, 8]. It seems timely, then, for our community to start exploring
this trend in the context of software engineering studies where the
subjects are neither in a classroom nor are they a part of a group
of industry developers, but rather belong to a unknown crowd [12],
which has the potential to offer different tradeoffs to the researcher.

The contributions of this work are: 1) a description of how we de-
signed and adapted a real software engineering experiment to fit
the popular Mechanical Turk crowdsourcing infrastructure, and 2)
a discussion of the lessons we learned throughout this experience
and what it means for the implementation of software engineering
studies. To our knowledge, this is the first paper to provide insights
on the potential of crowdsourcing to address one of the major chal-
lenges in conducting software engineering empirical studies: the
recruitment of the appropriate type and number of subjects.

2. CROWDSOURCING A STUDY

In this section, we describe our study and how it was adapted to fit
an infrastructure that supports crowdsourcing.

2.1 Our Study

Our objective was to assess the impact of coding practices, specif-
ically code smells', on the user’s preference and understandabil-
ity of web mashups.> Mashups have become extremely popular
as development environments make it possible for users to quickly
get, process, and glue data with powerful APIs. For example, Ya-
hoo! Pipes [11], one of the most popular mashup development en-
vironments, provides users with a drag and drop interface to create
“pipes” by selecting and configuring predefined modules and con-
necting them with wires through which data flows. Over 90,000
end users have created pipes since 2007 and over 5 million pipes
are executed in the Yahoo!’s servers daily [6]. We limit the scope
of our study to mashups built by end user programmers, that is,
programmers whose job is not software development but who do
program as part of their activities [13]. We further constrain the
study to end users creating mashups in the Yahoo! Pipes environ-
ment we previously mentioned.

To achieve our objective, we designed two experiments that evalu-
ate the impact of code smells from the perspective of the end user.
The first experiment aimed to determine if (RQ1) users prefer pipes
with or without smells, and the second aimed to determine if (RQ2)
smelly pipes are harder to understand than clean pipes. As shown
by the experimental design in Figure 1, each experiment was split
into a series of tasks with a random assignment of subjects to task
(R). In each task, we treated one pipe, P, with a smell, X, provid-
ing coverage for a variety of common smells and pipe structures.
In the tasks for the first experiment (1 — 8), the user was given two
pipes side by side, one with smells and the other one without, and
asked to choose the preferred pipe and explain the decision. In the
tasks for the second experiment (9-10), the user was presented with
either the treated or the untreated pipe and asked to determine the
pipe’s behavior. More details on the study design and the specifics
of each experimental task are available [15].

In both experiments we estimate user aptitude by measuring edu-
cation level (O1) and qualification score (O2) using a pretest. The
pretest included questions about the users’ background and eight
comprehensive questions about Yahoo! Pipes. Users were required
to pass the pretest prior to participation, allowing us to control for
user variability. In terms of posttest measures, the first experiment
evaluates user preference (Os), the second measures correctness
(O4), and both measure the time to complete the task (Os).

2.2 Adapting Study to Mechanical Turk

Mechanical Turk is a service that allows people to reach and com-
pensate others to complete tasks that require human input, such as
tagging images or answering survey questions. It hosts the tasks,
manages payment, and makes the tasks accessible to a large and ex-
isting workforce. To assist with user recruitment and the execution
of the study, we chose to take advantage of these features.

There are two roles in Mechanical Turk, a requester and a worker.
The requester is the creator of a human intelligence task, or HIT,
which is intended to be a small, goal-oriented task that can be ac-
complished in less than 60 seconds. The worker is the one who
completes the HIT. Workers must discover HITs to complete by

!Code smells are code characteristics whose presence may indicate
deficiencies associated with higher development costs [3].

%A mashup is an application that manipulates and composes exist-
ing web data sources or functionality to create a new piece of data
or service that can be plugged into a web page or integrated into an
RSS feed aggregator.

Task Assignment Pretest Object Treatment Posttest
Measures Measures

1 R 01, Oz P X5 O3, Os
2 R 01, O3 P X4 O3, Os
3 R 01, 02 Ps X5 O3, Os
4 R 01, 02 P4 XS 03’ 05
5 R O1, O2 Ps Xz O3, Os
6 R 01, Oz Ps X, O3, Os
7 R Ol, 02 P7 X5, .Xl() 03, 05
8 R 01, 02 P Xa, X7 O3, Os
9 R 01, O2 Py X6 Oy, Os
R O1, O2 P, Oy, Os

10 R 01,02 Py X2, X5 O4, Os
R 01, 02 Pl() 04, 05

Figure 1: Study Design for Experiment 1 (Tasks 1-8) and Ex-
periment 2 (Tasks 9-10)

searching based on some criteria, such as title, description, key-
word, reward, or expiration date. A HIT may or may not have pre-
requisites for the user, which are referred to as qualifications. Some
qualifications are related to the quality of the work produced by the
worker, while others can be more contextual, such as demonstrating
some domain-specific knowledge. Completed tasks are returned to
the requester for evaluation. If a requester is dissatisfied with sub-
mitted work, they hold the right not to pay the worker.

For each experiment, we created a HIT template, which allows for
the rapid creation of multiple HITs with the same structure and the
same HIT type ID. The type ID is used by the search interface to
combine similar HITs, making them more accessible. This allowed
us to present all tasks per experiment in a single entry in the search
results so users could access multiple tasks without returning to the
search page. The HITs for the first experiment shared a type 1D,
and the HITs for the second experiment shared a different type ID.

The implementation of the first experiment was straight-forward.
Each experimental task mapped to exactly one HIT, and since the
tasks were independent of one another (i.e., all pipes and treatments
were different), they could be completed in any order. In the second
experiment, we encountered some limitations imposed by Mechan-
ical Turk. Ideally, we would have only presented a user with either
the treated or the untreated pipe for each task. However, since we
created a HIT template for this experiment, there were two HITs
created for each task, so we could not impose a constraint that only
allowed the user to perform one HIT per experimental task to con-
trol for learning effects (e.g., if a user first performs Task 9 with
the untreated pipe, their familiarity with the behavior may impact
their answer to Task 9 with the treated pipe). In the end, we had
four HITs in the second experiment, two for each task, and allowed
the user to complete all four. In the analysis we only considered the
first HIT completed by a user for each task. This caused us to waste
some data (and thus some cost in terms of additional rewards). An
alternate design would be to create two HIT type IDs, one for each
task, where each type ID has two HITs associated with it, and the
user could only answer one HIT per task. However, we wanted to
maintain the locality of the HITs for this experiment in the search
results and included them all in the same type ID.

Our study was available for two weeks, from April 28 - May 13,
2010, and users were paid up to $0.20 for each task. To deliver the
pretest described in Section 2.1, we created a custom qualification
test. Once a user submitted a qualification test, it was graded as
per our specification. A passing score allowed the user to complete
the HITs we created. Figure 2 shows the workflow a user had to

go through to participate in our study, from creating an account to
submitting completed HITs.

3. LESSONS LEARNED

There are many costs and benefits of using a service such as Me-
chanical Turk to conduct empirical studies of software engineering
techniques and tools, some of which were mentioned informally in
Section 2.2. In the end, we were able to obtain 22 qualified partici-
pants for a total cost of just under $42 that help us to determine that
users consistently prefer to work with clean pipes, and that smells
make it more difficult to understand how pipes work. From the per-
spective of this paper, however, more important than the particular
outcome of the study is to share some of the lessons we learned
while designing and deploying the crowdsourced study.

3.1 Recruiting Participants

Recruiting the right type and number of participants is a common
challenge in software engineering studies. Our initial conjecture
was that crowdsourcing could address that challenge by providing
access to a large pool of candidate participants that would select
to participate in the tasks we proposed as part of a study. More
specifically, in Mechanical Turk, people interested in participating
in a task, in our case as part of a study, find candidate tasks on their
own using the search interface provide by the infrastructure. Re-
lying on Mechanical Turk’s search interface for recruitment means
the researcher has less control over the users participating in the
study and over variations caused, for example, by how prominently
the study is displayed in the infrastructure search results.

During the first week of our study, we had each HIT completed by
6 users. Still, since we wanted to have at least 10 users per HIT, we
doubled the initial monetary reward and sent emails to two internal
mailing lists. At the end of two weeks, we had 50 users who opted
to take the qualification test.> Of these users, 34 (68%) received
a passing score, from which 22 (65%) followed-through with the
study by completing one or more HITs. In total, we received 160
HIT responses (plus an additional 28 from the second experiment
that were thrown away to control for the learning effect mentioned
before), for an average of 7 HITs completed per user, and 13 users
per HIT. On average, each user earned less than $2.00 for partici-
pating. We had nearly equal numbers of men and women, and most
users scored at least 7 out of 8 on the qualification test. Among the
22 users, eight (36%) held degrees in computer science or related
field, and the remaining 14 (64%) had only some or no computer
science experience (the main target population of our study). *

3.2 Response Quality

One concern about crowdsourcing studies using infrastructures like
Mechanical Turk is the usefulness of the collected data since user
diversity, unknown experience, and people who “game” the system
may impact the response quality [7]. Since Amazon anonymizes
participant identities, it is also difficult to control for certain as-
pects of the population, such as age, gender, and education or train-
ing level, which makes other forms of screening participants par-

3We note that Mason, et al. [9] indicate that additional financial
incentives do increase the amount of work produced by a crowd.
However, we do not know to what degree the additional reward or
the email requests had an effect in the number of participants.
*The percentage of participants who hold computer science degrees
versus those who do not, 36% to 64%, is similar to the results from
a survey on 1001 Mechanical Turk participants, where 40% of the
professionals declared an occupation in Science, Engineering or IT.
and the remaining 60% declared other occupations [1].

Perform
and Submit
HITs

Create Locate Take
Mechanical [HITsby [Qualification
Turk Account Searching Test

Figure 2: Applicant Workflow in Mechanical Turk

ticularly important. The use of a qualification test that asks such
questions can mitigate this risk, but possibly at the cost of reduced
participation, since the user is not rewarded to complete the quali-
fication test and risks not passing.

To mitigate the likelihood of participants “gaming” the system by
answering the HITs haphazardly, we required a qualification test,
which undoubtedly limited participation but allotted us some con-
trol over the users we were hiring, and asked users to justify their
HIT responses using a textual response of at least 10 words. We
expected for the textual responses to allow us to reject inadequate
submissions, but that never occurred. However, this additional data
helped us to better understand the users’ thought processes when
completing the HITs. Among the open-ended textual responses,
the average number of words was over 31. We found the explana-
tions detailed and in general demonstrating a good understanding
of the questions. When the quantitative answers were homogenous
for a HIT, the open-ended answers served as confirmation that the
participants had an understanding of what we were asking. When
the quantitative answers were dissimilar, the open-ended answers
helped us understand points of confusion and why the participants
differed. We could also tell when the user misunderstood the ques-
tion or did not understand the task. These benefits helped us better
understand the data and see that in some cases, an odd answer was
the result of a misinterpretation of the question.

3.3 Support for Study Management

Mechanical Turk offers requesters three mechanisms for creating
HITs: a web interface, a command line tool, and an API. Each
method offers increasing levels of flexibility for the study design.
For example, custom qualification tests cannot be created through
the web interface, but can be created using the command line tool
or APL In our study, we used the command-line tool to create HITs
and evaluate qualification tests, but used the web interface to ap-
prove work completed and access the results. The command line
tools require knowledge of XML, web services, and shell scripting,
and a credit card is needed to front-load the requester account with
funds to conduct the study. The HIT creation can be tested in the
developer sandbox prior to deployment on the live server.

Beyond support for study implementation, we found that using es-
tablished services to crowdsource empirical studies offers several
other benefits to the researcher. By providing a framework on
which the study can be conducted, several aspects of the study,
including recruitment, ensuring privacy, distributing payment, and
collecting results, were more easily managed. Further, in Mechan-
ical Turk, all identities are anonymized so that the collected data
cannot be associated with the users identity, which preserves the
privacy requirements we had set. Results are collected by the in-
frastructure and can be easily downloaded in csv format by the re-
searchers. Removing these concerns saved us time in the imple-
mentation and execution of a study.

However, crowdsourcing a study through an established service
like Mechanical Turk does require overcoming a learning curve.

Even if the researcher has access to programmers to assist in the
implementation of the study under a desired infrastructure, some
understanding of its capabilities and constraints is required to de-
termine how to best adapt the study to it, and how that may impact
the design and ultimately the study findings. That said, such infras-
tructure requires and hence forces a detailed planning of the study
execution, which in our experience later reduced the need to be
present as the study was been conducted. Clearly, some oversee-
ing of the evolution of the study to detect potential anomalies and
abuses is required, but this freedom enables the execution of longer
studies on which a larger number of users can participate.

3.4 Adjustments in Design and Operation

As with any experimental setting, operating within an infrastructure
like Mechanical Turk poses some constraints that must be clearly
understood and mitigated. For example, one of such constraints is
for the study to be broken into a series of tasks. Even then, our
study uses tasks that are much more complex and time consuming
(up to 10 times more) than those recommended by the Mechanical
Turk guidelines. Now, since the order in which these tasks are com-
pleted cannot be easily enforced, the tasks must be independent of
one another and the researcher must evaluate if a randomized as-
signment of subjects to tasks is appropriate for their study. Along
those same lines, if a user study contains multiple tasks, it cannot
be guaranteed that each user will perform each task. Due to these
limitations, the researcher must consider for learning effects. For
example, in our preference experiments, the sample pipes given in
each task had to be different so a user was forced to learn about
a new pipe for each HIT. Other constraints are the ability to cap-
ture the context under which the participants completed the tasks,
which can be a powerful factor in the results, and the ability to col-
lect certain metrics for the tasks being performed by participants,
most specifically the time to completion. While time to completion
is reported by Mechanical Turk in the result sets, it may not accu-
rately measure the task time in part because we do not get a sense
for how much time the user spent on the task and how much time
the task was simply open in the browser.

We note, however, that many of the design limitations can be miti-
gated by using Mechanical Turk as a front end to recruit users and
manage payment, while implementing the actual study at a third-
party site and including a pointer to that site within a Mechanical
Turk HIT. Once the user finishes the activity at the site, they could
collect a token and provide it to Mechanical Turk to complete a
HIT. Clearly, this involves additional effort since some of the sup-
port services of the infrastructure are not used, but the access to the
large pool of users to crowdsource the study still remains.

4. CONCLUSION

In this work we set out to convey our experiences in crowdsourcing
a software engineering study. We found that the benefits of an in-
frastructure like Mechanical Turk to access and manage a large pool
of study participants are enticing. We have also identified several
issues that must be taken into consideration for the implementation
of effective crowdsourced studies. These issues include the addi-
tional controls to ensure the right participation of qualified subjects
and the quality of the responses, and the extra effort on the part of
the researcher to learn a new infrastructure, to assess its appropri-
ateness for a study requirements especially in terms of control, and
to tailor the study to fit the infrastructure constraints and capabili-
ties. Based on this preliminary experience, we believe that crowd-
sourcing provides an alternative approach with unique tradeoffs for
conducting empirical studies in software engineering.

S. ACKNOWLEDGMENTS

This work was supported in part by the National Science Founda-
tion through a Graduate Research Fellowship to Kathryn Stolee,
and NSF-0915526.

6. REFERENCES

[1] Julie S. Downs, Mandy B. Holbrook, Steve Sheng, and
Lorrie Faith Cranor. Are your participants gaming the
system?: screening Mechanical Turk workers. In
Proceedings of the 28th international conference on Human
factors in computing systems, 2010.

[2] Brynn M. Evans and Ed H. Chi. Towards a model of
understanding social search. In Proceedings of the 2008 ACM
conference on Computer supported cooperative work, 2008.

[3] Martin Fowler and Kent Beck. Refactoring: Improving the
Design of Existing Code. Addison-Wesley, 1999.

[4] Jeftrey Heer and Michael Bostock. Crowdsourcing graphical
perception: using Mechanical Turk to assess visualization
design. In Proceedings of the 28th international conference
on Human factors in computing systems, 2010.

[5] Jeff Howe. The rise of crowdsourcing. Wired Magazine,
14(06):17-23, 2006.

[6] M. Cameron Jones and Elizabeth F. Churchill. Conversations
in Developer Communities: A Preliminary Analysis of the
Yahoo! Pipes Community. In Proceedings of the Fourth
International Conference on Communities and Technologies,
20009.

[7] Aniket Kittur, Ed H. Chi, and Bongwon Suh. Crowdsourcing
user studies with Mechanical Turk. In Proceeding of the
twenty-sixth annual SIGCHI conference on Human factors in
computing systems, 2008.

[8] Greg Little, Lydia B. Chilton, Max Goldman, and Robert C.
Miller. Turkit: tools for iterative tasks on Mechanical Turk.
In Proceedings of the ACM SIGKDD Workshop on Human
Computation, 2009.

[9] W. Mason and D.J. Watts. Financial Incentives and the
Performance of Crowds. In Proceedings of the ACM
SIGKDD Workshop on Human Computation, pages 77-85.
ACM, 2009.

[10] Amazon Mechanical Turk.
https://www.mturk.com/mturk/welcome, June 2010.

[11] Yahoo! Pipes. http://pipes.yahoo.com/, July 2009.

[12] Joel Ross, Lilly Irani, M. Six Silberman, Andrew Zaldivar,
and Bill Tomlinson. Who are the crowdworkers?: shifting
demographics in Mechanical Turk. In Proceedings of the
28th of the international conference extended abstracts on
Human factors in computing systems, 2010.

[13] Christopher Scaffidi, Mary Shaw, and Brad Myers.
Estimating the numbers of end users and end user
programmers. In Symposium on Visual Languages and
Human Centric Computing, 2005.

[14] Rion Snow, Brendan O’Connor, Daniel Jurafsky, and
Andrew Y. Ng. Cheap and fast—but is it good?: evaluating
non-expert annotations for natural language tasks. In
Proceedings of the Conference on Empirical Methods in
Natural Language Processing, 2008.

[15] Kathryn T. Stolee. Analysis and transformation of pipe-like
web mashups for end user programmers. Master’s Thesis,
University of Nebraska—Lincoln, June 2010.

[16] Survey Vault. http://www.surveyvault.co.uk/, July 2010.

