
Toward Semantic Search via SMT Solver

Kathryn T. Stolee, Sebastian Elbaum
Department of Computer Science and Engineering

University of Nebraska – Lincoln
Lincoln, NE, U.S.A.

{kstolee, elbaum}@cse.unl.edu

ABSTRACT
Searching for code is a common task among programmers,
with the ultimate goal of reuse. While the process of searching
for code – issuing a query and selecting a relevant match –
is straightforward, several costs must be balanced, including
the costs of specifying the query, examining the results to find
desired code, and not finding a relevant result. For syntactic
searches the query cost is quite low, but the results are often
irrelevant, so the examination cost is high and matches may
be missed. Semantic searches may return more relevant
results, but current techniques that involve writing complex
specifications or executing code against test cases are costly
to the developer. We propose an approach for semantic
search in which developers specify lightweight specifications
and an SMT solver identifies matching programs from a
repository. A program repository is automatically encoded
offline so the search is efficient. Programs are encoded at
various abstraction levels to enable partial matches when no,
or few, exact matches exist. We instantiate this approach on
a subset of the Yahoo! Pipes mashup language. Preliminary
results show promise for the feasibility of the approach.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Tech-
niques

Keywords
Semantic code search, SMT solvers, lightweight specifications

1. INTRODUCTION
Developers are increasingly turning to search to find so-

lutions to their programming problems, and general search
engines are the most common and often effective way to
find suitable code [8]. To define their problem, developers
provide a textual query describing, for example, the name or
description of a function they desire, and the search engine
attempts to find a match among the indexed programs’ pages.
Specialized search engines (e.g., Koders, Krugle, Merobase)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’12/FSE-20, November 11–16, 2012, Cary, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1614-9/12/11 ...$15.00.

also incorporate filtering (e.g., by programming language)
and program syntax into the query to better guide the search.
Other approaches add natural language processing to increase
the potential matching space [2]. Such syntactic approaches
have a low query cost and may be effective in identifying
functionality that can be captured with structural compo-
nents like function names, but cannot capture behavior that
is not tied to source code syntax or documentation. Some
more sophisticated approaches have improved precision by
incorporating semantics, but are not common in practice.
They often require developers to incur additional costs, such
as writing complex specifications [11]. Partial specifications
using test cases [6, 7] mitigate that cost, but are too specific,
meaning that close matches may be ignored.

In this work we propose a novel approach to semantic
search. First, it allows developers to specify a lightweight,
incomplete specification in the form of input/output pairs to
keep the query cost low. Second, instead of having the search
engine just index program syntax, it encodes programs as
constraints representing behavior, so the matches are based
on semantics. Third, it employs an SMT solver to identify
code in a repository, encoded as constraints, that matches
the specifications, using different levels of abstraction to
identify close matches. This idea of code search via
SMT solver is the core of the new idea. We do not
fully evaluate it, but we present a preliminary instantiation
of the approach and evaluation on a subset of the Yahoo!
Pipes dataflow mashup language. Many questions remain
regarding its feasibility in a broader context, and we hope
to obtain feedback from the forum on many of the pending
challenges and suggestions on how to address them.

2. SAMPLE APPLICATION OF APPROACH
Here, we introduce the initial instantiation of our approach

and the targeted domain, Yahoo! Pipes.

2.1 Target Domain
Since 2007, thousands of users have programmed with

Yahoo! Pipes, forming a public repository of over 100,000
artifacts [5]. Motivated by the popularity of Yahoo! Pipes,
the number of available artifacts, the components interfaces
that make them amenable for encoding, and the limitations of
existing search in this domain (discussed later), we instantiate
our approach on a subset of this language.

To program these mashups, developers use the Pipes
Editor, a proprietary development environment accessible
through the browser, shown in Figure 1(a). Mashups are
composed by dragging and dropping predefined modules (e.g.,
a fetch module, a filter module) from the module library on

1

(a) Pipes Editor and Sample Pipe P

Module Type Constraint Def
1: fetch equality out1 = i
wire(1,2) equality in2 = out1

2: filter
inclusion (contains(in2, r)∧substr(descr(r), s)) →

contains(out2, r)
exclusion contains(out2, r) → contains(in2, r)
order . . .

wire(2,3) equality in3 = out2
3: output equality in4 = o

(b) Constraints for Pipe, CP

Figure 1: Example Constraint Mapping

the left onto the canvas on the right. Module behavior is con-
figured by setting their fields (e.g., URLs, strings). Control
and data flow are defined with wires that connect the mod-
ules. Data flow from top to bottom, forming a directed graph
with one or more sources and one sink. Data are generally
input to the pipe by fetching RSS feeds from URLs, and the
output is a unified and modified list of the records. A record
is a data structure with name/value pairs. We refer to the
names as fields; typical records have at least these five fields:
title, description, author, date, and link. In Figure 1(a), the
fetch module provides a list of records from the URL, the
filter module retains records with “tennis” in the description,
and the output module is the sink of the program.

To illustrate the challenges for Yahoo! Pipes developers
using existing search mechanisms, we performed five searches
for mashups by querying for the URLs used in each. The
number of matches can be staggering (often more than 1,000)
but not surprising as many mashups include common web-
sites. The average number of relevant results among the
top ten, determined by behavior, is 0.9. The other built-in
search capabilities do not fare better; searching by language
constructs retrieves more results and requires implementa-
tion knowledge, and searching for tags is dependent on the
community’s categorization of their artifacts.

2.2 Implementation
We now describe an instantiation of our proposed search in

the Yahoo! Pipes domain, which involves three steps: defining
a specification (query), encoding programs to be searched
(indexing), and finding matches via an SMT solver.

Lightweight Specifications. With Yahoo! Pipes, the
input specification is one or more URLs that reference RSS
feeds and provide lists of records to a pipe, such as the fetch
module in Figure 1(a). Each list of records, identified by a
URL, is assigned to input i. Next, the developer chooses
records to be retained in the output o, giving form to the
lightweight specification (i, o) ∈ LS. Next, LS is automat-
ically transformed into constraints by the framework and
later used as the search query. For example, if a record r is
at index 2 in i, and index 1 in o, constraints would assert,
i[2] = r ∧ o[1] = r. To assign a string value to the title field
of r, a constraint would assert, title(r) = “A clever title.”

Encoding. Encoding a pipe is an automated process
that performs a code transformation, mapping the program
constructs to constraints; in this domain, it requires no
annotations by the developer. The program components
have well-defined interfaces and behaviors, and since the
average pipe has about 8 modules, it is natural to map each
module and wire onto constraints.

We use the example in Figure 1 to illustrate a pipe’s en-
coding, with the structure, P , in Figure 1(a) and constraints,
CP , in Figure 1(b). For this data-flow language, module con-

straints are classified as inclusion, exclusion, and order, and
wires are equality constraints. Inclusion constraints ensure
completeness; in the example, the inclusion constraint for
the filter module ensures that if a record r is in the input to
the module and descr(r) contains s, then r is in the output
from the module. Exclusion constraints ensure precision;
if a record r is in the output of the filter module, then r
in the input. Order constraints (omitted from Figure 1(b)
for brevity) ensure that records are ordered properly in the
list. That is, if two records exist in the filter module’s input
and output, then their ordering is the same in both lists.
Equality constraints ensure the output of a source module is
equivalent to the input of the destination module.

The pipe in Figure 1(a) illustrates only three modules, yet
our instantiation includes a larger subset of the language
representing the most common constructs, covering five of
the top ten most used modules. This subset performs filter
(the filter module), permute (the sort module), merge (the
union module), copy (the split module), and head/tail (the
truncate and tail modules) operations on lists of records.
(The fetch and output modules are also among the supported
modules). Encoding the supported operations requires six
data types: characters C, strings S, integers I, booleans B,
records R, and lists L. Implementing this language subset
requires many complex constraints, for example, the filter
module requires support for substring identification. The
constraint mappings for the supported subset of the Yahoo!
Pipes language are available in a technical report [9].

Our encodings also support two levels of strength for the
constraints on the field values, concrete and symbolic, where
the latter permits close matches when exact matches cannot
be found or do not exist. For the filter module in Figure 1, a
concrete constraint requires substr(descr(r),“tennis”) = true,
whereas a symbolic constraint requires substr(descr(r), s) =
true for some string s. The inclusion constraint in Figure 1(b)
is symbolic on the description field value.

Solving. Once all programs have been encoded, we can
perform the search using LS as the query. An SMT solver
will be invoked, pairing each encoded program with LS
to determine which programs, if any, match LS. For the
matches, inserting the URL into the fetch module will result
in the desired output. To perform the search, we use the Z3
SMT Solver v3.2 from Microsoft Research [10].

3. GENERALIZING THE APPROACH
The previous section showed how our approach can be

applied to Yahoo! Pipes. Here, we describe more generally
the building blocks of the approach, illustrated in Figure 2.

3.1 Lightweight Specifications
In this approach, the search query takes the form of

lightweight specifications that characterize the desired be-

2

havior of the code (Lightweight Specifications in Figure 2).
These specifications, LS, are represented as input/output
pairs, and take different forms depending on the domain.
The size of LS (i.e., the number of pairs) defines, in part, the
strength of the specifications and hence the number of poten-
tial matches. This approach allows a developer to provide
specifications incrementally, starting with a small number of
pairs and adding more to further constrain the behavior.

It is important that the query cost be reasonable for the
developer. Providing input/output pairs requires more ef-
fort and may be more fault prone than providing keywords,
so the effectiveness of the search must compensate for the
extra effort. We have observed that developers already use
examples in forums when asking for help; in a preliminary
study of 100 questions about SQL from stackoverflow.com,
for example, 76 provided examples of desired behavior [9].

3.2 Encoding
Encoding is analogous to crawling and indexing performed

by information search engines. Offline, a repository (Code
Repository in Figure 2) is crawled to collect programs. In
an automated process, these programs are encoded as con-
straints (Encoding, analogous to indexing) and stored in a
repository (Constraint Database). The encoding process uses
a mapping of program constructs to constraints. Creating
this mapping is one of the key challenges to this approach,
as the levels of granularity and strength for encoding are
important considerations for the cost of search.

The finest granularity corresponds to encoding the whole
program behavior but could result in constraint systems
that cannot be resolved in a reasonable amount of time. At
the coarsest granularity the encoding would capture none
of the program behavior, which could return a plethora of
irrelevant matches. With the encoding process, generaliz-
ability is certainly a concern. Section 2.2 presents the list
of operations supported by our Yahoo! Pipes instantiation.
Other languages or parts of languages that perform similar
list and string manipulations could be covered by this, but
further study is needed to understand the extent to which
our current encodings extend to other domains.

The strongest encodings use a more concrete representa-
tion of the constraints, but may not return enough matches;
weaker encodings relax some of the constraints and treat
variables as symbolic to allow close matches to be iden-
tified. Like previous approaches that relax matching on
pre/postconditions [11], we exploit the fact that most lan-
guages contain constraints over multiple data types (e.g.,
strings, integers, booleans) and relax matching on specific
variables (e.g., the string “tennis” from Section 2.2). For
richer languages like Java, these current relaxations may not
be sufficient. Certain constructs like loops will likely be ap-
proximated by necessity, and the question of how to relax or
tighten those encodings remains. In general, finding sufficient
encodings, abstractions, and relaxations is one of the most
interesting, albeit difficult, challenges in this approach.

3.3 Solving
Solving (SMT Solver in Figure 2) is analogous to matching

in search engines. Solve(CP ∧LS) → (sat, unsat, unknown)
returns sat when a satisfiable model is found (i.e., a match) or
unsat when no model satisfies the constraints (i.e., no match).
When the solver is stopped before it reaches a conclusion
or it cannot handle a set of constraints, unknown might be

Figure 2: General Approach

returned. In the case of symbolic constraints, if the solver
returns sat, extracting the satisfiable model reveals values
for the symbolic variables to guide the creation of a suitable
program P ′ from a matching program P .

The efficiency of this process is determined by the con-
straints’ complexity, the input size, and the solver speed. The
constraint complexity can be controlled, to some degree, by
changing the granularity and strength of the encodings (e.g.,
concrete or symbolic). Recall is dependent on how long the
solver is allowed to run; the longer the allowed solver time,
the higher the recall. For precision, the programs returned by
the search for a given specification will always be relevant as
defined by LS, by design, and so the precision of the search
is 100% if matches are found.

4. FEASIBILITY STUDY
Section 2.2 presents an instantiation of the approach in

the Yahoo! Pipes language, which we now evaluate.

Study Setup. From a pool of 2,859 Yahoo! Pipes, we
selected five example pipes,1 executed each to derive LS, and
then performed searches using the specifications.2 Bounds
of 100 characters on the strings (i.e., the record titles and
descriptions) and five records per URL in the input list were
imposed, though these are configurable.

In the search, two factors are manipulated for each example:
the strength of the field encodings (Concrete and Symbolic)
and the maximum runtime for each call to Solve(CP ∧ LS)
(maxT = {5, 300} seconds). For each example pipe and
combination of factors, we search the pool and report the
number of matches, precision = relevant∩retrieved

retrieved
, recall =

relevant∩retrieved
relevant

, and Time to First Sat (TFS), which rep-
resents the time until a match is found. (averaged over 250
runs). Relevant results are those that eventually return sat
for LS and a given encoding strength, if allowed enough
solver time. Retrieved results are those for which the solver
returns sat within maxT . The TFS reported represent se-
quential iteration of the programs, but this process can be
parallelized to improve efficiency. Our data were collected
under Linux on 2.4GHz Opteron 250s with 16GB of RAM.

Results. In Table 1, the results for the concrete program
encodings are presented first, followed by the symbolic en-
codings. Each example is reported in a row. The first three
columns show the example number (Ex) and size, in terms
of number of records, of the input and output in LS. The
following columns show the number of matching pipes that
returned sat (#), recall (Rec.), and TFS given maxT = 5
and 300. A ‘+’ before the time means that no satisfiable
result was found, so the time displayed is a lower bound in
those cases. If any matches are found, precision = 1.00 since
all results are relevant, hence precision is not reported in the

1In clustering the pool by structural similarity, these pipes
were selected from the median five clusters.
2Artifacts are available: cse.unl.edu/~kstolee/fse2012/

3

Table 1: Preminimary Results from Study

Concrete

Ex
LS 5sec. 300sec.
i o # Rec. TFS # Rec. TFS

1 10 2 0 0.00 +95.60 17 1.00 125.39
2 10 3 0 0.00 +111.52 1 1.00 217.72
3 15 9 0 0.00 +115.19 0 0.00 +645.40
4 5 1 1 1.00 32.19 1 1.00 32.81
5 10 7 0 0.00 +94.45 1 1.00 146.75

Symbolic

Ex
LS 5sec. 300sec.
i o # Rec. TFS # Rec. TFS

1 10 2 0 0.00 +275.47 81 1.00 224.90
2 10 3 0 0.00 +213.39 0 0.00 +1,232.53
3 15 9 0 0.00 +342.80 16 0.62 598.85
4 5 1 3 0.03 60.99 89 1.00 51.82
5 10 7 0 0.00 +196.58 1 1.00 609.54

table. As expected, using symbolic constraints yields more
results than concrete, but it takes longer to find matches
since the solver usually decides unsat faster than sat.

In the concrete search given maxT = 300, all relevant
pipes are found with the exception of Ex 3, in which no
relevant pipes are found. For Ex 3, it takes longer than 300
seconds for the solver to return sat for each of the three
relevant pipes; the large size of LS may play a role in the
runtime. Only Ex 4 yielded any results with maxT = 5.

In the symbolic search with maxT = 5, 3% of the relevant
results are found for Ex 4, but the recall was 0.00 for the
others. Setting maxT = 300 yeilds results for all searches
except Ex 2, which finds none of the three relevant pipes. In
Ex 3, only 16 of the 26 relevant pipes are identified.

Overall, the longer the solver can run, the higher the recall,
and the more relaxed the encodings, the higher the number
of relevant pipes. Yet, for some LS, even 300 seconds might
be too short to find a relevant pipe. The overall efficiency
can be increased by introducing concurrency in the search,
which might allow us to explore longer solver times.

An interesting observation not immediately apparent from
Table 1 is that when matches are not found (i.e., the search
is stopped at maxT), the solver returns unknown for any
relevant pipes. Treating the set of unknown pipes as actual
results boosts the recall to 1.00 when maxT = 300 while
maintaining precision at 1.00. Recall also boosts to 1.00 for
maxT = 5, however, we lose precision as some unsat pipes
may return unknown without sufficient solver time. Further
study is needed to identify the optimum maxT for precision
and recall, and also to compare the performance of our search
to state-of-the-art and state-of-the-practice search engines.

5. RELATED WORK
Early work in semantic search required developers to write

complex specifications of behavior using first-order logic or
specification languages (e.g., [4, 11]), which can be expen-
sive and error-prone for the programmer. This cost can be
reduced by using incomplete behavioral constructs, such as
test cases to describe behavior [6, 7], but these approaches
require that the code be executed, which is not scalable
and cannot identify approximate behavioral matches. Some
previous work has proposed the use of semantic networks
to identify approximate matches [1], but it requires manual
annotations on the code.

Our use of symbolic encodings broadens the search space
beyond what is defined by the program semantics, in essence

providing a framework for program synthesis. Previous work
in program synthesis also makes use of solvers, but derives a
function mapping an input to an output [3]. The key differ-
ence is that our approach uses existing programs as skeletons
to constrain the search, which makes it more scalable.

6. CONCLUSION
We have defined a semantic approach to search that uses

an SMT solver to match lightweight specifications against
programs encoded as constraints. We have shown that with
suitable encodings matching programs can be found, and
that using symbolic constraints can identify matches that are
close enough to be modified for the provided specifications.

Our preliminary instantiation on the Yahoo! Pipes lan-
guage is promising, but many challenges remain. Selecting
an appropriate level of granularity for encoding is a key
challenge, and complexities such as loops and side effects
remain unaddressed. Additionally, approximating behavior
is a challenge for finding close results. Thus far, closeness
has been identified by treating string and integer values as
symbolic in the search. More sophisticated approximations
will be necessary as we extend this work in a broader context.

Acknowledgments
This work is supported by in part NSF Award CCF-0915526,
NSF GRFP CFDA-47.076, and AFOSR #9550-10-1-0406.

7. REFERENCES
[1] S.-C. Chou, J.-Y. Chen, and C.-G. Chung. A

behavior-based classification and retrieval technique for
object-oriented specification reuse. Softw. Pract. Exper.,
26(7):815–832, July 1996.

[2] M. Grechanik, C. Fu, Q. Xie, C. McMillan,
D. Poshyvanyk, and C. Cumby. Exemplar: Executable
examples archive. In International Conference on
Software Engineering, pages 259–262, 2010.

[3] S. Gulwani, V. A. Korthikanti, and A. Tiwari.
Synthesizing geometry constructions. In Conf. on Prog.
lang. design and implementation, 2011.

[4] J. Penix and P. Alexander. Efficient specification-based
component retrieval. Automated Software Engineering,
6, April 1999.

[5] Yahoo! Pipes. http://pipes.yahoo.com/, June 2012.

[6] A. Podgurski and L. Pierce. Retrieving reusable
software by sampling behavior. ACM Trans. Softw.
Eng. Methodol., 2, July 1993.

[7] S. P. Reiss. Semantics-based code search. In
Proceedings of the International Conference on
Software Engineering, pages 243–253, 2009.

[8] S. E. Sim, M. Umarji, S. Ratanotayanon, and C. V.
Lopes. How well do search engines support code
retrieval on the web? ACM Trans. Softw. Eng.
Methodol., 21(1):4:1–4:25, Dec. 2011.

[9] K. T. Stolee and S. Elbaum. Solving the Search for
Suitable Code: An Initial Implementation. Technical
report, University of Nebraska-Lincoln, June 2012.

[10] Z3: Theorem Prover.
http://research.microsoft.com/projects/z3/, November
2011.

[11] A. M. Zaremski and J. M. Wing. Specification
matching of software components. ACM Trans. Softw.
Eng. Methodol., 6, October 1997.

4

