
Identification, Impact, and Refactoring
of Smells in Pipe-Like Web Mashups

Kathryn T. Stolee, Member, IEEE, and Sebastian Elbaum, Member, IEEE

Abstract—With the emergence of tools to support visual mashup creation, tens of thousands of users have started to access,

manipulate, and compose data from web sources. We have observed, however, that mashups created by these users tend to suffer

from deficiencies that propagate as mashups are reused, which happens frequently. To address these deficiencies, we would like to

bring some of the benefits of software engineering techniques to the end users creating these programs. In this work, we focus on

identifying code smells indicative of the deficiencies we observed in web mashups programmed in the popular Yahoo! Pipes

environment. Through an empirical study, we explore the impact of those smells on the preferences of 61 users, and observe that a

significant majority of users prefer mashups without smells. We then introduce refactorings targeting those smells. These refactorings

reduce the complexity of the mashup programs, increase their abstraction, update broken data sources and dated components, and

standardize their structures to fit the community development patterns. Our assessment of a sample of over 8,000 mashups shows that

smells are present in 81 percent of them and that the proposed refactorings can reduce the number of smelly mashups to 16 percent,

illustrating the potential of refactoring to support the thousands of end-users programming mashups. Further, we explore how the

smells and refactorings can apply to other end-user programming domains to show the generalizability of our approach.

Index Terms—End-user software engineering, end-user programming, web mashups, refactoring, code smells, empirical studies

Ç

1 INTRODUCTION

MASHUPS are programs that manipulate existing data
sources to create a new piece of data or service that

can be plugged into a webpage or integrated into an RSS
feed aggregator. One common type of mashup, for example,
consists of obtaining data from some feeds (e.g., house
sales, vote records, bike trails), joining those data sets,
filtering them according to a criteria, and plotting them on a
map published at a site [2]. The development environments
that support mashup languages often contain built-in
functionality to quickly access and manipulate data,
abstracting away much of the implementation complexity,
and allowing the users to focus on the high-level behavior
of the mashup.

One popular mashup language and environment is
Yahoo! Pipes [3]. Over 90,000 end users have created
mashups in this visual mashup development environment
since 2007, and over 5 million mashups are executed on
Yahoo’s servers daily [4]. One example is shown in Fig. 1a.
To program these mashups, users drag and drop prede-
fined modules (the boxes in Fig. 1a) onto the canvas,
connect the modules via wires (the lines between the boxes),
and parameterize the modules by setting their field values
(the text boxes and drop-down boxes within the modules).

The modules perform various predefined functions, such as
retrieving data from a web source (fetch) or selecting a
subset of the retrieved data (filter), and act as interfaces
to an API. The field values modify the behavior of each
module by specifying, for example, the websites from
which to fetch the data or the expressions to specify a filter
criterion; these serve to parameterize the API call. The wires
that connect the modules define the mashup data and
control flow. Similar high-level, visual, compositional
programming languages, and representations, that we
group under the umbrella of pipe-like mashups, can be
seen across several mashup environments (e.g., Apatar [5],
DERI Pipes [6], Feed Rinse [7], IBM Mashup Center [8]).

In spite of the increasing power and popularity of
mashup environments, we have observed that mashup
programs tend to suffer from common deficiencies, such as
being unnecessarily complex, using inappropriate or dated
modules or sources of data, assembling nonstandard
patterns, and duplicating values and functionality. In our
study (Section 7), we studied 8,051 mashups from the
Yahoo! Pipes repository, and these programs were littered
with code smells. Approximately 23 percent had redundant
modules, 32 percent had the same string hard-coded in
multiple places, and 14 percent used sources of data that
were not working as specified. In total, 81 percent of the
pipes had at least one type of deficiency. Using our
proposed refactorings (Section 6), the deficiencies can be
completely removed in 80 percent of those deficient pipes.
A study to assess the impact of smells on end-user
programmers reveals that the refactored pipes are generally
preferred and that smelly pipes are harder to understand
and maintain (Section 5).

The presence of such deficiencies in mashup applications
is not necessarily surprising, but it becomes more concern-
ing in light of the fact that 66 percent of the pipes we
studied had been cloned for reuse an average of 17 times,

1654 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 12, DECEMBER 2013

. K.T. Stolee is with the Department of Computer Science and the
Department of Electrical and Computer Engineering, Iowa State
University, 209 Atanasoff Hall, Ames, IA 50011-1041.
E-mail: kstolee@iastate.edu.

. S. Elbaum is with the Department of Computer Science, University of
Nebraska-Lincoln, 256 Avery Hall, Lincoln, NE 68588.
E-mail: elbaum@cse.unl.edu.

Manuscript received 22 Oct. 2012; revised 1 July 2013; accepted 25 Aug.
2013; published online 5 Sept. 2013.
Recommended for acceptance by H. Gall.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2012-10-0301.
Digital Object Identifier no. 10.1109/TSE.2013.42.

0098-5589/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

even though more than three-fourths of them contain at

least one deficiency. The deficiencies that end-user pro-

grammers of mashups encounter have similarities with

those found by professional programmers and are often

referred to as code smells—indications that something may

be wrong with a section of code. Software engineers have at

their disposal techniques and tools to help maintain their

code and address such smells by performing semantic

preserving transformations on their programs to remove

smells, a process called refactoring [9], [10], [11].
Assisting end users with designing and creating mash-

ups is a well-studied research area, with the goal of making
mashups easier and faster to create [12], [13], [14], [15], [16],
[17]. Yet, research targeting maintenance is just starting to
emerge [18]. Through this work, we investigate how to
bring the benefits of software engineering maintenance
techniques to end-users programming mashups, which
seems reasonable given that 46 percent of the mashups
we studied were modified after being created, and
26 percent were modified after being added to the public
repository, providing evidence of maintenance activities.
Adapting software engineering methodologies to help end-
users program more dependably and maintainably in
nontraditional language paradigms is not new in the
software engineering research literature (e.g., [19], [20],
[21]). In the context of professional programmers, refactor-
ing has received considerable attention [22], but the focus
on refactoring for end-user programming languages is just
beginning for web mashups in our previous work [1] and
also for spreadsheets [23], [24].

In this work, we focus on mashup maintenance and
understanding through automated smell identification and
refactoring. The mashup domain introduces new smells
and is amenable to novel refactorings. In particular,
through this work, we explore smells and refactoring that:
1) leverage the pipe-like mashup language semantics to
simplify a pipe structure, 2) target mashups’ intrinsic
reliance on external and uncontrolled services and data
sources that may change without notice, and 3) utilize the
public repositories of mashups to standardize and promote
understanding across the community. In addition, this
work is the first to explore the impact of code smells on
end-user programmers. The contributions of this work are:

. Identification and definition of the most prevalent
smells in 8,051 mashups.

. Empirical evaluation of the impact of code smells on
61 users’ mashup preferences and understanding.

. Design of domain-specific transformations to refac-
tor smelly pipe-like mashups, and tailoring and
assessment of those transformations to the Yahoo!
Pipes environment.

. Discussion on extensions of refactoring to other end-
user programming domains and languages.

. Availability online of the data and infrastructure
used for the study.

This paper extends a previous effort [1] along several

dimensions. First, we present in detail a study of 61 users

over 18 tasks to reveal the impact of smells on user

preferences (Section 5). Second, we have added a discussion

of how refactoring could benefit other end-user domains

and outlined avenues for future work (Section 10). Third, as

the target of this work is an end-user programming

language and refactoring was originally developed for

professional languages, we include the preferences of end

users and degreed users in our study but find no significant

differences between the groups (RQ1 in Section 5). Fourth,

examples have been added throughout the smell and

refactoring definitions to make them more approachable

to the reader (Sections 4 and 6). In addition, Sections 7, 8,

and 9 have been extended and completed to provide more

details on related work, our study infrastructure, and the

threats to validity across all studies presented.
The rest of the paper is organized as follows: A motivating

example is discussed in Section 2, followed by the definitions

(Section 3) used to define smells (Section 4). A study to

evaluate the impact of code smells from a user perspective is

presented in Section 5, followed by the definition of

refactorings that can remove the smells (Section 6). Next, a

study to measure the effectiveness of the proposed refactor-

ing in removing smells is presented in Section 7. The threats

to validity are presented in Section 8. Section 9 presents

related work in mashups, refactoring, and graph transfor-

mations. A discussion of the applicability of smell detection

and refactoring to other end-user language domains is in

Section 10, and Section 11 summarizes the findings.

STOLEE AND ELBAUM: IDENTIFICATION, IMPACT, AND REFACTORING OF SMELLS IN PIPE-LIKE WEB MASHUPS 1655

Fig. 1. Introduction to the Yahoo! Pipes environment with two views, edit and information.

2 MOTIVATION

In this section, we present an example to illustrate what a
pipe-like mashup is, the Yahoo! Pipes mashup language
and environment, the potential smells in such mashups,
how refactorings can remove those smells, and how and
when users prefer the proposed refactorings.

2.1 Yahoo! Pipes Environment

In the Yahoo! Pipes environment, mashups are programs
executed on Yahoo’s servers. For any mashup, there are two
views through which the developer can access the mashup,
the edit view and the information view; both views are
accessed through the web browser.

To program a pipe, the user loads the Pipes Editor,
which is the edit view of the pipe. Fig. 1a shows a screen
shot of a browser displaying the Pipes Editor, the develop-
ment environment housing the visual and compositional
language Yahoo! Pipes. Through this environment users can
program mashups by dragging and dropping existing
components from the module library on the left onto the
canvas on the right. Each box in a pipe is a module, whose
behavior is defined by the Yahoo! Pipes environment, and is
connected to other modules via wires. Each module has a
name (e.g., truncate, filter), and most modules contain fields
that can hold hard-coded values or receive values via wire.
Modules can be configured by setting field values (e.g., a
URL). The structures of these pipe-like mashups are best
understood from top (inputs) to bottom (output). Starting
from the data sources that serve as inputs, a pipe-like
mashup combines and manipulates those inputs to create
exactly one output. In Fig. 1a, the fetch feed module accesses
an RSS feed, the filter module blocks items with the word
“tennis” in the description, the truncate module retains the
first five items in the RSS feed, and the pipe output serves as
the output of the pipe.

As of June 2013, the Yahoo! Pipes language has
46 supported modules and four deprecated modules.
Among the pipes we scraped from the repository for our
study (Section 7), the average size was 8.5 modules. A list of
the top 20 most common modules is presented, and
explained, in Section 3 (Table 1). Additionally, program-
mers can create their own modules, referred to as subpipes
that include existing pipes as subroutines. An example of
this is shown later in this section.

To execute a pipe, the user loads the information view.
When this page is loaded, the mashup is sent to Yahoo!’s
servers, which interpret the mashup to fetch and manipulate
the specified data sources and return the output back to the
programmer. Fig. 1b shows the partial output of the mashup
in Fig. 1a. The output of the pipe is a list of RSS items that
reach the pipe output module; here, three items are shown.
Shown is the title and description for each RSS item, but
there are additional fields associated with the item, such as
publication date, author, and URL. In this view, the user has
the ability to embed the mashup feed in another website,
publish it to the public repository, clone it to make a copy, or
edit source and load the Pipes Editor.

2.2 Running Example

The mashup in Fig. 2a was retrieved from Yahoo’s public
repository. We added letter labels to serve as references to
the modules to assist with the explanation. This mashup

aggregates articles about online marketing from German
websites and blogs, (e.g., http://internet-marketing-
deutsch.blogspot.com/ in module F), and was selected
for illustration due to the variety of smells it exhibits in a
relatively small number of modules. We use the pipe in
Fig. 2a as a running example to illustrate various concepts
throughout this paper.

In Fig. 2a, five modules retrieve data from web sources:
A, B, D, E, and F , each containing one field (the web data
source). These data generating modules provide the inputs
for the rest of the pipe modules to process. That is, these
modules provide a list of RSS items, such as those shown in
Fig. 1b, for the pipe to process. For each module in Fig. 2a,
we show the output in Fig. 2c. For example, the output of
module A, which gathers data from a web source, is
represented as outðAÞ : ½a1; a2�, where ai is an RSS item. This
means that the data source accessed by A provides a list of
RSS items containing two items. For the sake of illustration,
the lists from modules A and B are limited to two and four
items, respectively. The lists for modules D, E, and F have
arbitrary lengths of nd, ne, and nf , respectively.

Modules D and F are wired directly into truncate
modules G and I, respectively. Truncate modules retain
the first n items to pass to the next module, where n is set by
the field value. This behavior is illustrated in Fig. 2c. The
output from D is a list ½d1; d2; . . . ; dnd �, whereas the output
from G is just the first two items, ½d1; d2�. Similarly, the
output from I has only three items from F .

The output from data generating modules A and B is
aggregated through a path-altering union module, C, before
feeding to truncate module H. That is, the output of C is the
concatenation of the output from modules A and B, as
shown in Fig. 2c. Then, module H limits the size of the list
to just three items.

The outgoing data from modules G, H, and I are
aggregated with a union module, J . Similarly to C, J
concatenates the incoming lists from G, H, and I. The union
module J feeds to a sort module, K, which reorders the list
based on some property. In Fig. 2c, as we are using symbols
to represent the RSS items, it was reordered arbitrarily. The
sorted list from the output of K is wired to the pipe’s output
module, L. The output from L is what appears to the user
when the pipe is executed, such as the executed pipe shown
in Fig. 1b.

Fig. 2a indeed shows a functional pipe, yet it has several
deficiencies that can be removed by transformations while
preserving the underlying semantics. We identify some of
those deficiencies here:

1. Module E is disconnected from the rest of the pipe
(no connected wires) and can be removed without
impacting the output of the pipe. This is evident
when looking at the output from module L in Fig. 2c,
as no RSS items from moduleE made it to the output.

2. The data produced by two generator modules, A and
B, are immediately aggregated prior to any manip-
ulation. Since generator modules can accommodate
multiple fields, this redundancy can be removed by
merging them into one module.

3. In two of the truncate modules, H and I, the string
“3” specifies the number of data items to retain; if
the user determines that this value represents the

1656 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 12, DECEMBER 2013

same concept, then it can be abstracted into a
separate module to facilitate and ensure consistency
of future changes.

4. Two of the paths leading to module J , D to G and F
to I (omitting the path from H to J), include a fetch
module followed by a truncate module. These
isomorphic paths can be abstracted into a separate
pipe that can be included as a subpipe module,
increasing the modularity of the pipe being analyzed.

These deficiencies are referred to as code smells. As we
show later, code smells such as these can make pipes
harder to understand and harder to maintain (Section 5).
Given the popularity of the Yahoo! Pipes environment
(over 90,000 users [4]), the fact that 46 percent of the pipes
in our study were modified an average of 131 days after
being created, and that 26 percent of the pipes in our study
were modified after being made public, making future
changes easier is likely a concern for mashup programmers.
These smells can all be addressed by applying semantics-
preserving transformations on the pipe, as we show next.

2.3 Addressing Deficiencies

The smells identified in Fig. 2a were addressed in the pipe
in Fig. 2b. The impact on the output of the modules is
reflected in Fig. 2d. Note that while individual modules
may have different output, the output of the pipe,
represented by outðLÞ, is the same in Figs. 2c and 2d. The
changes made to the pipe in Fig. 2a are as follows:

1. Disconnected module E was removed. Depending
on the server-side optimizations, this may increase
performance as that RSS feed no longer needs to
be fetched.

2. Generator modules A and B were merged to yield
module AþB. This resulted in the removal of
module C since it became ineffectual. The output
of module AþB, shown in Fig. 2d, is the same as
the output from module C in Fig. 2c.

3. A new module, M, was added to abstract the value
“3” from modules H and I, which now receive
their field values via wire from M. The added
module M only provides values to fields in the pipe,

STOLEE AND ELBAUM: IDENTIFICATION, IMPACT, AND REFACTORING OF SMELLS IN PIPE-LIKE WEB MASHUPS 1657

Fig. 2. Motivational example before and after refactoring.

and not modules; this is reflected by outðMÞ ¼ “3”
in Fig. 2d.

4. The isomorphic paths from D to G and from F to I
were each replaced with a subpipe module that
encapsulates that behavior, forming modules DþG
and F þ I. (Subpipes are identified by the [open] link
next to the modules’ name.) The behavior of the pipe
remains the same; the output of DþG in Fig. 2d is
the same as the output of G in Fig. 2c, and the same
can be said for F þ I and I.

Through the transformation process, two of the original
modules were removed, two modules were merged into one,
two hard-coded fields are now abstracted in one place to
ease future changes, and two new subpipes hide unneces-
sary details in the pipe making it smaller and less complex.
These transformations are referred to as refactorings.

For most of the refactorings just described, our
evaluation (described in Section 5) shows that users
preferred the pipe without smells. The smells illustrated
by this example were used in 10 tasks in which study
participants were to select a smelly or a refactored pipe as
being preferred (tasks 1, 2, 7, 8, 14, 15, 16, 17, 18, and 19).
For nine of the 10 tasks, a majority preferred the
refactored pipe, and this majority was significant at � ¼
0:1 for six of the tasks. In one task (task 17) related to
isomorphic paths, a majority preferred the smelly pipe,
indicating that the transparency of behavior was preferred.
In the example, this would mean the users preferred to see
modules D and G separated, and F and I separated, as
in Fig. 2a, rather than the combined modules DþG and
F þ I in Fig. 2b. According to the user comments, the
behavior of the subpipe modules is not as clear as the
behavior of a fetch module connected to a truncate module.
In Section 5, we explain and explore the results of the
study in greater detail, but first we introduce formal
definitions for pipes and frequencies of occurrence of
smells in the repository. Later, we describe our infra-
structure for automatically detecting and removing the
smells through refactoring (Section 7.2).

3 DEFINITIONS

In this section, we provide definitions that are used
throughout the rest of the paper to define smells and
refactoring transformations. Fig. 3 presents shorthand
predicates used to simplify the presentation. Since a
mashup represents a directional flow of data, we can
represent a pipe-like mashup as a directed acyclic graph,
where the modules are nodes and the wires are the edges
that transmit data between the modules in a pipe.

Definition 1. A module is a tuple ðF ; name; typeÞ, containing

a list of fields F indexed from 1 to jF j, where F½1� is the first
field in the list, a name assigned by the Pipes programming
environment (e.g., fetch or truncate), and a type, to be

defined later in this section.

Definition 2. A wire is a tuple ðsrc; dest; fldÞ, containing a

module pointer to src, the source module of the wire, a module
pointer to dest corresponding to the wire destination module,
and a field pointer fld for the destination field, if one exists,

and ; otherwise.

Definition 3. A field is a tuple ðwireable; valueÞ containing a
function wireableðFÞ ! ftrue j falseg indicating whether or
not that field can be set by an incoming wire, and a value that
contains a string-representation of the field’s content.

Definition 4. A pipe is a graph, PG ¼ ðM;W; ownerÞ,1
containing a set of modules M, a set of wires W, and a
function ownerðfÞ !M assigning every field f to exactly
one module. The wires are constrained such that 8w 2
Wððw:src 2 MÞ ^ ðw:dest 2 MÞ ^ ðw:src 6¼ w:destÞ ^
ðw:fld 6¼ � _ w:fld 2 ðw:destÞ:FÞÞ (no cyclic wires, source
and destination are within PG, and if the wire goes to a field
that field is within w.dest). Every pipe must also contain
exactly one module named output.

For example, Fig. 2a shows a pipe with jMj ¼ 12,
modules A;C 2 M connected by wire w 2 W, where
w ¼ ðA;C;�Þ. Module K has two nonwireable fields, (e.g.,
K:F½1� ¼ (false,“item.pubDate”)), whereas module G has
one wireable field, G:F½1� ¼ (true, “2”).

Definition 5. A pipe path is a sequence of n connected modulesmi

such that 8miðð0 � i < n� 1Þ ! 9w 2 Wðout wireðmi;
wÞ ^ in wireðmiþ1; wÞ ^ ðmi � miþ1ÞÞÞ. For notational con-
venience, the path length is defined by p:length, the first
module in the path can be accessed by pðfirstÞ, and is closer to
the data source. The last module in the path by pðlastÞ, and is

1658 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 12, DECEMBER 2013

Fig. 3. Shorthand for common predicates used in the definitions, smells,
and refactorings.

1. Our previous definition [1] for a pipe was PG ¼ ðM;W;F ; ownerÞ;
since fields are always contained within modules, we removed the
redundancy of including F in the pipe definition.

closer to the output. Using the example in Fig. 2a, the modules
and wires from G to K form a path p, where p:length ¼ 3,
pðfirstÞ ¼ G, and pðlastÞ ¼ K.

As part of the module definition, we classify modules by
their type, where the type is defined based on the module’s
impact on the data that flows through the mashup. Types
are meant to classify modules at a higher level of abstraction
than the names, similar to a type hierarchy. These types are
intended to be general across mashup applications, as we
show implicitly by later mapping some of our definitions
onto the DERI pipes environment (Section 10.1).

The module types are nonoverlapping in that a module
is assigned exactly one type. However, there are some
orthogonal subtypes used with the operator and setter
modules, as we describe. The type for a module m 2 M is
defined as follows:

1. Generator module. m:type ¼ gen if 9f 2 m:F such that
f refers to an external data source (e.g., an RSS feed,
another pipe). This is the only module type that
provides a list of items for other modules in the pipe
to process. From Fig. 2a, modules A, B, D, E, and F
are generator modules, and from Fig. 2b, modules
AþB, DþG, and F þ I are generator modules. The
subpipe modules are classified as generator modules
because each subpipe is itself a complete pipe, where
the output of a subpipe modules is the output from
the pipe it abstracts.

2. Setter module. m:type ¼ setter if m sets a value that
will be used to parameterize the pipe; all the wires
outgoing from a setter module have a field as the
destination. That is, 8w 2 Wððw:src ¼mÞ ! ðw:fld 6¼
�ÞÞ. A setter module is said to be a string-setter
module, if m sets a string (m:type ¼ setter:string). In
Fig. 2b,M is a string-setter module. A setter module is
said to be a user-setter module if the user may be
queried to set a parameter when the pipe is executed
(m:type ¼ setter:user). A user-setter module is con-
nected to the pipe in the same way as M in Fig. 2b.

3. Path-altering module. m:type ¼ pathAlt if m either
joins multiple paths, as in a union, or diverts one
path into multiple paths, as in a split. That is, 9wi;
wj 2 Wðwi:src ¼ m ^ wj:src ¼ m ^ wi:fld ¼ � ^
wj:fld ¼ �Þ, as in a split (semantically works like a
copy), or 9wi; wj 2 Wðwi:dest ¼ m ^ wj:dest ¼ m ^
wi:fld ¼ � ^ wj:fld ¼ �Þ, as in a union.

Modules C and J in Fig. 2a are union modules; the
input lists are concatenated together to create the
output list. A split is like an upside-down union, in
which the outgoing wires contain copies of the
incoming wire. In the Yahoo! Pipes language, these
two modules are the only path-altering modules.

4. Operator module. m:type ¼ op if m performs a
manipulation operation (e.g., sorting, removing,
renaming) on the list of items passed in via wire.

An operator module o can be subtyped across two
orthogonal dimensions: o is said to be read-only
(op:ro) if it does not modify the content of items in
the input list (e.g., filtering a list based on the items’
titles), and read-write (op:rw) if it can modify the

content of list items (e.g., appending a string to each
item’s title). Modules G, I, and K in Fig. 2a are op:ro
modules. A rename module that augments title
values of the items would be subtyped as op:rw.
Second, o is said to be order-independent (m:type ¼
op:indep) if the set of items in the output from the
module is the same regardless of the order of
the items passed into it (e.g., reordering, renaming,
or removing list items), or o is order-dependent
(m:type ¼ op:dep) if the outcome depends on the
order of the items passed into it (e.g., the truncate

module that only outputs the first n items in a list).
In Fig. 2a, module K, a sort module, is op:indep and
modules G and I, truncate modules, are op:dep.

5. Output module.m:type ¼ output ifm has the following
property: m:F ¼ ; ^ 9w 2 Wðw:dest ¼ m ^ w:fld ¼
;Þ ^ ð6 9w 2 Wðw:src ¼ mÞÞ. Every pipe contains ex-
actly one output module. In Figs. 2a and 2b, moduleL
is an output module.

To provide some more background on the Yahoo! Pipes
language, the top 20 most frequently used modules are
shown in Table 1. The Frequency column lists the number of
public pipes containing that module as of June 2013, the
m:name column identifies the module name given by the
Yahoo! Pipes environment, and m:type classifies each
according to the definition of types just presented. The last
column, Fig. 2, identifies the modules in Fig. 2 that map to
the modules listed. Other than the output module that
appears in every pipe, the fetch module is the most
common, appearing in 96,026 publicly available pipes; it is
of type gen. The filter appears in nearly half as many,
45,251 pipes, and is of type op:indep ^ op:ro.

4 CODE SMELLS

To ascertain smells relevant to pipe-like mashups, we
collected candidate smells similar to those defined for
professional programmers (as per the references in Section 9),
defined smells based on errors and unnecessary complexity
reported in the users’ newsgroups, and identified others by

STOLEE AND ELBAUM: IDENTIFICATION, IMPACT, AND REFACTORING OF SMELLS IN PIPE-LIKE WEB MASHUPS 1659

TABLE 1
Most Common Module Frequencies and Types in Yahoo! Pipes

observing the rich sample of over 8,000 pipes we gathered
for analysis (Section 7 describes the selection criteria).
Utilizing this sample, the list of candidate smells was
iteratively refined as we found smells that were either not
directly applicable to the domain (e.g., refactoring for
concurrency, cleaning up class hierarchies, modifying
conditionals for simplicity, introducing design patterns,
pulling up constructor bodies) or not common enough
(< 5 percent) to warrant their consideration (e.g., authentica-
tion needed, which occurs when a URL returns a 401 error).

With the study infrastructure described in Section 7.2, we
analyzed a sample of pipes to determine the prevalence of
smells among pipes in the community. For each smell
defined in this section, we report the percentage of pipes
that contain the smell. For example, Smell 1: Noisy Module
appears in 28 percent of the pipes we studied. Overall, 81
percent of the pipes were afflicted with one or more smell.

Each smell is defined as a predicate in the context of a
pipe represented as a graph PG ¼ ðM;W; ownerÞ. Using
Smell 2: Unnecessary Module as an example, we identify an
instance of this smell for module m if the predicate
9n 2 Mðm 6¼ n ^ outputðnÞ ^ !subsequent modsðm;nÞ) eval-
uates to true. This could occur if m is disconnected from all
other modules (i.e., it has no incoming of outgoing wires,
like Module E in Fig. 2). In that case, the output module, n,
will not be a subsequent module from m, and hence the
predicate will evaluate to true, identifying an instance of
the smell.

Next, we look at the smell definitions and then Section 5
presents a detailed account of user preferences regarding
the defined smells.

4.1 Laziness Smells

This category of smells was inspired in part by the “Lazy
Class” smell, which identifies classes, components, or
methods that “do not do enough” [9]. These smells identify
pipes that contain modules or fields that do not contribute
to the output of the pipe, making it unnecessarily complex
or potentially faulty.

Smell 1. Noisy module (28 percent)—A module that has
unnecessary fields, making the pipe harder to read and less
efficient to execute. Module m 2 M is considered noisy if:

Case 1.1. Empty field:

ðgenðmÞ _ setter strðmÞÞ ^ 9f 2 m:Fðf:value ¼ ‘‘’’Þ:

This describes a blank field in a generator or string-setter
module. If a generator has no specified URL, then it
generates no output and does not contribute and content to
the pipe.

Case 1.2. Duplicated field:

9fi; fj 2 m:F j fi 6¼ fj ^ same valðfi; fj; trueÞ:

This describes the case when two fields in a single module
have the same value. For example, if a fetch module
contained the same URL in two different fields, then this
smell would be present.

Smell 2. Unnecessary module (13 percent)—A module
whose execution does not affect the pipe’s output, adding
unnecessary complexity. Module m 2 M is considered
unnecessary if:

Case 2.1. Cannot reach output:

9n 2 Mðm 6¼ n ^ outputðnÞ
^ !subsequent modsðm;nÞÞ:

This describes a module that is disconnected from the pipe
or that does not contain an outgoing wire such that there
exists a path from the module to the output (i.e., a dangling
module). To illustrate, consider the smell definition and
Fig. 2a; m from the definition maps to E in Fig. 2a and n
maps to L. Since n is the output, m 6¼ n, and there does not
exist a path between m and n (per the definition of
subsequent mods in Table 3), this smell is present in the
pipe shown in Fig. 2a.

Case 2.2. Ineffectual path altering:

path altðmÞ
^ 91wi 2 Wðin wire ðm;wiÞÞ
^ 91wj 2 Wðout wire ðm;wjÞÞ:

This describes a path altering module with exactly one
input wire and exactly one output wire. In the transforma-
tion from Fig. 2a to Fig. 2b, modules A and B consolidate
to AþB and module C disappears. After AþB has
replaced A and B, then this smell is present where m maps
to C. Since C is a path-altering module that has exactly one
wire in, and one wire out, this smell was present.
Eliminating this smell was an intermediate step in the
transformation from Fig. 2a to Fig. 2b and is therefore not
explicitly shown.

Case 2.3. Inoperative module:

ðsetter strðmÞ _ opðmÞ _ genðmÞÞ ^ ðm:F ¼ ;Þ:

This describes a generator, operator, or setter module that
contains all blank fields, and hence has no behavior. Where
Smell 1.1: Empty Field describes a single instance of an
empty field, this smell describes a module that has all
empty fields.

Case 2.4. Unnecessary redirection:

setter strðmÞ ^ ðjm:Fj ¼ 1Þ ^ all fld wiresðmÞ:

A module that is a setter module with exactly one field that
receives its value via wire provides unnecessary redirection.
To illustrate, consider module M in Fig. 2b. Hypothetically,
if the field in M received its value via wire from another
module, then M would meet the criteria for this smell since
it is a setter, it has one field, and its one field would receive
its value via wire.

Case 2.5. Swaying module:

ðpath altðmÞ _ opðmÞÞ^ 6 9w 2 Wðin wireðm;wÞÞ:

These are modules that do not provide any data to the pipe
and do not receive any incoming data. For example, an
operator module that does not have a generator feeding it
items would be swaying.

Smell 3. Unnecessary abstraction (12 percent)—A setter
module that always performs the same operation on
constant field values (fields that are not wired), and that
only feeds a value to one destination, may be unnecessarily
abstract. Unlike Smell 2.4: Unnecessary redirection, which
describes a module that has exactly one wired field and any
number of outgoing fields, this string setter module can
only have one destination and none of its fields are wired.
Module m 2 M is unnecessary if:

1660 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 12, DECEMBER 2013

setter strðmÞ ^ 91wi 2 Wðout wireðm;wiÞÞ
^ 6 9wj 2W ðfld wireðm;wjÞÞ:

To illustrate, consider module M in Fig. 2b. Hypotheti-
cally, if there was only one outgoing wire from M, then it
would match this smell because it would have one outgoing
wire and none of the fields in M are wired.

4.2 Redundancy Smells

Duplicated code has been referred to as the worst smell in
programs written by professionals [9]. These redundancy
smells identify pipes that have duplicated fields, modules,
or paths. Redundancies in pipes bloat the modules and the
pipe structure, add unnecessary complexity, and make pipe
understanding and maintenance more difficult.

Smell 4. Duplicate strings (32 percent)—A constant string
that is used in at least n wireable fields in at least two
modules. Given n ¼ 2, fields are marked as duplicates if:

9fi;fj 2
[

m2M
m:FððownerðfiÞ 6¼ ownerðfjÞÞ

^ same valðfi; fj; trueÞÞ:

This is similar to Smell 1.2: Duplicate field except the fields
must be in different modules and have the opportunity to
receive values via wire. For example, in Fig. 2a the truncate
modules H and I have a duplicate string “3.” This means
that fi maps to the field in H, and fj maps to the field in I.
Since ððownerðfiÞ 6¼ ownerðfjÞÞ, which is equivalent to
saying H 6¼ I, and fi and fj hold the same value (i.e.,
“3”), then the pipe shown in Fig. 2a has this smell.

Smell 5. Duplicate modules (23 percent)—Operator modules
appearing in certain patterns may be redundant and
candidates for consolidation. Modules mi;mj 2 M are
considered duplicates if mi:name ¼ mj:name and

Case 5.1. Consecutive redundant modules:

ðop indepðmiÞ _ path altðmiÞ
^ 9wj 2 W ðjoined byðmi;mj; wjÞÞ:

This describes two order-independent or path-altering
modules, such as filters or unions, that are incident to one
another in the pipe. As an example, consider the pipe
shown in Fig. 2a. Hypothetically, if H was removed and C
connected directly to J , this smell would be present. In that
situation, mi would map to C and mj would map to J . In
the absence of H, there would be a wire, wj joining C to J .
Fig. 5, described in Section 6.2, shows three different
instances of this smell.

Case 5.2. Identical subsequent operators:

op indepðmiÞ ^ op roðmiÞ ^ same fld valsðmi;mjÞ
^ subsequent modsðmi;mjÞ
^ 8mk 2Mðbtw modsðmk;mi;mjÞ
^ ðunionðmkÞ _ ðop indepðmkÞ ^ op roðmkÞÞÞ:

This describes two identical order-independent, read-
only operator modules that exist along the same path in a
pipe and all the modules along that path are order-
independent or union modules. In this way, the module
farther from the output is unnecessary since it performs the
same operations as the one closer. As an example, consider
two sort modules that both order a list based on publication

date. This operation only needs to happen once because a
sorted list does not need to be resorted. Fig. 6 shows an
example of this smell.

Case 5.3. Joined generators:

genðmiÞ ^ genðmjÞ ^ conn to unionðmi;mjÞ
^ out wireðmi;wiÞ ^ out wireðmj;wjÞ:

This describes two generators that are directly connected
to a union, and names the outgoing wires from each for use
in the associated refactoring transformation (Section 6). This
smell is present in the pipe in Fig. 2a, where mi maps to A,
mj maps to B, and both are connected to a union, C.
Another example of this smell is shown in Fig. 7.

Case 5.4. Identical parallel operators:

op indepðmiÞ ^ op indepðmjÞ
^ same fld valsðmi;mjÞ
^ conn to unionðmi;mjÞ
^ 9mk;ml 2 M 9wi; wj; wk; wl 2 W
ðout wireðmi;wiÞ ^ out wireðmj;wjÞ
^ joined byðmk;mi; wkÞ ^ joined byðml;mj; wlÞ
^ ðgenðmkÞ _ unionðmkÞÞ ^ ðgenðmlÞ _ unionðmlÞÞÞ:

This describes two order-independent operators that are
parallel in the pipe with structures that could be repre-
sented with a single pipe path by consolidating modules
like the generators. Three instances of this smell are shown
in Fig. 8.

Smell 6. Isomorphic paths (7 percent)—Nonoverlapping
paths with the same modules performing the same
operations may be missing a chance for abstraction. Two
paths p and p0 are isomorphic if:

ðp:length ¼ p0:lengthÞ ^ ðp \ p0 ¼ ;Þ
^ genðpðfirstÞÞ ^ genðp0ðfirstÞÞ
^ 8mn 2 p;8m0n 2 p0ðð0 � n < p:lengthÞ
! ððmn:name ¼ m0n:nameÞ
^ same n fldsðmn;m

0
nÞ

^ ð8f 2 mn:F ; 8f 0 2 m0n:Fððf:wireable ¼ falseÞ
! same valðf; f 0; falseÞÞÞÞÞ:

An example is shown in Fig. 2a, where p consists of the
path from D to G (i.e., pðfirstÞ ¼ D and pðlastÞ ¼ G) and p0

consists of the path from F to I. This definition can be
generalized to n isomorphic paths by defining a new p0 for
each subsequent isomorphic path.

4.3 Environmental Smells

Inspired by the pervasive use of invalid and unsupported
data sources and modules by pipes in the Yahoo! Pipes
repository, these smells identify pipes that have not been
updated in response to changes to the external environ-
ment. A pipe containing a module no longer maintained by
the Pipes language or a field that references an invalid
external source exhibits an environmental smell that may
cause a failure.

Smell 7. Deprecated module (18 percent)—A module that is
no longer supported by the pipe environment. Given
SupportedM, a pipe contains this smell if: 9m 2 M such
that m:name 62 SupportedM.

STOLEE AND ELBAUM: IDENTIFICATION, IMPACT, AND REFACTORING OF SMELLS IN PIPE-LIKE WEB MASHUPS 1661

At least four modules have been deprecated in the
Yahoo! Pipes environment from 2007 to 2012.

Smell 8. Invalid Sources (14 percent)—An external data
source es 2 ExternalSources is invalid if n consecutive
attempts to retrieve data from it report errors, such as
404 Not Found. Given n ¼ 1, a pipe presents this smell
when 9f 2 F that refers to an invalid es. Typically, this
smell shows up in the generator modules where
ownerðfÞ:type ¼ gen. Such fields add unnecessary size to
the pipe.

4.4 Population-Based Smells

The previous smells focused on individual pipes. Population-
based smells, on the other hand, rely on the community
knowledge captured in the public repository to discover
patterns that have been commonly employed in highly
reused pipes or that are common among all pipes. Pipes using
alternative module structures to implement such patterns are
considered smelly because they may take more time to
understand and potentially discourage reuse of those pipes
across the community.

Smell 9. Nonconforming module orderings (19 percent)—
Given a community prescribed order for read-only, order-
independent operator modules appearing in a path of
length n, a pipe with a path including such modules but in a
different order may unnecessarily increase the difficulty for
other users to understand and adopt the pipe. By perform-
ing a frequency analysis of the pipes in a repository, we
obtain a pool of commonly observed paths that we call
prescribed paths, PPres, and consider path p to be
nonconforming if:2

8 m 2 p ððop indepðmÞ ^m:type ¼ op:roÞ
^ 9p0 2 PPres ððorderðpÞ 6¼ orderðp0ÞÞ
^ ðbagðpÞ ¼ bagðp0ÞÞÞÞ:

For example, an instance of this smell would be
identified if p and p0 have the same bag of modules, yet
their ordering is different (e.g., p ¼ ½filter; sort; filter�,
p0 ¼ ½sort; filter; filter�, and p0 is a prescribed path from
PPres). Defining PPres requires the identification of the
sample of the population from which the prescribed paths
are to be derived and the bounding of the path length to be
considered. Section 7.1 describes how we detected instances
of this smell in the population.

Smell 10. Global isomorphic paths (6 percent)—Building on
the isomorphic path smell (Smell 6: Isomorphic Paths), we
extend the scope of the smell to paths appearing in
multiple pipes. Global isomorphic paths represent missed
opportunities for a community to reuse the work of its
contributors, and make it harder to understand pipes due
to the lack of abstraction of commonly occurring paths.
Given a pool of prescribed global paths PGPaths, a pipe
PG has this smell if:

9p 2 PG;9p0 2 PGPathsðp0 is isomorphic to pÞ:

As with the previous smell, generating PGPaths
requires identification of the population sample from which
the paths are derived and a threshold of path frequency for

it to be considered global. Using Fig. 2a as an example, if the
paths from D to G and from F to I are part of the PGPaths,
then this smell would be present in that pipe. Section 7.1
provides the implementation details for detecting this smell.

5 USER PREFERENCES AND SMELLY PIPES

From a researcher’s perspective, code smells are indicative
of deficiencies in source code, and refactorings are intended
to make the code better with respect to some property, such
as understandability or maintainability. Yet, for web
mashups, it is not clear if code smells in programs matter
to programmers. Toward this end, we designed two
experiments. The first experiment aims to determine if the
programmers prefer pipes with or without smells, and the
second aims to determine if smelly pipes are harder to
understand than clean pipes. We address the following
research questions:

. RQ1: Are pipes with smells more or less desirable
than pipes without such characteristics? (study 1)

. RQ2: Are pipes with smells more or less under-
standable than pipes without such characteristics?
(study 2)

5.1 Experimental Design

The experiments that explore these research questions were
split into tasks with a random assignment of subjects to
tasks. Each task has two semantically, but not syntactically,
equivalent pipes. As we are interested in the impact of
smells, the treatment is a smell applied to a pipe (object). For
each task, one pipe is treated with a smell and the other is
not, providing coverage for all the smells defined in Section 4
and a variety of pipe structures. The dirty pipes were
gathered from the community artifacts, and the clean pipes
were generated by applying a refactoring transformation
(defined in Section 6). The following sections describe the
artifacts used in the study, implementation, and participants.

5.1.1 Experimental Artifacts

Sixteen pairs of pipes (one clean/refactored and one dirty/
smelly) were used in the study, and each pair is described in
Table 2. Some of the pipe pairs were used by multiple
experimental tasks. The Artifacts column enumerates the pipe
pairs for reference. The Smell column indicates the smell that
is present in the dirty pipe and absent in the clean pipe; we
include the smell number from Section 4 for easy reference.
The Purpose of each pipe is described to show the diversity in
the tasks programmers can accomplish within this domain,
from getting job ads to finding pictures uploaded by friends.
These pipes were selected based on their smells to provide
coverage of all smells defined in Section 4.

To illustrate the size and complexity of each pipe, we
flatten the pipe to a string representation. The Dirty Pipe
and Clean Pipe columns describe the structures of the pipes
using an extended parallel-serial graph representation [35].
Parentheses and commas denote parallel paths (e.g., (x, y)
represents two parallel paths, x and y, separated by a
comma) and spaces denote serial paths (e.g., x y z is a serial
sequence of x-y-z). The setter modules, which can have
multiple output wires and be connected to nearly any
module in the pipe, break the parallel-serial structure, so we
modify the representation by treating these modules as

1662 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 12, DECEMBER 2013

2. We use bagðpÞ as a data structure representing the names and counts of
modules in path p, and orderðpÞ to represent the ordering of names in path p
from first to last.

symbolic. That is, to capture all the outgoing connections for
each setter module, we assign each a symbolic name (e.g.,
textinput0 and textinput1 would be symbolic names assigned
to two textinput modules), and serially attach the symbolic
names to each module to which it is connected. To illustrate,
consider the pipe in Fig. 2a. Its parallel-serial graph is
represented as (fetch truncate, (fetch, fetch)

union truncate, fetch truncate) union sort out-

put, and the pipe in Fig. 2b is represented as (subpipe,
(fetch, stringBuilder0) truncate, string-

Builder0 subpipe) union sort output. In Fig. 2b,
the setter module, stringBuilder, has two destinations, a

truncate module and a subpipe module. Thus, it is
assigned a symbolic name, stringBuilder0 and serially
attached to each.

5.1.2 Study Implementation

This study was implemented using Amazon’s Mechanical
Turk [25], a service advertised as a “marketplace for work
that requires human intelligence.” There are two roles in
Mechanical Turk, a requester and a worker. The requester is
the creator of a human intelligence task, or HIT, which is
intended to be a small, goal-oriented task that can be
accomplished in less than 60 seconds. This fits our study

STOLEE AND ELBAUM: IDENTIFICATION, IMPACT, AND REFACTORING OF SMELLS IN PIPE-LIKE WEB MASHUPS 1663

TABLE 2
Study Artifact Descriptions

structure described previously. The worker completes the
HIT and gets paid for their work, if satisfactory. Each task
we defined for this study was implemented as a HIT, and
users were paid $0.25 per HIT completed.

Participants were given a maximum of 60 minutes to
complete each HIT and the study was launched in two
phases. The first and initial phase ran from April 28
to May 13, 2010, and the second phase ran from July 5 to
September 10, 2011. This second phase was launched to
explore further some questions that remained after the
initial phase, specifically related to abstraction smells. The
workflow for a user participating in our study is as follows:
A user must first create an account in Mechanical Turk and
then locate our HITs by searching. Next, they may read
some tutorial information and must take a qualification test.
This test is used to control for participant quality, collect
demographic information about the participants (e.g.,
education level), and obtain Institutional Review Board3

consent, per our institution’s policy. Once a user submitted
a qualification test, it was graded as per our specification. A
passing score allowed the user to complete any of the HITs
in this study. Retakes on the qualification exam were not
permitted in the event of a failing score.

5.1.3 Study Participants

Refactoring code is a task that was originally proposed and
studied in the context of professional programmers. In this
work, we adapt and extend refactoring to an end-user
programming language in the web mashup domain. We
solicited participation in the study from both end-user
programmers and degreed programmers.

We classified participants using their responses to a
survey question about their education level relating to
computer science and related fields, which was a part of the
qualification test. Users who reported to have a degree in

computer science or related field were classified as degreed
users, while the rest were classified as end users.

The survey and qualification test were completed by
258 subjects and 135 (52 percent) received a passing score of
50 percent or more. A total of 61 subjects participated in the
study, and the average qualification test score for those
participants was 74 percent. Of those, 29 (48 percent)
were classified as degreed users, with an average score of
72 percent on the qualification test. The remaining 32
(52 percent) participants were classified as end users and
scored an average of 75 percent on the qualification test. The
participants provided a total of 366 data points across all
tasks, and the average participant completed approximately
six tasks.4

5.2 Study Results

We now describe the approach for addressing each research
question, and the results.

5.2.1 RQ1: Are Pipes with Smells Less Preferable?

For this experiment, we defined tasks using the pipe pairs
from Table 2. In each task, the user was shown the clean
pipe and the dirty pipe side-by-side and asked to select the
pipe that is preferable, given some goal (i.e., to understand, to
maintain, or for others to understand). The first goal, under-
standability, explores the clarity of the clean pipe with
respect to the dirty version. The second goal, maintain-
ability, explores the effort of the user to update the pipe in
the future; the third goal has an understandability and
community focus. Using radio buttons, participants selected
the first, second, or neither pipe as being preferable and
justified their answer with a free-form response.

The experiment to explore this research question was
split into 18 tasks. Artifact sets 1-14 from Table 2 were used
in these tasks, which are described in further detail in
Table 3 (eight tasks (1-8) were evaluated in the first phase,
and 10 tasks (10-19) were evaluated in the second phase).
The Task column indicates the task number (for reference),
and the Smell describes the type of smell involved with the

1664 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 12, DECEMBER 2013

TABLE 3
RQ1 Task Summaries

Fig. 4. Illustration of Task 19.

3. The Institutional Review Board, or IRB, is an organization that reviews
and authorizes study protocol for experiments involving human subjects to
protect the volunteer subjects. The approval number for this project is: UNL
IRB# 20110410792 EX.

4. At � ¼ 0:1 or lower, there were no significant differences between the
results end users and degreed users, so we aggregate the responses.

task, followed by the smell number referencing Section 4.
The Artifacts column references the artifacts in Table 2,
and the Refactoring column indicates the type of refactoring
used to remove the smell (refactorings are defined in
Section 6). The User Goal indicates how the participant was
asked to judge their preference between the dirty and clean
pipes (i.e., the user goal). For illustration, Task 19 with
artifact set 1 is shown in Fig. 4; the dirty pipe is A and the
clean pipe is B.

The results of the study are summarized in Table 4. For
each task (identified by number in the Task column), all tasks
pertaining to maintenance, all tasks pertaining to under-
standing, and all tasks aggregated, we show the number of
participants who preferred the clean pipe, dirty pipe, or
neither pipe in the All Results column. We test for significance
using a 1-sample test of given proportions to determine if
the response represents a majority using the null hypothesis
H0 : �response � 0:5 and alternate hypothesis Ha : �response >

0:5 for the clean (�c), dirty (�d), and neither responses (�n).5

The p-values are reported for each of these tests.
Overall, a significant majority preferred the clean pipes

at � ¼ 0:01. For those tasks dealing with maintenance, a
significant majority preferred the clean pipes at � ¼ 0:001.
However, for the tasks dealing with understanding (i.e., the
user goal of to understand or for others to understand), a
majority preferred the clean pipes, but it was not significant.
Breaking it down by task, in 13 of the 18 tasks, a majority of
participants preferred the clean pipe to the dirty pipe, and
six tasks had a significant majority at � ¼ 0:10 or lower. Of
the remaining five tasks, two indicate that a majority of
participants expressed no preference, two showed that a
majority of participants preferred the dirty pipe, and one

showed a tie between the clean and dirty selections. We
now group the tasks by smell and discuss the findings.

Duplicate module smells make a pipe harder to understand and
perhaps also harder to maintain (Tasks 1, 3, and 19). For all tasks
that used a consolidation refactoring, a majority of
participants preferred the refactored pipe, but the majority
was only significant for Task 1, which asked about under-
standing. This may be due to the size difference between
pipes used for Task 1, where the dirty pipe had eight
modules and the clean pipe had three (Fig. 4 depicts the
pipes used in this task).

Abstraction on strings eases maintenance, but not under-
standing (Tasks 2, 15, 17, and 18). For string abstractions and
Smell 4: Duplicate Strings, participants recognize the
benefits for maintenance, but find the hard-coded values
easier to understand. In the three tasks that asked about
maintenance, a significant majority preferred the clean pipe.
For the one task that asked about understandability
(Task 17), a significant majority preferred the dirty pipe.

Preferences for abstraction on modules seems to depend on size
and goal (Tasks 7, 14, and 16). With Smell 6: Isomorphic
Paths, for the goal of maintenance (Tasks 14 and 16) a
majority preferred the clean pipe, and for the goal of
understandability (Task 7), a majority preferred the dirty
pipe. In only one instance (Task 14), that with the longest
paths for replacement, did a significant majority of
participants prefer the refactored pipe. Participants seemed
to find value when the abstraction removed modules from
view, providing a greater reduction in size.

Laziness smells are never preferred (Tasks 6 and 8). Two tasks
involve laziness smells, one asked about understandability
and the other about maintainability. In both tasks, a
majority of participants preferred the clean pipe, but the
majority was significant for only one task (Task 8). This
shows that laziness smells may impact understandability
and maintenance, at least for these or similar tasks.

STOLEE AND ELBAUM: IDENTIFICATION, IMPACT, AND REFACTORING OF SMELLS IN PIPE-LIKE WEB MASHUPS 1665

5. As opposed to a �2 test of equal proportions in which the proportions
would be compared to 0.33, the test we used is more conservative as it
compares the proportion for each proportion to the pooled proportion of the
other two selections.

TABLE 4
RQ1 Tasks and Results Breakdown

Invalid sources have little impact on user preferences (Tasks 4,
10, and 12). In two of the three tasks that involved the
invalid sources smell, a majority of participants showed no
preference between the pipes. For Task 12, a majority
preferred the clean pipe for maintainability, but it was not
significant. For this type of environmental smell, partici-
pants are generally indecisive. The free-form responses
indicate that because the structures are basically the same
between a pipe with or without this smell, the pipes are
equally easy to understand or maintain. This may indicate a
misunderstanding of the impact of invalid data sources
(e.g., harder to debug, an unnecessary number of fields).

Deprecated modules have little impact or are not well
understood (Tasks 5, 11, and 13). In all tasks involving a
deprecated module, the results were not significant in the
context of the user goal, though a majority preferred the
clean pipe in two of the three tasks. It would seem that
when it comes to maintenance, the participants do not mind
this smell, which may indicate a misunderstanding about
the impact of the smell (i.e., broken or failing modules).

5.2.2 RQ2: Are Pipes with Smells Less

Understandable?

In the tasks for this second experiment, the programmer
was presented with a clean or dirty pipe and asked to select
the pipe’s output. The selection was indicated using a
multiple-choice question in which the output was described
in English prose. The tasks are described in Table 5. The
Task column provides a quick reference for the tasks by
number. As with Table 3, the Smell describes the type of
smell involved with the task, the Artifacts column references
the artifacts in Table 2, and the Refactoring column indicates
the type of refactoring used to remove the smell. The
Treatment column breaks each task into two treatment
levels; participants could respond to the clean or dirty
treatment level, but not both.

The results for these tasks, per treatment, are also shown
in Table 5. The tasks were scored as being correct or incorrect,
and these numbers are shown for each of the tasks in the All
Results column. A one-sample test of given proportions
(H0 : �correct � 0:5) for three of the tasks and treatments
(excluding Task 21, clean) revealed that a significant
proportion of participants selected the correct answer with

� ¼ 0:1. Performing a two-sample test of equal proportions
with the clean versus dirty pipes within each task does not
reject the null hypothesis H0 : �correct;clean ¼ �correct;dirty
(p ¼ 1:0000 for each task). Overall a significant majority
selected the correct result at � ¼ 0:001. This observation
held when considering the dirty pipes (significant at
� ¼ 0:01) or the clean pipes (significant at � ¼ 0:01). Thus,
the presence of the smells used in these tasks did not seem
to impact pipe understandability.

5.3 Study Summary

Returning to the research questions, for RQ1, it was found
that clean pipes are preferred over dirty pipes (� ¼ 0:01).
For maintenance tasks, a significant majority preferred the
clean pipe (� ¼ 0:001), yet for understanding tasks, a
nonsignificant majority preferred the clean pipe.

The string abstraction was preferred for maintainability,
but the lack of abstraction was preferred for understand-
ability. Additionally, a majority of participants preferred
the pipes that lack duplicate module smells. For the
environmental smells, however, participants generally
showed no preference when it came to invalid sources,
but for lazy smells, the refactored pipe was almost always
preferred. For deprecated modules, while a majority
generally preferred the pipe that lacked the smells, it was
not a significant majority. For pipes with isomorphic paths,
the size of the abstraction impacts user preferences.

For RQ2, participants were able to select the correct
output of the pipes with high accuracy, regardless of the
presence or absence of smells. This indicates that the smells
might not actually impede understandability, but here, the
number of tasks is small so these results may not generalize
to a larger study. Other confounding factors may also have
impacted the results. Since the multiple-choice answers
were generated by the researchers, bias may have been
introduced to make the correct solution more obvious, or
possibly the absence of strict time constraints or monetary
incentive caused participants to put in more effort. Further
study is needed to fully understand if smells impact the
understandability of pipes. We discuss these and other
threats in detail in Section 8. Additionally, further study is
needed to determine that smelly pipes are more or less
maintainable, and a possible future direction would be to

1666 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 12, DECEMBER 2013

TABLE 5
RQ2 Tasks and Results Breakdown

give people maintenance tasks on Pipes and evaluate
whether or not they were successful with such tasks. This
is left for future work.

6 REFACTORINGS

To address the most prevalent code smells, we have defined
a set of semantic preserving pipe refactorings. Following
Opdyke’s definition for behavior preservation in terms of
the set of outputs resulting from the same set of inputs [11],
we define two pipes as being semantically equivalent if the
set of unique items that reaches each pipe’s final output
module are the same, ignoring duplicate items and items’
order (correctness proof sketches are available [26]).
Ultimately, it is the set of items that matters for the output
of this domain, as the items can easily be reordered by
inserting a sort module prior to output.

Since a pipe is a graph, we build on the concepts of graph
transformation to specify these refactorings. A pipe refac-
toring is then a transformation refactor : Pbefore ! Pafter,
where Pbefore is the refactoring precondition represented by
a smell defined in Section 4, and Pafter is the refactoring
postcondition. Each smell identifies wires, modules, and
paths that are used by the refactoring transformation, and
these are identified as the Parameters, or Params. Each
refactoring transformation is decomposed into a set of more
basic transformations, which is identified as Transf. These
transformations take the form of ½predicate� ! action,
where the predicate may or may not be present, and the
action is a commonly performed operation (set, create, add,
remove, copy, append, prepend) on pipe components
(paths, modules, wires, and fields). Multiple actions will
be separated by a comma, such as ! set w:dest ¼ wj:dest;
set w:fld ¼ wj:fld; remove wj, which sets the destination of
wire w to the destination of wj, and then removes wj from
the pipe, as is done as part of Refactoring 2.2: Lazy Module.

For example, in Refactoring 1: Clean Up Module, the
precondition is a disjunction, with one clause requiring an
instance of Smell 1.1: Empty Field. This smell identifies a
field f in a module m where the field is empty; f and m are
passed in as parameters. The transformation step requires
no predicate, but simply states, remove f from m:F . Here,
the postcondition is that f is no longer contained in m:F .

As another example, which involves a predicate in the
transformation step, we look to Refactoring 2.1: Discon-
nected, Dangling, or Swaying. Here, we consider the pre-
condition of Smell 2.1: Cannot reach output, which can
identify, for example, a (nonoutput) module that has an
incoming wire but no outgoing wire, and therefore is
dangling. The precondition only identifies the module m, so
the parameters passed in only contain m. When removing
the module m from the Pipe, all wires connected to m must
also be removed. So, in the refactoring transformation, we
look for all wires (8w 2 W) such that in wireðm;wÞ,
out wireðm:wÞ, or fld wireðm;wÞ evaluate to true, indicating
a connected wire to m. If such a wire exists, and therefore
the predicate evaluates to true, then the action, remove w, is
performed. As a final step of the transformation, m is
removed. The postcondition states that m 62 Pipe, since no
matter what, this transformation will remove the smelly
module m. Next, we provide the refactoring definitions.

6.1 Reduction

These refactorings focus on removing unnecessary fields
and modules that result from duplicated or lazy compo-
nents, resulting in a smaller, more simplified pipe.

Refactoring 1. Clean up module removes empty or
duplicated fields within a module. While the transforma-
tion is the same for both of these cases (i.e., the problematic
field is removed), the motivations are different. Removing
empty fields is analogous to the “Remove Parameter”
refactoring, which removes parameters that are “no longer
used by the method body.” This refactoring is the most
commonly performed as reported in a recent survey, where
70 percent of the developers said to perform this refactoring
manually [27]. For duplicate fields, if the “same code
structure [exists] in more than once place,” the code will be
better without the duplication [9].

PbeforePbefore Smell 1.1: Empty Field

_ (Smell 1.2: Duplicated Field ^ genðmÞ)
Params Pipe, module m, field f

Transf. remove f from m:F
PafterPafter f 62 m:F

This refactoring, when applied for Smell 1.2: Duplicate
field, is safe for generator modules because it will simply
remove duplicate items from the pipe; by our definition of
semantic preservation, this is acceptable.

Refactoring 2. Remove noncontributing modules remove two
kinds of unnecessary modules, those that are poorly placed
in the pipe (e.g., modules that do not reach the output) and
those that are ineffectual (e.g., operator modules that do not
contain fields). This refactoring is designed to address the
“Lazy Class” code smell, which emphasizes that all code
“costs money to maintain and understand,” so code that
“isn’t doing enough should be eliminated” [9].

Case 2.1. Disconnected, Dangling, or Swaying—Modules
that are isolated, do not reach the output, or are at the top of
a path but do not generate any items, are unnecessary.

PbeforePbefore Smell 2.1: Cannot reach output

_ Smell 2.5: Swaying module

Params Pipe, ineffectual module m

Transf. 8w 2 Wððin wireðm;wÞ _ out wireðm;wÞ
_fld wireðm;wÞÞ ! remove w)

remove m
PafterPafter m 62 Pipe

Module E in Fig. 2a meets the precondition pertaining to
Smell 2.1: Cannot reach output. Thus, the ineffectual module
m in the Params would map to module E in Fig. 2a. In the
transformation, all the wires leading to or from module m
are removed (there are none), and then m is removed. The
postcondition, then, is that m is removed from the pipe. In
Fig. 2a, this postcondition is met in the transformation to
Fig. 2b since E is removed.

Case 2.2. Lazy module—That does not perform any
operation or performs unnecessary redirection can be
removed.

PbeforePbefore Smell 2.2: Ineffectual path altering

_ Smell 2.3: Inoperative module

_ Smell 2.4: Unnecessary redirection

Params Pipe, ineffectual module m

Transf. 8wj 2 Wðout wireðm;wjÞ ! ð

STOLEE AND ELBAUM: IDENTIFICATION, IMPACT, AND REFACTORING OF SMELLS IN PIPE-LIKE WEB MASHUPS 1667

ð8w 2 W ððin wireðm;wÞ ^ w 6¼ wjÞ
! set w:dest ¼ wj:dest,

set w:fld ¼ wj:fld,

remove wjÞÞ
^ ð8w 2 W ððfld wireðm;wÞ ^ w 6¼ wjÞ
! set w:dest ¼ wj:dest,

set w:fld ¼ wj:fld,

remove wjÞÞÞÞ
remove m

PafterPafter m 62 Pipe
In the transformation from Fig. 2a to Fig. 2b, modules A

and B consolidate to AþB and module C disappears. This
is the results of two refactorings performed in sequence.
The first, Refactoring 5 Collapse Duplicate Paths, transforms
A and B into AþB. This creates an instance of Smell 2.2:
Ineffectual path altering, meeting the precondition of this
refactoring. That is, when A and B are consolidated, then
there is one wire into, and one wire out of, module C. In this
refactoring, the ineffectual module m maps to module C. In
the transformation step, the input wire from m is rerouted
so the destination is the same as the output wire from m.
Then, the output wire from m is removed. Finally, m is
removed, meeting the postcondition that m 62 Pipe. This is
shown by the absence of module C in Fig. 2b.

Refactoring 3. Inline module removes setter modules that have
only one outgoing wire, as these can be replaced with string
values in the destination field without sacrificing abstrac-
tion. This refactoring is inspired in part by the “Inline
Method” refactoring that will “put the method’s body into
the body of its callers and then remove the method” [9].

PbeforePbefore Smell 3: Unnecessary Abstraction

Params Pipe, unnecessary module m, wire wi
Transf. String s ¼ ‘‘’’

append m:F to s,

set ðwi:fldÞ:value ¼ s,
remove wi,

remove m

PafterPafter m;wi 62 Pipe
This refactoring creates a string s that contains the

concatenation of all the fields in the unnecessary module m.
Then, the field that receives its value from wi, identified as
wi:fld, is set to s.

6.2 Consolidation

These refactorings aim to unify duplicated code to simplify
pipe structures and reduce their sizes, a desirable pipe
characteristic expressed by end users (see Section 5). These
refactorings merge operator modules performing actions
that could be completed with just one module and collapse
duplicate paths that perform identical actions on separate
lists of items, which are later merged.

Refactoring 4. Merge Redundant Modules merges operator
modules that perform the same or similar operations along
the same path, or path-altering modules with the same type
that are connected, hence decreasing the size and complex-
ity of the pipe. This refactoring is motivated in part by the
“Inline Class” refactoring that moves all the features of one
class into another class, and then deletes it [9]. Here, mi is
being inlined, and mj absorbs its features.

Case 4.1. Connected and redundant modules can be
consolidated by merging the fields, for operator modules,
or reconnecting the wires, for path-altering modules.

PbeforePbefore Smell 5.1: Consecutive redundant modules

Params Pipe, operators mi;mj, connecting wire wj
Transf. 8w 2 W ððin wireðmi;wÞ ^ ðw 6¼ wjÞ

^ ðunionðmiÞ _ splitðmiÞ _ opðmiÞÞÞ
! set w:dest ¼ mj,

set w:fld ¼ �Þ
8w 2 W ððout wireðmi;wÞ ^ ðw 6¼ wjÞ
^ splitðmiÞÞ ! set w:src ¼ mjÞ

ðopðmiÞ ^ !same fld valuesðmi;mjÞÞ
! prepend mi:F to mj:F

remove mi;wj
PafterPafter mi; wj 62 Pipe

Fig. 5 shows connected union modules that are under-
utilized (Fig. 5a), connected split modules that can be
consolidated (Fig. 5b), and connected operator modules that
are merged (Fig. 5c). More concretely, the modules in Fig. 5a
meets the precondition, Smell 5.1: Consecutive redundant

modules, in that module mi and mj are both union modules,
and there exists a wire wj that joins them. In the
transformation, all the input wires to mi are rerouted to
the output of wj (the input of mj), and then mi and wj are
removed. This meets the postcondition that mi;wj 62 Pipe.

1668 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 12, DECEMBER 2013

Fig. 5. Merge redundant, connected modules.

Using the example from Fig. 2a, hypothetically, if H was
removed and C connected directly to J , this would meet the
precondition. In that situation, mi would map to C and mj

would map to J . In the absence of H, there would be a wire,
wj joining C to J . The transformation would identify and
remove wj, rewire all incoming wires to C down to J , and
remove J . This would meet the precondition, where mi (J)
is not in the pipe.

Case 4.2. Identical, subsequent operators—That perform the
same action at different locations in the pipe can be
simplified.

PbeforePbefore Smell 5.2: Identical subsequent operators

Params Pipe, operators mi;mj

Transf. 9wj; wi 2W ððout wireðmi;wjÞ
^ in wireðmi;wiÞÞ
! set wi:dest ¼ wj:dest,

set wi:fld ¼ wj:fld,

remove wjÞ
8w 2 Wðfld wireðmi;wÞ ! remove wÞ
remove mi

PafterPafter mi 62 Pipe
An example of this refactoring in which the operator

modules are not directly connected yet perform the same
operation along the same path is shown in Fig. 6. Recall that
in the definition of Smell 5.2: Identical subsequent operators,
only union or order-independent, read-only operator mod-
ules are allowed to separate the identical modules. Other-
wise, the refactoring would be unsafe.

Refactoring 5. Collapse duplicate paths—Aggregated paths
can often be consolidated into a single path to simplify the
pipe structure. This refactoring is motivated in part by the
“Form Template Method” refactoring, which takes two
methods that perform similar steps in the same order and
eliminates the duplication [9]. However, in our case, instead
of forming a template method in a superclass, we form a
template path and collapse two similar paths into one.

Case 5.1. Joined Generators

PbeforePbefore Smells 5.3: Joined generators
Params Pipe, modules mi;mj and wires wi, wj
Transf. append mi:F to mj:F ,

remove mi;wi
PafterPafter mi; wi 62 Pipe

For example, the pipe in Fig. 2a meets the precondition of
this transformation, and the pipe in Fig. 2b meets the

postcondition. Module mj maps to module A in Fig. 2a, and
mi maps to B. The field in B (i.e., the URL) is added to
module A, so that jA:Fj ¼ 2. Then, B and its outgoing wire
are removed. The updated A module with the added field is
shown in Fig. 2b by module AþB. Fig. 7 also shows the
refactoring, but for a pipe with joined generators that has a
connected setter module. This is represented by the wire
w:fld that is rerouted to a field in mj.

Case 5.2. Identical parallel operator

PbeforePbefore Smells 5.4: Identical parallel operators

Params Pipe, modules mi;mj;mk;ml,

wires wi, wj, wk, wl
Transf. ððgenðmkÞ ^ genðmlÞÞ

! append mk:F to ml:F ,

remove mk;wkÞ
ððgenðmkÞ ^ unionðmlÞÞ
! set wk:dest ¼ ml, set wk:fld ¼ �Þ
ððunionðmkÞ ^ genðmlÞÞ
! set wl:dest ¼ mk, set wl:fld ¼ �Þ
8w 2 Wððin wireðmk;wÞ ^ unionðmkÞ
^ unionðmlÞÞ
! set w:dest ¼ ml, set w:fld ¼ �Þ

ððunionðmkÞ ^ unionðmlÞÞ
! remove mk;wkÞ

remove mi;wi
PafterPafter mi; wi 62 Pipe

We illustrate this refactoring in Fig. 8. Fig. 8a shows a
pipe with two parallel operators and two preceding
generator modules, Fig. 8b shows a pipe with two parallel
operators with a union module and generator module
preceding, and Fig. 8c shows a pipe with parallel operators
and two preceding union modules.

As a hypothetical example, if in Fig. 2a, modules G and I
were identical filter modules, then this would meet the
precondition where mi maps to G, mj maps to I, mk maps to
D and ml maps to F . In that instance, those two paths could
be collapsed into one path by appending the fields from D
into F , and then removing modules D and G. This would
meet the postcondition where mi is not in the pipe.

6.3 Abstraction

These refactorings abstract sections of the pipe that have
duplicate fields or modules. They are in part inspired by the
“Pull Up Method” refactoring, which aims to extract
common code from subclasses into a superclass to increase
maintainability [9], something for which it is hard to
provide automated support. In a survey of 328 developers,
over half manually perform this refactoring in practice [27].
These refactorings either create new modules that provide
values to existing modules or replace existing modules.

STOLEE AND ELBAUM: IDENTIFICATION, IMPACT, AND REFACTORING OF SMELLS IN PIPE-LIKE WEB MASHUPS 1669

Fig. 6. Identical subsequent operator modules.

Fig. 7. Collapse duplicate paths, joined generators.

Refactoring 6. Pull up module extracts duplicate strings

into a newly created module, m. This new module provides

the string values via new wires to the previous owners of

the duplicated strings.

PbeforePbefore Smell 4: Duplicate Strings

Params Pipe, fields fi and fj
Transf. add module m to M,

set m:type ¼ setter:string,

add field g to m:F ,
set ownerðgÞ ¼ m,

set g:value ¼ fi:value,
add wire wi to W,

set wi:src ¼ m,

set wi:dest ¼ ownerðfiÞ,
set wi:fld ¼ fi,

add wire wj to W,

set wj:src ¼ m,
set wj:dest ¼ ownerðfjÞ,
set wj:fld ¼ fj

PafterPafter m;wi; wj 2 Pipe
^ g 2 m:F

An example of this refactoring is shown from Fig. 2a to
Fig. 2b, where module M was added to provide the string
value “3” to modules H and F þ I.

Refactoring 7. Extract local subpipe creates a subpipe that
contains the modules in isomorphic paths in a pipe, and
replaces those paths with the subpipe. The replacement of
the path with a semantically equivalent subpipe is similar to
the Substitute Algorithm refactoring that replaces an algo-
rithm with one that is cleaner [9]. Here, we replace all
instances of the path with a single, cleaner module. For
example, in Fig. 2b, a subpipe was created to replace two
paths from Fig. 2a, from D to G, and from F to I. The field
values from D, F , G, and I were copied to their respective
subpipes. The wire providing the field value to I was
reconnected to the field from I in subpipe F þ I.

PbeforePbefore Smell 6: Isomorphic Paths

Params Pipe, isomorphic paths p and p0

Transf. percent Build subpipe

(1) create pipe newPipe

add module o to newPipe:M
set o:type ¼ output

copy p to newPipe

add wire v to newPipe:W
set v:src ¼ pðlastÞ
set v:dest ¼ o
set v:fld ¼ �

(2) 8f 2 newPipeððf:wireable ¼ trueÞ ! ð
add module q to newPipe:M,

set q:type ¼ setter:user,
add wire x to newPipe:W,

set x:src ¼ q,
set x:dest ¼ ownerðfÞ,
set x:fld ¼ fÞÞ

(3) 8 path a 2 Pipeðða ¼ p _ a ¼ p0Þ ! ð
add module r toPipe:M,

set r:name ¼ subpipeðnewPipeÞ
add wire t to Pipe:W

set t:src ¼ r
set t:dest ¼ aðlastþ 1Þ
set t:fld ¼ �

8 module m 2 að8f 2 m:Fð
ðf:wireable ¼ trueÞ ! ð
ð9w 2 Pipe:Wððw:fld ¼ fÞ
! set w:dest ¼ r:qÞÞ

_ (copy f:value to r:q:value))))

remove a))

PafterPafter p, p0 62 Pipe
^ 92subpipeðnewPipeÞ 2 Pipe

In part (1) of the refactoring, a new pipe is created to
replicate the isomorphic path. The new modules are added
and wired together. In part (2), the fields are set up so they
can be set dynamically when this pipe is included as a
subpipe in (3). For all fields that are wireable, adding a user-
setter module allows these values to be set dynamically. In
Part (3), the new pipe is added as a subpipe module (i.e., r)
within Pipe. All field values are copied from the isomorphic
paths p and p0 into r, and the new subpipe module is wired
into place. Then, the paths p and p0 are removed from Pipe.

1670 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 12, DECEMBER 2013

Fig. 8. Collapse duplicate paths, identical parallel operators.

6.4 Deprecations

Outdated or broken modules and data sources can lead to
unexpected pipe behavior. These refactorings either replace
or remove such pipe components to increase the depend-
ability of the pipe.

Refactoring 8. Replace deprecated modules assume that a
function replaceðMÞ !M exists that takes a deprecated
module,mdep, and returns a module or sequence of modules,
Mnew, that perform a semantically equivalent operation as
mdep. This refactoring is similar in spirit to previous work
that uses refactorings to update references to deprecated
library classes in Java programs [28]. One difference is that
in our work, it is not up to the programmer to specify the
mapping between the deprecated and replacement mod-
ules; this is done on behalf of the programmer. This
refactoring assumes that the number of incoming and
outgoing wires to and from mdep and Mnew are the same.

PbeforePbefore Smell 7: Deprecated Module

Params Pipe, module mdep, Mnew

Transf. add Mnew to Pipe

8wi 2 Wðin wireðmdep; wiÞ
! set wi:dest ¼MnewðfirstÞÞ
8wj 2 Wðout wireðmdep; wjÞ
! set wj:src ¼MnewðlastÞÞ

remove mdep

PafterPafter mdep 62 Pipe ^Mnew 2 Pipe
For example, the babelfish module has been deprecated by
the Yahoo! Pipes environment (Section 7.1). If there exists a
module in a pipe, where m:name ¼ babelfish, then this
meets the precondition and mdep ¼ m. In the refactoring,
mdep is removed from the pipe and replaced with Mnew, a
module or list of modules that replicates the behavior of
mdep, but is supported by the environment. This, then, meets
the postcondition where mdep 62 Pipe and Mnew 2 Pipe.

Refactoring 9. Remove deprecated sources remove all
sources that refer to invalid external data sources to
reduce the bloat and remove a common cause of pipe
failures. The ability to perform this refactoring is intrinsic
to the mashup domain as the external sources can be easily
checked for validity.

PbeforePbefore Smell 8: Invalid Sources
Params Pipe, field f referring to an invalid es

Transf. 8m 2 Mððm ¼ ownerðfÞ
! remove f from m)

PafterPafter f 62 Pipe

For example, if a generator module accesses a broken data
source es, then it does not contribute anything to the pipe
(similar to E in Fig. 2a, which is disconnected). Removing
the field f that points to es rids the pipe of the deprecated
source, and meets the postcondition that f 62 Pipe.

6.5 Population-Based Standardizations

These refactorings exploit the availability of a large public
repository of pipe-like mashups to standardize the program-
ming practices across the community and facilitate reuse.

Refactoring 10. Normalize order of operations reorder the
order-independent, read-only operator modules to match the

ordering prescribed by the population. These are modules
that can be reordered without impacting the ultimate pipe
output. The goal is to increase the understandability of
the pipes by enforcing a de facto, standard ordering on the
operators that has been defined by the population.

PbeforePbefore Smell 9: Nonconforming module orderings

Params Pipe, nonconforming path p,

prescribed path ppres

Transf. add ppres to Pipe

(1) 8wi 2 Wðin wireðpðfirstÞ; wiÞ
! set wi:dest ¼ ppresðfirstÞÞ
8wj 2 Wðout wireðpðlastÞ; wjÞ
! set wj:src ¼ ppresðlastÞÞ

(2) 8m 2 pðcopy m:F to ppresðmÞ:FÞ
remove p

PafterPafter ppres in place of p

In part (1), the prescribed path ppres is wired into the pipe
to replace p. In part (2), all the fields from p are copied to
their respective modules in ppres, and then p is deleted.

For example, if p ¼ ½filter; sort; filter� is a nonconform-
ing path, and ppres ¼ ½sort; filter; filter� is a conforming
path, this refactoring will extract p from the pipe, insert
ppres, and parameterize all fields of all modules in ppres
according to the fields in p.

Refactoring 11. Extract global subpipe—A generalization of
Refactoring 7 to operate across a population of pipes,
broadening the space on which the pattern identification
occurs. As the search space for candidate paths increases,
the cost of this refactoring needs to be controlled by
constraining either the size of the path or the population
being considered. This refactoring assumes that a function
getSubPipeðPathÞ ! Pipe exists that takes an isomorphic
path and returns a global pipe that can replace it (each
subpipe is built like those in Refactoring 7, lines (1-2)).

PbeforePbefore Smell 10: Global Isomorphic Paths
Params isomorphic Paths

Transf. Start with parts (3) in Refactoring 7.

Replace the first three lines of Part (3) with:

8 path a 2 Pipeðða ¼ pÞ ! ð
add module r toPipe:M,

set r:name ¼ getSubPipeðaÞ
PafterPafter p 62 Pipes

^ 91subpipeðnewPipeÞ 2 Pipe
As an example, consider the pipe in Fig. 2a. If isomorphic

paths, D to G, and F to I are passed in as parameters, this
means there exists a pipe in the community that can be
included as a subpipe. Each of these paths is then replaced
by a subpipe module returned by the getSubPipeðÞ method.
In Fig. 2b, this postcondition is met when D and G are
replaced by subpipe DþG, and likewise with F and I
being replaced by F þ I.

7 EMPIRICAL STUDY

To measure the frequency of smells (reported in Section 4)
and effectiveness of refactorings presented in Section 6, we
obtained a sample of pipes by scraping 10,360 pipes from
Yahoo!’s public repository, and then filtered based on size.

STOLEE AND ELBAUM: IDENTIFICATION, IMPACT, AND REFACTORING OF SMELLS IN PIPE-LIKE WEB MASHUPS 1671

We constrained our search queries to pipes containing at
least one of the 20 most popular data sources (as reported in
January 2010), independently of the pipe structure. The
sample average size is 8.5 modules per pipe, and we only
retain those pipes with at least four modules (the minimal
number necessary to create a pipe with multiple paths to
the output using two generators, one union, and one
output). This resulted in the final sample of 8,051 pipes.

This section presents the adaptation of the implementa-
tion of the refactorings to fit the Yahoo! Pipes language, the
infrastructure we built to perform the study, and the results.

7.1 Refactoring for Yahoo! Pipes

This section describes the additional refactoring constraints
and adaptations we performed to fit the Yahoo! Pipes
language. We later discuss the impact of these changes in
Section 7.3.

Refactoring 3: Inline module. The urlbuilder module
required additional processing to insert separator symbols
when assembling a url string from its fields (e.g., base url,
parameters). That is, “http://” was appended to the
beginning of the base URL, the paths were separated by
“/”, and so forth to create a valid URL from the urlbuilder
fields.

Refactoring 4: Merge redundant modules and refactoring 5:
Collapse duplicate paths—These refactorings require opðmiÞ to
accommodate multiple fields, so it was only implemented
for sort, filter, regex, and rename. For operators with
nonwireable fields, matching constraints were added
requiring the nonwireable fields to match prior to merging.
For example, on the filter module, to allow merging, both
modules need to match on the inclusion/exclusion criteria,
which is set in this language using two fields. The first
defines inclusion or exclusion on the filter and can be set to
permit or block. The second criteria defines if the filter
criteria should be connected with an and operation (denoted
all), or an or operation (denoted any). It is only safe to
combine two filters that both specify permit any or block any;
it is not safe to combine filters that perform permit all or block
all, as these could include or exclude extra items, respec-
tively. Last, path-altering modules in Yahoo! Pipes have a
bounded number of potential wires. We added precondi-
tions to respect those bounds (limits of five incoming wires
for union and two outgoing wires for split).

Refactoring 8: Replace deprecated modules—Yahoo! Pipes
provides a list of deprecated modules and some suggestions
on how to replace them. Our implementation supports
replacement of the following deprecated modules: foreach,
foreachannotate, contentanalysis, and babelfish.

Refactoring 9: Remove deprecated sources —This refactoring
is applied to generator and string-setter modules, but not to
user-setter modules because the url can be changed at
runtime.

Refactoring 10: Normalize order of operations and Refactoring
11: Extract global subpipe —We generate PPres and
PGPaths by considering the pipes cloned more than
10 times (�10 percent of the pipes in the population). For
Refactoring 10 we identified paths of size two to five,
containing read-only and order-independent modules and
for Refactoring 11 we identified paths of length three or more
that appear in multiple pipes within the subset.

7.2 Study Infrastructure

To perform this study, we had to obtain a pipe
representation, analyze it to detect smells, and refactor it.
Yahoo!, however, does not provide an API to perform any
of those actions outside their proprietary Pipes Editor. We
built an infrastructure that allows us to perform these
tasks efficiently (each analysis and transformation takes
less than a second except for the smells that require a
query to external sources) on thousands of pipes to detect
the prevalence of smells and assess the refactorings
effectiveness in reducing the smells. This infrastructure is
depicted in Fig. 9.

By executing searches on the Yahoo! Pipes repository, we
obtained ids for those pipes that met our selection criteria.
For each id, we then sent a load pipe request to Yahoo!’s
servers; the response contained a JSON [29] representation
of the Pipe in the POST data. We stored the results in a
database and built a manipulation infrastructure that can
decode, detect smells, refactor, and re-encode the pipes so
they can be re-executed on Yahoo!’s servers. Our prototype
sends the encoding of the refactored pipes to Yahoo!’s
servers so the newly updated version can be loaded in the
Pipes Editor. The GUI component of the prototype is not
mature enough for release as it was intended for research
purposes only. The manipulation infrastructure, however,
has been made available.6 This infrastructure contains
analyzers for all smells, can perform all refactorings7 subject
to the language constraints just described, and supports the
full grammar of Yahoo! Pipes. It takes four parameters. The
first gives the option to run the smell detection with or
without the refactoring, and the second determines the
output format, a command line description, DOT format of
pipe, or both. The third parameter is the refactoring to
perform, followed by the fourth parameter, an identifier for
the pipe to analyze.

1672 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 12, DECEMBER 2013

Fig. 9. Study infrastructure.

6. http://www.cs.iastate.edu/~kstolee/refmash.html.
7. The refactorings provided through the tool infrastructure are intended

to operate independently of Yahoo!, so some smells and refactorings are not
available in this version of the infrastructure. The omitted analyses and
transformations involve 1) an analysis of community artifacts, or 2) are
dependent on either the Yahoo! server or the repository, both of which can
change over time. The Global Isomorphic Paths smell, Extract Global
Subpipe refactoring, and Extract Local Subpipe refactoring have such
dependencies. As an additional note, the Invalid Sources smell and the
Nonconforming Operator Ordering smells utilize the invalid sources and
operator orderings that were determined in February 2010.

As part of the infrastructure (not part of the tool), we also
implemented a wrapper that repeatedly runs the smell
detector and the refactorings that address those smells until
no further smell reduction can be obtained. This helps us
explore how refactorings may interact when applied in
sequences. The wrapper operates with an outer loop that
runs until no smells can be removed, a middle loop that
iterates on all the current smells in the pipe, and an inner
loop that applies refactorings targeting the current smells.

Algorithm 1. Greedy application of refactorings.

Require: Pipe PG ¼ ðM;W;F ; ownerÞ
Map <Smell; Refactoring> smellRefMap

Ensure: returns PG0, a pipe with minimal smells

Set <Refactoring> ref

Set <Smell> currentSmells; previousSmells

PG0 ¼ PG
currentSmells ¼ detectSmellsðPG0Þ
previousSmells ¼ �

while previousSmells != currentSmells do

for s 2 currentSmells do

ref ¼ smellRefMap:getAllðsÞ
for r 2 ref do

refactorðPG0; rÞ
end for

end for

previousSmells ¼ currentSmells
currentSmells ¼ detectSmellsðPG0Þ

end while

return PG0

Algorithm 1 illustrates how the wrapper operates. The
outer loop ensures that the algorithm will continue until no
smells can be removed. The middle loop iterates on all the
current smells in the pipe, using the smellRefMap to
identify the refactorings that may reduce the smell. The
inner loop applies all the relevant refactoring. This algorithm
allows us to take advantage of refactorings that open the
doors for others to be applied, and for those refactorings that
target different aspects of a smell and can be applied
simultaneously. Our approach to this, however, is iterative.
A more effective approach to reducing code smells may be to

leverage search-based refactoring techniques that use simu-

lated annealing or genetic algorithms to optimize refactoring

sequences toward a goal (e.g., [30], [31]). Evaluating the

impact of such optimizations is left for future work.

7.3 Results of Artifact Analysis

Using the study infrastructure, we analyzed the sample of

pipes to determine the prevalence of smells and the

effectiveness of the refactorings at removing those smells.

7.3.1 Prevalence and Impact of Smells

The frequency of occurrence for each smell defined in
Section 4 is summarized in Table 6, alongside the impact of
those smells as uncovered in the user study (Section 5). The
Smell column lists all the smells, followed by the Frequency
column, which indicates the percentage of pipes that
contain the particular smell. For example, as shown in the
first row, Smell 1: Noisy Module appears in 28 percent of the
8,051 pipes. The redundancy smells have the highest
frequencies; duplicated strings exist in 32 percent of the
pipes and duplicate modules appear in 23 percent of the
pipes. Overall, we identified at least one smell in 81 percent
of the pipes and on average, each pipe contains approxi-
mately eight instances of two different smells. The Impact
column links each smell and its frequency to the general
findings from the user study (Section 5). The significance
markers indicate which tasks had a significant majority of
users that preferred the clean pipe, as reported in Table 4.

We observe that the four most common smells are
generally not preferred by users (Smells 1: Noisy module, 4:
Duplicate strings, 5: Duplicate modules, and 9: Nonconforming
module orderings), as well as the seventh most common
(Smell 2: Unnecessary module). In the study, these
smells were removed using reduction, consolidation, or
population-based standardization refactorings. Other less
common smells seem to be preferred for maintenance but
not for understanding (Smells 6: Isomorphic paths and 10:
Global isomorphic paths) or the participants showed no strong
preference (Smells 3: Unnecessary abstraction and 8: Invalid
sources). The preferences for one smell depended on the
complexity of the refactored pipe, where the smelly pipe
was preferred if the refactored version added too much

STOLEE AND ELBAUM: IDENTIFICATION, IMPACT, AND REFACTORING OF SMELLS IN PIPE-LIKE WEB MASHUPS 1673

TABLE 6
Smell Frequency out of 8,051 Pipes

complexity (Smell 7: Deprecated module). These smells are
addressed using abstraction or environmental refactorings.

This relatively high frequency of smells (Table 6), paired

with the evidence that programmers generally prefer pipes

that lack smells, implies a need for refactorings. Next, we

evaluate the effectiveness of the refactoring transformations

at removing smells in the repository.

7.3.2 Refactoring Effectiveness

For each smell, Table 6 presents the frequency of occurrence
in the repository and Table 7 presents the number of smell

instances (smelliness) per pipe in the smells per pipe row.

Each subsequent row in Table 7 shows the change in

smelliness after applying each individual refactoring. For

example, each pipe affected by Smell 5: Duplicate modules

contains an average of 5.10 smelly modules. After applying
Refactoring 5: CollapseDuplicate paths, each affected pipe

has an average of 1.43 smelly modules, a reduction of

72 percent. The table presents results if the change in smells

per pipe was greater than 5 percent.
Seven of the refactorings applied individually are able to

completely remove certain smells from the pipes: Refactor-

ing 2: Remove noncontributing module eliminates Smell 2:

Unnecessary module, Refactoring 3: Inline module eliminates
Smell 3: Unnecessary abstraction, Refactoring 6: Pull up

module eliminates Smell 4: Duplicate strings, Refactoring 7:

Extract local subpipe eliminates Smell 6: Isomorphic paths,

Refactoring 8: Replace deprecated modules eliminates Smell 7:

Deprecated module, Refactoring 10: Normalize module ordering

eliminates Smell 9: Nonconforming module orderings, and

Refactoring 11: Extract global subpipe eliminates Smell 10:

Global isomorphic path. Refactoring 9: Remove deprecated

sources is almost as effective, eliminating over 99 percent

of Smell 8: Invalid sources instances.
We note that some refactorings cause changes that open

the door for other refactorings to be performed. For

example, Refactoring 9: Remove deprecated sources not only

eliminates 99 percent of Smell 8: Invalid source, but it also

increases the presence of Smell 2: Unnecessary module by

25 percent (removing deprecated sources can lead to a

module with no fields, fitting Smell 2.3). This creates an

opportunity for Refactoring 2: Remove noncontributing

module. Generally, the study participants showed no

preference toward to absence of Smell 8: Invalid source, so

in practice this situation might not occur. However, should

a noncontributing module appear, users showed a pre-

ference toward its absence (which would involve Refactor-

ing 2: Remove noncontributing module). Other refactorings

may have small individual impact, but can be applied in

combination with others to target different aspects of a

smell to have a greater overall effect. For example, three

refactorings have a valuable impact on Smell 1: Noisy

module, with a maximum individual reduction of 18 percent,

but a collective reduction closer to 43 percent. Since the

study participants preferred the absence of this smell, the

1674 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 12, DECEMBER 2013

TABLE 7
Refactoring Effectiveness in Reducing Smells in Pipes

collective impact could be important to give the greatest
impact to the end-user programmers.

We explore the effect of applying a sequence of refactor-
ings utilizing the greedy Algorithm 1 to take advantage of
the compounding effect of multiple refactorings. The results,
shown in the last row of Table 7, indicate that seven smells
are completely eliminated in all the affected pipes. However,
even when applying the refactorings greedily, not all the
smells can be eliminated. Smell 1: Noisy module is not
eliminated because the implementation of Refactoring 1:
Clean up module only targets the generator and setter
modules. Smell 5: Duplicate modules is not eliminated
because of the implementation limitations of Refactoring 4:
Merge redundant modules; there are many consecutive union
modules that have reached maximum capacity on their
input wires. Smell 8: Invalid source is not eliminated because
Refactoring 9: Remove deprecated sources does not remove
sources within user-setter modules.

7.4 Summary of Artifact Studies

Overall, before applying the refactorings, 6,503 of the
8,051 pipes had at least one smell, which represents nearly
81 percent of the population. After applying all the
refactorings in the greedy approach, only 1,323 of the pipes
have smells, representing 16 percent of the pipes. This
means that the refactorings were able to completely
eliminate the smells in nearly 80 percent of the pipes that
had smells to begin with. On average, the number of smell
instances per pipe was reduced from eight to one through
the proposed refactorings.

8 THREATS TO VALIDITY

Resulting from the user study and artifact study, there are
several threats to validity worth mentioning.

Conclusion. In the user study, in some cases there are very
few participants, particularly with the tasks associated with
RQ2, which leads to low statistical power. To compensate
for those, we chose conservative statistical tests so not to
overestimate the significance of the findings.

Internal. The user study results might be subject to
history effects due to the study context, Mechanical Turk.
The tasks were completed on several different days, so the
study circumstances were different. Additionally, some of
the tasks used the same artifacts but asked about different
user goal; for those users who performed both tasks
associated with an artifact, maturation effects may have
been present. Self-selection is another effect to note, as all
participants selected our tasks from Mechanical Turk and
volunteered to participate in the study.

Construct. In the user study, we presented the user with
two pipes, one that had a smell and another that did not. In
some cases, it might not have been the presence of the smell,
but rather the level of the smelliness that caused the effect.
For the isomorphic paths smells, we were able to tease this
out a bit by showing that just one of the tasks—that in
which the smell had the greatest impact on the pipe—were
the results significant. For some of the significant results, it
might be the intensity of the smell that influenced the
outcome, rather than the presence of the smell. Conversely,
for those results in which significance was not observed, it

might be that the particular instance of the smell was too
subtle to detect an effect.

Additionally, although the presence of smells was shown
to negatively impact programmers’ preferences, we did not
assess the proposed refactorings in the hands of end users
to understand whether and how they are adopted in
practice. Rather, we based their preferences on their self-
reported evaluation of the artifacts, with respect to under-
standability and maintainability, which may not be repre-
sentative of actual understandability or maintainability.

Related to the artifact study, the refactorings presented in
Section 6 are guaranteed to generate pipes that produce the
same set of unique items (reflecting Opdyke’s definition
[11]; proof sketches are available [26]). However, the
proposed refactorings may cause a pipe to return data
items in a different order, if an order is not made explicit in
the pipe. For example, a refactoring may change the order
in which data are fetched and then integrated through a
union unless a sort module follows. Still, a refactoring tool
could address such issues by enforcing an order through
the addition of an extra sorting module or by simply
warning the programmer about potential side effects prior
to the transformation.

External. The participants in the user study were people
on Mechanical Turk; these populations may not be repre-
sentative of those who would program and use a refactoring
tool. However, since nearly 50 percent of the participants in
the study reported holding degrees in computer science, and
all the participants were required to pass a qualification test
to participate, we feel this may mitigate the effect of
interaction between selection and treatment.

Additionally, the setting in which the Mechanical Turk
participants completed the study might not be representa-
tive of a normal development environment, and we do not
know if that had an influence on the results. The users were
not able to play with the pipes to view their behavior, rather,
they were provided with a static view and asked to judge
their preferences, which might not be a realistic situation.
We did allowed them to view the pipe in full resolution, but
the interaction of setting and treatment remains.

In the artifact study, the 8,000 artifacts studied represent
only a sample of the population, and are subject to sampling
bias. To mitigate the risk, we used a selection criteria
unrelated to the program structures, which still could have
biased the applicability of the refactorings.

9 RELATED WORK

Two areas of related work are most relevant, on end-user
programming and web mashups, and on refactoring.

9.1 End-User Programming and Web Mashups

Mashup development environments target a wide range of
users and provide various levels of development support
[2]. Environments oriented toward more proficient devel-
opers often require knowledge of scripting languages (e.g.,
Plagger requires perl programming [32]), but a recent trend
has been toward environments and languages that allow
programmers to work at higher levels of abstraction. These
environments often wrap common mashup tasks (e.g.,
fetching data in known formats, aggregating, filtering) into

STOLEE AND ELBAUM: IDENTIFICATION, IMPACT, AND REFACTORING OF SMELLS IN PIPE-LIKE WEB MASHUPS 1675

preconfigured modules, trading flexibility and control for
lower adoption barriers. The environments’ languages
provide visual mashup representations, with the pipe
structure/flow representation being common among com-
mercial mashup development environments (e.g., Yahoo!
Pipes [3], Apatar [5], DERI Pipes [6], Feed Rinse [7], IBM
Mashup Center [8], JackBe [33], and xFruits [34]).

Another interesting trend among the commercial tools is
the emergence of communities around these environments
to provide end-user programmer support, either as a forum,
wiki, or as a repository of mashups to be shared with other
programmers [3], [5], [6], [8], [33]. Previous studies of these
communities have looked at the social structure evidenced
by the communication on messageboards [4], or the
uniqueness of artifacts [35], but not at the quality of or
deficiencies present in the artifacts.

Researchers have also sought to support mashup
developers in the composition of mashup programs. Some
work focuses on creating and evolving mashups [12], [13],
[14], [15], [16], [17], [36], and other work aims to extend
existing mashup environments with domain-specific sup-
port [37], [38] or techniques to more easily integrate
heterogeneous data sources [16], [39], [40]. In mashup
composition with existing languages, some researchers aim
to assist users by suggesting components or larger program
pieces while the mashup is being created based on mined
patterns [12], [13], [14], [15] and/or tags [12]. Other work
has created new mashup languages to perform common
mashup operations, such as importing, merging, sorting,
and reporting data [16], [17]. In an effort to lower the
learning curve, some researchers have proposed domain-
specific extensions to existing mashup languages that use
terminology that might be familiar to more novice
programmers [37]. While the level of support for mashup
creation is increasing, the level of support for facilitating
maintenance, understanding, and robustness of mashups is
just starting to be noticed [18].

9.2 Refactoring

Although no refactoring support exists yet for mashup
tools, the body of work on refactoring is extensive [22]. The
concept of refactoring was first introduced as a systematic
way to restructure code to facilitate software evolution and
maintenance [10], [11]. Since then, the scope and type of
refactorings has grown considerably. For example, refactor-
ing has been used to improve code design [9] and to make
code more reusable and maintainable by introducing type
parameters [41] and specific design patterns [42]. Tools
have also been created to update references to deprecated
library classes [28] and parallelize sequential code by
introducing calls to libraries that support writing concur-
rent programs [43]. At a slightly higher level of abstraction,
refactoring of program structures has also been used to
facilitate feature decomposition and feature-based changes
during program evolution [44]. Our work pulls some
inspiration from these techniques (specifically, [9], [28]),
but also introduces some novel refactorings based on
environmental limitations and community patterns [1].

Within the context of model-driven software develop-
ment, refactoring has been applied at the design level,
mostly through UML transformations to, for example,

support program evolution [45] or facilitate the transforma-
tion of different types of UML diagrams [46]. Although not
exclusively [47], it is among such model refactorings that we
often see the use of graph transformations as a mechanism
to explicitly define the preconditions, postconditions, and
transformation steps [48]. Graph transformations have been
used to facilitate refactoring of software models [46], [49]
and to detect dependencies among different refactorings
[50]. Further, graph rewriting has been shown to be suitable
for expressing refactoring transformations and proving the
preservation of certain program properties [47]. We have
adopted a similar graph-based approach to make explicit
the smells and the refactoring preconditions, postcondi-
tions, and transformations we introduce.

Field studies have sought to uncover the benefits of
refactoring [27], the frequency with which programmers
invoke automated refactoring tools [51], and how the
automated tools are used in practice [27], [52]. From
surveying 328 programmers at Microsoft, it was found that
refactoring typically reduces post-release defects, and that
most refactorings are performed manually. This fits with the
results of a study of 41 developers who use the Eclipse IDE,
where it was found that only 25 percent use the automated
refactoring tools [51]. Another field study found that
programmers typically perform small refactorings and use
the tools when they are aware of the refactorings available
[52]. An observation that is consistent across the studies that
interviewed programmers is that developers are willing to
perform refactorings that change the program behavior [27],
[52], which is relevant to our discussion in Section 6.

The evaluations of refactoring techniques have focused
on languages utilized by professional software developers,
though recent refactoring and smell detection research has
started to target the spreadsheet domain [23], [24]. In
studies that target professional developers, a typical course
of evaluation is to implement the refactorings in a tool and
evaluate it on a set of programs, measuring time to
complete a refactoring [28], [41], [43], changes in program
size [28], [42], or accuracy compared to the manually
performed refactorings [41], [43]. We follow a similar
approach, taking advantage of a public repository of
mashup programs to perform a study on a large population
of mashups to determine the prevalence of the smells and
the effectiveness of the refactorings in addressing those
smells. In addition, we also perform a study to examine the
impact of smells in 20 pipes on 61 end-user programmers’
mashup preference and understanding. Unlike recent
refactoring evaluations involving human studies [27], [51],
[52], we focus on whether or not users preferred the outcome
of a refactoring as opposed to studying their current
refactoring behaviors, which would not be feasible. It
would have been premature to perform a user study
without first understanding programmer preferences with
respect to smells.

10 DISCUSSION

In this section, we discuss the generalizability of our
approach to another web mashup language and explore
extensions to other end-user programming domains.

1676 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 12, DECEMBER 2013

Many emerging environments are enabling end users
to create increasingly sophisticated mashups. Our study,
however, focuses on just one of those environments,
Yahoo! Pipes. This environment was selected to maximize
the potential impact of the findings (given the popularity
Yahoo! Pipes), and because of the availability of a rich
public repository to support a large study on smell
detection and refactorings. Still it remains to be explored
whether the smells and refactorings will be relevant in
other environments. In this section, we briefly investigate
the applicability of the refactorings defined in this work
to another mashup language, DERI Pipes, and speculate
on how other end-user programming languages and
environments could leverage these mashup refactorings
to suit their individual characteristics.

10.1 DERI Pipes Analysis

To assess the generalizability of these refactorings as
defined, we performed a manual inspection and analysis
of the pipes available in the newer DERI Pipes repository.
This language uses modules and wires to define the data
and control flow of mashup programs, similarly to Yahoo!
Pipes. Of the 139 published DERI pipes (Aug 2010), 77 meet
the size selection criteria used for our Yahoo! Pipes study,
with an average of 1.4 total smells per pipe. In spite of the
smaller pool size, we find that five of the eight smells we
searched for (population-based smells were not considered
as their manual analysis was deemed too expensive) are
present in these pipes.

We note, however, that particular DERI language con-
structs and constraints will require further tailoring of our
infrastructure. For example, since DERI’s generator modules
do not support multiple fields, they cannot be merged, so
Smell 5: Duplicate module, which affects 30 percent of the
pipes, cannot be used as implemented. Still in these pipes we
observe that three out of the five smells can be successfully
detected and refactored. Smell 6: Isomorphic paths impacts
10 percent of the pipes, and can be eliminated using
Refactoring 7: Extract local subpipe. Smell 8: Invalid source
impacts 9 percent of the pipes, and can be eliminated using
Refactoring 9: Remove deprecated sources. Smell 1: Noisy
module impacts 8 percent of the pipes, and Smell 2:
Unnecessary module impacts 6 percent of the pipes. Each
of these smells can be eliminated using the refactorings
described in Section 6. Additionally, 6 percent of the pipes
contain unnecessary modules that can be removed with
Refactoring 2: Remove NonContributing modules.

10.2 Extensions to Other Domains

In this section, we discuss how the refactorings defined in
Section 6 can apply or extend to other end-user programming
domains, specifically spreadsheets, web macros, and educa-
tional programming environments. Additionally, we outline
future opportunities for refactorings in these other domains.

10.2.1 Spreadsheets

One of the most popular end-user programming domains is
spreadsheets, and it has recently been the target of smell
detection and refactoring research efforts [23], [24]. The
refactorings target smells such as hard-coded constraints,
duplicated expressions, and unnecessary complexity [23],

[24], which are analogous to smells in our work, specifically
Smell 4: Duplicate strings, Smell 5: Duplicate modules, and
Smell 2: Unnecessary module, respectively. Another area that
could be explored would be population-based smells and
refactorings in which the community of spreadsheets could
be analyzed for patterns, such as a common setup for an
accounting spreadsheet. Similar spreadsheets that deviate
from the common structures could be marked as smelly
because it might be harder for others to understand.

10.2.2 Web Macros

Web macros are programs that automate tasks performed
on the web, like accessing and moving data among a set of
spreadsheets, forms, and websites. Several tools facilitate
the easy creation of web macros by recording a user’s
interactions and automatically creating a program that will
replay the actions [20], [53]. Recent research in this domain
has aimed to increase the dependability of the macros by
adding assertions [20]. Similar to the web mashup domain,
web macros also have a dependence on external data
sources. The environmental Smell 8: Invalid Sources and
Refactoring 9: Remove deprecated sources related to depre-
cated data sources apply directly to this domain. The spirit
behind Smell 2: Unnecessary module can be used to identify
dead or unreachable code in a web macro script, possibly
resulting from the use of conditionals.

A category of smells that we have not fully explored
targets access-related issues, such as access-denied server
responses or when a user is logged out of a system. This is
smelly because it can change the behavior of the pipe
without warning if the user logs out of a web application or
if another user tries to copy and reuse the program. A
refactoring that addresses this smell could be useful in the
mashup and macro domains, or in any domain with such a
dependence on external web data sources. In the case of
web macros, the refactoring could introduce some error
handling to log the user back into the application.
Additionally, performance-based refactorings could identi-
fy tasks that are independent and could be performed in
parallel, such as accessing and interacting with two
different websites.

Another refactoring could target a current concern of
web macro users. In a recent study that interviewed
information workers about their needs in automation and
usage of a web macros tool, CoScripter [53], it was reported
that some users stopped using CoScripter because of
privacy concerns in sharing the scripts. We could define a
smell that detects when private information is not being
hidden, and a refactoring could abstract out personal
information into a private database—which CoScripter
supports—to avoid sharing this personal information. This
refactoring would lend itself toward a new category of
refactorings for the purpose of privacy.

10.2.3 Educational Programming Environments

A new area that has yet to be explored for refactoring is
educational programming environments, such as Scratch
[54], Alice [55], or Kodu [56]. For Scratch and Alice, the
programming languages and abstractions are similar to
those used in object-oriented languages like Java, and so
refactoring for those languages could follow from the

STOLEE AND ELBAUM: IDENTIFICATION, IMPACT, AND REFACTORING OF SMELLS IN PIPE-LIKE WEB MASHUPS 1677

traditional refactoring literature [9]. Kodu is an event-
driven language where the objects are programmed
individually like autonomous agents [56], so a different
approach may be needed. In Kodu, the programs are
composed of many when - do rules to define object behavior.
Each object’s current behavior is defined by a page, and the
behavior can change by switching to a different page.
Detection of unreachable pages would be straightforward,
and analogous to the Smell 2: Unnecessary module.
Detecting duplicate rules or pages would be similar to
Smell 5: Duplicate modules or Smell 6: Isomorphic paths.
Population-based smells could identify common organiza-
tion schemes for the program statements. For example,
rules related to movement, earning points, and interacting
with other objects could each be grouped to form a
community-driven programming standard.

It is clear that there are many opportunities for
refactoring in end-user languages, beyond the mashup
work presented here and the recent refactoring in spread-
sheets. We are just beginning to understand how refactoring
can address the needs of end-user programmers, and much
more exploration is needed.

11 CONCLUSION

End users are developing and sharing mashups in increas-
ing numbers. However, a popular kind of mashup created
by end users, pipe-like mashups, has many smells such as
being bloated with unnecessary modules, accessing broken
data sources, using atypical constructs, or requiring
changes in multiple places even for minor updates because
of the lack of abstraction. We have identified the most
prevalent smells in a population of 8,051 pipes, and have
found that end users prefer pipes that lack smells,
particularly for maintenance. Inspired by how refactoring
can benefit professional developers, we have also defined
refactorings that effectively target and remove the smells.
The refactorings include some adapted from more tradi-
tional programming domains (e.g., the abstraction refactor-
ings), some that are intrinsic to the mashup domain (e.g.,
remove deprecated sources), and others that are novel to
this work and can be generalized to other domains in which
there is a public repository of community code (e.g., the
population-based refactorings). The assessment of these
refactorings revealed that they can reduce the frequency of
smelly pipes in the population from 81 to 16 percent and
reduce the average smell instances per pipe by almost
90 percent. We have also outlined how many of the smells
and refactorings detected for Yahoo! Pipes programs can be
found in another mashup language, DERI Pipes, and also in
programs from other end-user programming domains,
specifically spreadsheets, web macros, and educational
games. Given these results, the next steps are to study
these refactorings in the hands of end users to better
understand how they can be leveraged most effectively and
to continue to grow the corpus of refactorings that apply to
end-user programming languages.

ACKNOWLEDGMENTS

This work was supported in part by US National Science
Foundation (NSF) Graduate Research Fellowship

CFDA#47.076, NSF Award #0915526, and AFOSR Award
#9550-10-1-0406. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
funding agencies. The authors would like to thank the EUSES
consortium members for their feedback on previous versions
of this work. A previous version of this work appeared in the
International Conference on Software Engineering [1].

REFERENCES

[1] K.T. Stolee and S. Elbaum, “Refactoring Pipe-Like Mashups for
End-User Programmers,” Proc. 33rd Int’l Conf. Software Eng.
(ICSE ’11), pp. 81-90, 2011.

[2] J. Wong and J. Hong, “What Do We ‘Mashup’ When We Make
Mashups?” Proc. Fourth Int’l Workshop End-User Software Eng.
(WEUSE), pp. 35-39, 2008.

[3] “Yahoo! Pipes,” http://pipes.yahoo.com/, July 2009.
[4] M.C. Jones and E.F. Churchill, “Conversations in Developer

Communities: A Preliminary Analysis of the Yahoo! Pipes
Community,” Proc. Fourth Int’l Conf. Communities and Technologies
(C&T ’09), pp. 195-204, 2009.

[5] “Apatar,” http://www.apatar.com/, Aug. 2009.
[6] “DERI Pipes,” http://pipes.deri.org/, Aug. 2009.
[7] “Feed Rinse,” http://feedrinse.com/, Jan. 2010.
[8] “IBM Mashup Center,” http://www.ibm.com/software/info/

mashup-center/, Aug. 2009.
[9] M. Fowler and K. Beck, Refactoring: Improving the Design of Existing

Code. Addison-Wesley, 1999.
[10] W.G. Griswold and D. Notkin, “Automated Assistance for

Program Restructuring,” ACM Trans. Software Eng. Methodology,
vol. 2, pp. 228-269, July 1993.

[11] W. Opdyke, “Refactoring Object-Oriented Frameworks,” PhD
dissertation, Univ. of Illinois at Urbana-Champaign, 1992.

[12] A.V. Riabov, E. Boillet, M.D. Feblowitz, Z. Liu, and A.
Ranganathan, “Wishful Search: Interactive Composition of Data
Mashups,” Proc. 17th Int’l Conf. World Wide Web (WWW ’08),
pp. 775-784, 2008.

[13] F. Daniel, C. Rodriguez, S.R. Chowdhury, H.R.M. Nezhad, and
F. Casati, “Discovery and Reuse of Composition Knowledge for
Assisted Mashup Development,” Proc. 21st Int’l Conf. Compa-
nion on World Wide Web (WWW ’12 Companion), pp. 493-494,
2012.

[14] H. Elmeleegy, A. Ivan, R. Akkiraju, and R. Goodwin, “Mashup
Advisor: A Recommendation Tool for Mashup Development,”
Proc. IEEE Int’l Conf. Web Services (ICWS ’08), pp. 337-344, 2008.

[15] O. Greenshpan, T. Milo, and N. Polyzotis, “Autocompletion for
Mashups,” Proc. VLDB Endowment, vol. 2, no. 1, pp. 538-549, Aug.
2009.

[16] D.E. Simmen, M. Altinel, V. Markl, S. Padmanabhan, and A.
Singh, “Damia: Data Mashups for Intranet Applications,” Proc.
ACM SIGMOD Int’l Conf. Management of Data (SIGMOD ’08),
pp. 1171-1182, 2008.

[17] J. Wong and J.I. Hong, “Making Mashups with Marmite: Towards
End-User Programming for the Web,” Proc. SIGCHI Conf. Human
Factors in Computing Systems (CHI ’07), pp. 1435-1444, 2007.

[18] L. Grammel, C. Treude, and M.-A. Storey, “Mashup Environ-
ments in Software Engineering,” Proc. First Workshop Web 2.0 for
Software Eng. (Web2SE ’10), pp. 24-25, 2010.

[19] M.M. Burnett, C.R. Cook, O. Pendse, G. Rothermel, J. Summet,
and C.S. Wallace, “End-User Software Engineering with Asser-
tions in the Spreadsheet Paradigm,” Proc. 25th Int’l Conf. Software
Eng. (ICSE), pp. 93-105, 2003.

[20] A. Koesnandar, S.G. Elbaum, G. Rothermel, L. Hochstein, C.
Scaffidi, and K.T. Stolee, “Using Assertions to Help End-User
Programmers Create Dependable Web Macros,” Proc. 16th ACM
SIGSOFT Int’l Symp. Foundations of Software Eng. (SIGSOFT FSE),
pp. 124-134, 2008.

[21] C. Scaffidi, B.A. Myers, and M. Shaw, “Topes: Reusable Abstrac-
tions for Validating Data,” Proc. 30th Int’l Conf. Software Eng.
(ICSE), pp. 1-10, 2008.

[22] T. Mens and T. Tourwe, “A Survey of Software Refactoring,” IEEE
Trans. Software Eng., vol. 30, no. 2, pp. 126-139, Feb. 2004.

[23] S. Badame and D. Dig, “Refactoring Meets Spreadsheet Formu-
las,” Proc. Int’l Conf. for Software Maintenance, 2012.

1678 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 12, DECEMBER 2013

[24] F. Hermans, M. Pinzger, and A. van Deursen, “Detecting and
Visualizing Inter-Worksheet Smells in Spreadsheets,” Proc. Int’l
Conf. Software Eng., 2012.

[25] “Amazon Mechanical Turk Command Line Tool Reference,”
http://docs.amazonwebservices.com/AWSMturkCLT/2008-08-
02/, Jan. 2010.

[26] K.T. Stolee, “Analysis and Transformation of Pipe-Like Web
Mashups for End User Programmers,” master’s thesis, Univ. of
Nebraska-Lincoln, June 2010.

[27] M. Kim, T. Zimmermann, and N. Nagappan, “A Field Study of
Refactoring Challenges and Benefits,” Proc. 20th ACM SIGSOFT
Int’l Symp. Foundations of Software Eng. (FSE ’12), 2012.

[28] I. Balaban, F. Tip, and R. Fuhrer, “Refactoring Support for Class
Library Migration,” Proc. 20th Ann. ACM SIGPLAN Conf. Object-
Oriented Programming, Systems, Languages, and Applications
(OOPSLA), pp. 265-279, 2005.

[29] “JSON,” http://www.json.org/, Aug. 2009.
[30] A. Ouni, M. Kessentini, H. Sahraoui, and M. Hamdi, “Search-

Based Refactoring: Towards Semantics Preservation,” Proc. IEEE
28th Int’l Conf. Software Maintenance (ICSM), pp. 347-356, 2012.

[31] M. O’Keeffe and M.ı́ Cinnéide, “Search-Based Refactoring for
Software Maintenance,” J. Systems Software, vol. 81, no. 4, pp. 502-
516, Apr. 2008.

[32] “Plagger,” http://plagger.org/trac, Aug. 2009.
[33] “JackBe,” http://www.jackbe.com/, Sept. 2012.
[34] “xFruits,” http://www.xfruits.com/, Aug. 2009.
[35] K.T. Stolee, S. Elbaum, and A. Sarma, “End-User Programmers

and Their Communities: An Artifact-Based Analysis,” Proc. Int’l
Symp. Empirical Software Eng. and Measurement (ESEM ’11),
pp. 147-156, 2011.

[36] S.K. Kuttal, A. Sarma, A. Swearngin, and G. Rothermel,
“Versioning for Mashups: An Exploratory Study,” Proc. Third
Int’l Conf. End-User Development (IS-EUD ’11), pp. 25-41, 2011.

[37] I. Muhammad, D. Florian, C. Fabio, and M. Maurizio, “Reseval
Mash: A Mashup Tool that Speaks the Language of the User,” Proc.
ACM Ann. Conf. Extended Abstracts on Human Factors in Computing
Systems Extended Abstracts (CHI EA ’12), pp. 1949-1954, 2012.

[38] S. Soi and M. Baez, “Domain-Specific Mashups: From All to All
You Need,” Proc. 10th Int’l Conf. Current Trends in Web Eng.
(ICWE ’10), pp. 384-395, 2010.

[39] A. Bozzon, M. Brambilla, M. Imran, F. Daniel, and F. Casati, “On
Development Practices for End Users,” Search Computing, S. Ceri
and M. Brambilla, eds., pp. 192-200, Springer, 2011.

[40] R.J. Ennals and M.N. Garofalakis, “Mashmaker: Mashups for the
Masses,” Proc. ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD ’07), pp. 1116-1118, 2007.

[41] A. Kiezun, M.D. Ernst, F. Tip, and R.M. Fuhrer, “Refactoring for
Parameterizing Java Classes,” Proc. 29th Int’l Conf. Software Eng.
(ICSE), pp. 437-446, 2007.

[42] H. Kegel and F. Steimann, “Systematically Refactoring Inheritance
to Delegation in Java,” Proc. 30th Int’l Conf. Software Eng. (ICSE),
pp. 431-440, 2008.

[43] D. Dig, J. Marrero, and M.D. Ernst, “Refactoring Sequential Java
Code for Concurrency via Concurrent Libraries,” Proc. 31st Int’l
Conf. Software Eng. (ICSE), pp. 397-407, 2009.

[44] J. Liu, D.S. Batory, and C. Lengauer, “Feature Oriented Refactor-
ing of Legacy Applications,” Proc. 28th Int’l Conf. Software Eng.
(ICSE), pp. 112-121, 2006.

[45] G. Sunyé, D. Pollet, Y. Le Traon, and J. Jézéquel, “Refactoring UML
Models,” Proc. Fourth Int’l Conf. the Unified Modeling Language,
Modeling Languages, Concepts, and Tools, pp. 134-148, 2001.

[46] G. Taentzer, D. Müller, and T. Mens, “Specifying Domain-Specific
Refactorings for Andromda Based on Graph Transformation,”
Proc. Third Int’l Symp. Applications of Graph Transformations with
Industrial Relevance (AGTIVE), pp. 104-119, 2007.

[47] T. Mens, N. Van Eetvelde, S. Demeyer, and D. Janssens,
“Formalizing Refactorings with Graph Transformations,” J. Soft-
ware Maintenance and Evolution, vol. 17, no. 4, pp. 247-276, 2005.

[48] L. Baresi and R. Heckel, “Tutorial Introduction to Graph
Transformation: A Software Engineering Perspective,” Proc. First
Int’l Conf. Graph Transformation, pp. 402-429, 2002.

[49] C. Köhler, H. Lewin, and G. Taentzer, “Ensuring Containment
Constraints in Graph-Based Model Transformation Approaches,”
Proc. Int’l Workshop Graph Transformations and Visual Modeling
Techniques (GT-VMT), 2007.

[50] T. Mens, G. Taentzer, and O. Runge, “Analysing Refactoring
Dependencies Using Graph Transformation,” Software and Systems
Modeling, vol. 6, no. 3, pp. 269-285, 2007.

[51] G.C. Murphy, M. Kersten, and L. Findlater, “How Are Java
Software Developers Using the Eclipse IDE?” IEEE Software,
vol. 23, no. 4, pp. 76-83, July/Aug. 2006.

[52] M. Vakilian, N. Chen, S. Negara, B.A. Rajkumar, B.P. Bailey, and
R.E. Johnson, “Use, Disuse, and Misuse of Automated Refactor-
ings,” Proc. Int’l Conf. Software Eng. (ICSE ’12), pp. 233-243, 2012.

[53] G. Leshed, E.M. Haber, T. Matthews, and T. Lau, “Coscripter:
Automating & Sharing How-to Knowledge in the Enterprise,”
Proc. 26th Ann. SIGCHI Conf. Human Factors in Computing Systems
(CHI ’08), pp. 1719-1728, 2008.

[54] “Scratch,” http://scratch.mit.edu/, Feb. 2011.
[55] S. Cooper, W. Dann, and R. Pausch, “Alice: A 3-D Tool for

Introductory Programming Concepts,” Proc. Northeastern Conf. J.
Computing in Small Colleges (CCSC ’00), pp. 107-116, 2000.

[56] K.T. Stolee and T. Fristoe, “Expressing Computer Science
Concepts through Kodu Game Lab,” Proc. 42nd ACM Technical
Symp. Computer Science Education (SIGCSE ’11), pp. 99-104, 2011.

Kathryn T. Stolee received the BS and MS
degrees in computer science, and the PhD
degree in computer science in 2013, all from
the University of Nebraska-Lincoln. She is the
Harpole-Pentair assistant professor in the De-
partment of Computer Science and the Depart-
ment of Electrical and Computer Engineering at
Iowa State University. Her research uses pro-
gram analysis to develop tools and techniques
with the goal of making software easier to build,

maintain, and understand. She is a member of the IEEE.

Sebastian Elbaum received the systems en-
gineering degree from the Universidad Catolica
de Cordoba, Argentina, and the PhD degree in
computer science from the University of Idaho.
He is a professor at the University of Nebraska-
Lincoln. His research aims to improve software
dependability through testing, monitoring, and
analysis. He received the US National Science
Foundation (NSF) Career Award, an IBM In-
novation award, and two ACM SigSoft Distin-

guished Paper awards. He was the program chair for the International
Symposium of Software Testing and Analysis, program cochair for the
Symposium of Empirical Software Engineering and Measurement,
coeditor for the Information and Software Technology Journal, and he
is an associate editor of the ACM Transactions on Software Engineering
and Methodology. He is a cofounder of the EUSES Consortium to
support end-user programmers and the E2 Software Engineering Group
at UNL. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

STOLEE AND ELBAUM: IDENTIFICATION, IMPACT, AND REFACTORING OF SMELLS IN PIPE-LIKE WEB MASHUPS 1679

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

