Exploring the Benefits of Using Redundant
Responses in Crowdsourced Evaluations

Kathryn T. Stolee, James Saylor, and Trevor Lund
Department of Computer Science
Iowa State University
{kstolee, jsaylor, tlund} @iastate.edu

Abstract—Crowdsourcing can be an efficient and cost-effective
way to evaluate software engineering research, particularly when

the evaluation can be broken down into small, independent tasks.

In prior work, we crowdsourced evaluations for a refactoring
technique for web mashups and for a source code search
engine, both using Amazon’s Mechanical Turk. In the refactoring
study, preference information was gathered when comparing a
refactored with an unrefactored pipe, in addition to a free-text
justification. In the code search study, information was gathered
about whether a code snippet was relevant to a programming
task and why. In both studies, we used redundant metrics and
gathered quantitative and qualitative data in an effort to control
response quality. Our prior work only analyzed the quantitative
results.

In this work, we explore the value of using such redundant
metrics in crowdsourced evaluations. We code the free-text
responses to unveil common themes among the responses and
then compare those themes with the quantitative results. Our
findings indicate high similarity between the quantitative and
free-text responses, that the quantitative results are sometimes
more positive than the free-text response, and that some of the
qualitative responses point to potential inadequacies with the
quantitative questions from the studies.

I. INTRODUCTION

Research in software engineering often requires evaluation
using human subjects. The cost of designing and running
these studies is high, leading researchers to explore more
cost-effective strategies. From our experience, crowdsourcing
evaluations has increased our efficiency and decreased our costs
to run evaluations, allowing us to evaluate research ideas with
dozens of participants for a fraction of the monetary costs of
in-person studies.

Even with these benefits, crowdsourcing evaluations must
be done carefully, are not appropriate for all evaluations, and
have tradeoffs. These tradeoffs primarily manifest in losses of
control, specifically over the target population, the environment
in which the participants perform tasks, duration the study will
last, and the types of information that can be gathered. In an
effort to obtain better quality results, we have used redundant
metrics in the form of quantitative and free-text responses.

We have used this approach for two different projects,
one with the goal of determining whether users of Yahoo!
Pipes prefer refactored or smelly pipes [1], [2], and the
other determining whether or not search results are relevant
to particular programming tasks [3]. For the former, our
quantitative results have shown users generally prefer pipes
without smells. For the latter, we found that given a smart

ranking algorithm, our search approach [4] returned more
relevant results than a search approach powered by Google.
These general results were based on quantitative analyses of
the user responses, but we also collected free-text responses
explaining those results. These responses were intended to
prevent participants from “gaming” the system and performing
the tasks haphazardly. In this work, we explore the free-text
results and determine if indeed they served that purpose. Our
results indicate that the textual responses generally support the
quantitative results and provide supplementary information that
enriches the findings.
The contributions of this work are:

« Identification of common themes from free-text responses
in two crowdsourced evaluations on source code relevance
and refactoring preferences

o Comparison of qualitative and quantitative redundant
metrics from two crowdsourced evaluations

II. METHODOLOGY

Both studies were crowdsourced using Amazon’s Mechanical
Turk [5], a service advertised as a “marketplace for work that
requires human intelligence.” There are two roles in Mechanical
Turk, a requester and a worker. The requester is the creator of
a human intelligence task, or HIT, which is intended to be a
small, goal-oriented task. The worker completes the HITs for
payment.

In our past studies, we had included free-text responses in
our HITs with the idea of deterring people from answering
the HITs haphazardly. Up until now, we have only reported
on the quantitative results. In this work we are interested in
learning how valuable is it to include free-text responses in
crowdsourced software engineering evaluations.

We analyze the data sets from the two studies in two ways,
first by extracting themes from the free-text responses, and
second by looking for congruence between the quantitative
and qualitative responses. For both studies, we coded the free
form responses to identify common themes. Two passes were
completed over each data set. In the first, one author identified
a set of themes. The themes were discussed among the authors
to resolve any questions. In the next pass, the same author
assigned the themes to the responses. This was done via manual
analysis.

The results explore the themes extracted and compare those
themes to the quantitative results from our prior work. We

discuss each study separately, starting with the refactoring
study in Section 3 and the code search study in Section 4.

III. ANALYZING REFACTORING PREFERENCES

From a research perspective, code smells are indicative of
deficiencies in source code and refactorings are intended to
make the code better with respect to some goal, such as
understandability or maintainability. For web mashups, we
have explored whether or not refactored pipes are preferable to
users [1], [2] by crowdsourcing the evaluation using Amazon’s
Mechanical Turk.

A. Original Study

Yahoo! Pipes [6] is a visual data flow language mashup
language that allows programmers to combine, filter, sort and
annotate RSS feeds and other data sources. Two example pipes
are shown in Figure 1. The pipe labeled A has five data source
modules that contain URLs pointing to RSS feeds. These five
modules feed to a union module that concatenates the data.
This feeds to a sort module and then to the output. The pipe
labeled B has five data sources in a single module that feeds to
a sort before the output. These pipes are equivalent in that the
outputs are the same. In prior work, we defined families of code
smells and refactorings to transform pipes into their semantic
equivalents [1], [2]. For example, the collapse duplicate paths
refactoring would transform pipe A to pipe B. This refactoring
introduces an abstraction (i.e., representing five modules with
just one) and also decreases the size of the pipe (i.e., from
eight modules to three). The overall goal of this study was to
determine if end-user programmers preferred one pipe over the
other, and why.

1) Implementation: We designed tasks in which a participant
is presented with a pipe that contains a code smell and one
that does not, and are asked which is preferred with respect to
a goal (e.g., to understand or to maintain). Next, they have to
justify their decision using a free-form text box. An example is
shown in Figure 1, which asks which pipe is easier to maintain,
A, B, or neither. Each task we defined for this study was
implemented as a HIT on Mechanical Turk, and participants
were paid $0.25 per HIT completed. Multiple HITs could be

completed per participant; in total there were 17 different HITs.

Each participant was required to take and pass a qualification
test. This test is used to control for participant quality by
asking questions about Yahoo! Pipes, collect demographic
information about the participants (e.g., education level), and
obtain Institutional Review Board! consent, per our institution’s
policy. A passing score allowed the user to complete any of
the HITs in this study. Retakes on the qualification exam were
not permitted in the event of a failing score.

2) Participants: The survey and qualification test were
completed by 258 subjects and 135 (52%) received a passing
score of 50% or more. A total of 61 subjects participated in
the study.

I'The Institutional Review Board, or IRB, is an organization that reviews
and authorizes study protocol for experiments involving human subjects to
protect the volunteer subjects.

Fetch Feed 2
URL
hito/inewsrss.bbe.co.ukirssinews
Fetch Feed (%]

URL
hitp:irss.nes

(Fetch Feed aE%) ("Fetch Feed 28|
URL URL
et hipioed:
2 httpifeeds reuters.comireutersiw(
[————
Truncate 2IC)
Truncate foed atr 15
Truncate \”H'\a
Truncate feed afer 15
Select the pipe that is easier to maintain:
OA
OB
O Neither

Justify your answer (you must use at least 10 words in your explanation):

Fig. 1. Illustration of Refactoring Preference Task

3) Data: In total, we analyzed 333 qualitative responses
from 17 tasks. On average, each response had 29.58 words
with 0 = 16.57. Of the 333 responses, 139 from seven HITs
were related to understandability and 194 from 10 HITs were
related to maintainability. Note that compared to previous work
that focused on the quantitative analysis of these data [2], three
HITs did not include justifications and were thrown out for
this analysis.

B. Evaluation

1) Theme Extraction: We found 10 themes that represent
96% of the textual responses, and include a catch-all theme,
Other (theme k), to capture the rest. Only one theme was
assigned per response. The themes and their lower-case letter
abbreviations are listed in Table I. As an example of the
coding process, the response, “abstraction of values through
string builder module and providing them through wire makes
the maintenance easy.”, was assigned to theme a in which
abstraction aids maintainability. As another example, the
response, “B can be updated easily as it contains string builder
separately for each modules” was also assigned to the theme
a in which abstraction aids maintainability since the string
builder module is an added abstraction. The response, “You
need the same number of operations to update any of the
pipes.”, was assigned to theme 1 where the pipes are identical.

2) Comparing Quantitative and Qualitative: Participants
specified which pipe was preferable and then explained why.
For this part of the analysis, we looked at the common themes
and compared those to the quantitative results. We compare to
the results published in our prior work [1], [2].

C. Results

1) Themes: Most of the free-text responses could be coded,
but four of the 333 responses were nonsensical and grouped

TABLE I
THEMES FOR REFACTORING STUDY RESPONSES

Abstraction aids maintainability

Abstraction makes maintainability harder

Updating is easier with fewer modules/items to update
Errors and error-prone pipes are harder to understand/maintain
Familiar elements are better

Fewer modules are easier to understand

More modules are easier to understand

Explicit, hard-coded values are easier to understand
Pipes are identical

Naming conventions

Other

Fa =R Rou (oR Rl NON NN ol Ron)

TABLE II
CODING RESULTS FOR REFACTORING STUDY. KEY FOR THEMES IN
TABLE I. DOMINANT THEMES ARE BOLDED FOR EACH TASK.

Task a b c d e f g h i j k
1 33 14 0 0 0 0 0 0 0 0
2 16 0 11 2 0 0 0 0 0 0 1
3 g8 1 10 0 0 I 0 0 50 5
4 12 0 2 I 0 0 0 2 30 0
5 15 0 2 0 0 1 1 0 1 0 0
6 I 0 2 2 I 0 0 0 9 0 0
7 0 0 0 0 9 2 2 0 I 0 1
8 0 0 0 1 0 10 0 0 7 0 1
9 0 0 0 15 0 0 0 0 40 1
10 I 0 1 0 13 0 0 0 2 1 2
11 0 0 0 0 0 9 2 1 5 0 0
12 0 0 0 0 2 13 I 0 0 0 1
13 0 0 0 0 5 3 5 0 1 0 1
14 0 0 0 0 0 8 0 12 0 0 0
15 0 0 0 7 0 2 0 0 12 0 0
16 0 0 0 0 11 4 0 0 I 3 1
17 0 0 0 0 9 6 0 0 0 0 0
Sum || 56 4 42 27 50 60 10 15 51 4 14
% 17 1 13 8 15 18 3 5 15 1 4

into the other category (theme k). The 17 tasks are each shown
in Table II, along with the number of responses that pertained
to each theme, identified in Table I. The first 10 tasks asked
participants which pipe was easier to maintain whereas tasks
11-17 asked which pipe was easier to understand.

Using task 1 as an example (shown in Figure 1), we see
that 14 responses correspond to theme c, where updating is
easier with fewer modules/items to update. As an example, one
response states, “If is easier and quicker to add and delete
feeds from pipe B’s single Fetch Feed module than it is to deal
with multiple modules.”

For each HIT, there tend to be a few dominant themes that
represent most of the results. For example, 14 / 20 responses
for task 1 map to theme c, 27 / 29 responses for task 2 map
to themes a and c (which are highly similar, except theme a
recognizes abstraction as the reason for easier maintenance),
and 13 / 17 of the responses for task 12 map to theme f.

A majority of the responses for tasks 1-5, which deal with
maintenance, indicate that abstraction aids maintainability
(theme a) and updating is easier with fewer modules/items to
update (theme c). This seems to favor smaller, more abstract
pipes. For tasks 7-10, also dealing with maintenance, the
majority themes are errors ... are harder to maintain (theme d),

Jamiliar elements are better (theme e), and fewer modules
are easier to understand (theme f). These responses imply
that understandability aids maintainability, and that less error-
prone pipes with familiar elements are better. The remaining
maintenance task is 6, in which participants found that the
pipes are identical (theme 1).

The high prevalence of theme £ in the understandability tasks
11 and 12 indicates that smaller pipes are easier to understand.
For task 13, on the other hand, there was disagreement. Five
responses mapped to theme g where more modules are easier
to understand whereas three responses mapped to theme f that
fewer modules are easier to understand. In general, though,
there seems to be high agreement among the responses when
aggregated across participants.

Some themes were expected, such as more modules are
easier to understand, since more modules typically indicates
less abstraction, and we had hypothesized that abstraction may
sometimes impede understandability. Other themes, such as
familiar elements are better (theme e), was less expected. For
example, with task 16, the pipes were similar except the naming
on the looping module. Theme e dominated the responses
for this task, saying the term “loop” was more familiar, and
some participants specifically pointed to the better naming
conventions (theme j). Based on this result, it would seem that
the more familiar the constructs, the more understandable the
pipe. In our refactoring work, we did not define a code smell
for the presence of unfamiliar elements [1], [2]. Given this
theme that emerged from the responses, the follow-up would
be to define a new code smell based on unfamiliar elements,
and we leave this for future work.

Another observation is that none of the understanding ques-
tions were answered with respect to maintenance considerations,
but often understandability played into the decision on which
pipe was easier to maintain. For example, “[larger structures]
are very easy to understand and one can make any update easily
in the future” was a justification given for task 5, mapping to
theme g since the larger structures had more modules.

2) Quantitative vs. Qualitative: In combining the qualitative
and quantitative responses, we find that occasionally the
quantitative response contradicts the textual response, but
generally the responses were in agreement.

In our prior work [2], we found programmers preferred the
refactored pipe to the unrefactored pipe for 72% of the tasks.
Exceptions to participants preferring the refactored pipe include
task 6, which presents two identical pipes in structure except
some of the websites accessed return 404 not found errors.
For this task, neither pipe was preferred?, and the dominant
theme is that the pipes are identical (theme i). Another
exception is task 13, which presents a pipe with five modules
and a refactored pipe where three modules are combined into
one. Here, the unrefactored pipe was preferred’ and the themes
identify new code smells to enhance our prior refactoring work.
Task 14 had a refactored pipe with an added module to hold a

2Task 4 in prior work [2]
3Task 7 in prior work [2]

common value to several modules. In the quantitative analysis,
participants also showed a preference toward the unrefactored
pipe“, and the themes confirm that. The explicit, hard-coded
values (theme h) were easier to understand, yet these were
abstracted in the refactored pipe.

As for disagreement between the quantitative and qualitative
responses, there was only one instance of obvious disagreement.
For task 1, one participant selected the quantitative response,
either, but the free-text response stated, “Both are very basic,
so although B has less windows, A is very easy to maintain”
(mapping to theme c). As this was the only instance, the impact
on our prior results is minor. Beyond that, there were some
cases of potential disagreement. For example, a participant
stated, “I would assume they are both just as easy to update
in the future. Pipe A will probably just receive more duplicate
records ... which would result in more output if not filtered.”
The justification somewhat indicates that pipe A will be harder
to update in the future, but passes that effort off as being the
same as pipe B and answered either.

In the end, we found that our prior work on refactoring
did not capture all the code smells that matter to users.
The quantitative responses showed that refactored pipes are
generally preferred [1], [2], but this analysis shows that we
missed some opportunities to define additional smells and
refactorings that matter to the users.

IV. ANALYZING THE RELEVANCE OF CODE SEARCH
RESULTS

Programmers frequently search for source code using general
purpose search engines. The search query is composed in
a textual format, which may not be ideal for programmers
searching for example code to reuse. We developed a search
approach called Satsy that allows programmers to search for
source code by input/output examples, similar to test cases [3],
[4], [7]. We evaluated how relevant the search results are
to particular Java programming tasks by crowdsourcing the
evaluation using Amazon’s Mechanical Turk.

A. Original Study

The goal of this experiment was to compare the relevance
of search results from Google, a code-specific search engine
Merobase, and Satsy. To do this, we gathered eight Java pro-
gramming tasks from stackoverflow.com and had programmers
generate queries in the formats required for each of the search
approaches. We then executed the queries and obtained a source
code snippet (i.e., method or block levels of abstraction) from
each of the top ten results. These were the code snippets
evaluated by participants on Mechanical Turk for relevance.

A list of the eight programming tasks is shown in Table III.
All tasks deal with string and integer manipulation.

1) Implementation: For each programming task, we pre-
sented the participant with three code snippets where one
snippet came from each search approach. For each snippet, we
asked whether the code was relevant to the programming task

4Task 17 in prior work [2]

Code Snippet 1: Consider the following Java code:

boolean isRotation(String sl,String s2) {
return (sl.length() s2.length()) && ((sl#sl).index0f(s2) I= -1);
¥

1. Is this code relevant to the programming task (relevance means the source code can be easily adapted to solve the problem)?
Yes No

‘Why or why not? How could it be adapted? (requires 10+ word response)

P

2. Does this code solve the programming task (this means the code seems to work as is, without motification)?
Yes No

‘Why or why not? (requires a reasonable response)

Fig. 2. Illustration of Source Code Relevance Task

using a yes/no response, and why. We also asked whether the
code solved the programming task, and why.

Each HIT on Mechanical Turk contained all eight program-
ming tasks. Thus, for a single HIT, a participant had to evaluate
24 code snippets and were paid $3.25 for completing the HIT.
Only one HIT could be completed per participant.

A participants’ workflow is similar to the refactoring study,
described in Section III-A1, where participants must complete a
qualification test. In this case, the test had four questions about
the Java programming language. Retakes were not permitted.

An example of a single code snippet and the quantitative
and qualitative questions is shown in Figure 2; the relevant
programming task is task 8 in Table III.

2) Participation: We had a total of 30 HITs and 30
participants. We did not keep track of how many participants
failed the qualification test for this study.

3) Data: For the quantitative results [3], we analyzed the
data from 720 snippets with respect to whether the code is
relevant and/or solves a programming task. For this qualitative
analysis, we analyze the relevance and solves responses for
244 snippets, totaling 488 free-text response evaluations. This
covers approximately 33% of the total responses for the study,
sampled nearly uniformly from the tasks and search engines.
We break this data down by programming task and search
approach in Table III. For each combination of programming
task and search approach, we evaluated at least 10 snippets.

Among the free-text responses, the average relevance re-
sponse had 21.9 words with ¢ = 13.53. The average solves
response had 15.71 words with o = 10.85.

B. Evaluation

1) Theme Extraction: For each snippet evaluated, two textual
responses were given, one explaining whether the snippet
is relevant to the programming task, and another explaining
whether the snippet solves the programming task (Figure 2).
We aggregated the themes assigned for the two responses since
there was high repetition.

In all, we found 35 themes that represent the responses,
and each response can have more than one theme. The free-
text response often contained many parts that were hard to

TABLE III
CODE SEARCH RESPONSES ANALYZED PER PROGRAMMING TASK

Programming Task Google | Merobase | Satsy | Total
1 Check if one string contains another string, ignoring case (case-insensitive) 10 10 10 30
2 Given a string, capitalize the first letter. 10 10 10 30
3 Determine if an integer is positive. 10 10 10 30
4 Given the String representation of a file name, trim off the extension 10 10 10 30
5 Given a string, trim off the last character. 10 10 10 30
6 Get the character representation of a String. 10 11 10 31
7 Determine if a character is numeric. 10 10 10 30
8 Check if one string is a rotation of another string (a rotation is when the first part of a string is spliced 11 11 11 33
off and tacked onto the end
Sum I 81 | 82 [81] 244
capture with a single theme. The themes and their upper-case TABLE IV
or symbol abbreviations are shown in Table IV. As an example THEMES FOR CODE SEARCH STUDY RESPONSES

of the coding process, consider the following response for
programming task 2: “this is not relevant and this logic doesn’t
work properly.”. This response was assigned theme H, since
it indicates the behavior (i.e., logic) is not relevant/useful to
the task. As a more positive example, here’s a response from
programming task 7: “this is relevant but need some more
modifications.”. This was assigned themes G and E, since it
is exhibits useful behavior, but also needs modification and is
thus nearly complete.

We observe that there is a large difference in the number of
themes extracted for the results from the two studies. We offer
the following insights on this. First, there was much higher
uniformity in the responses for the refactoring study than there
were for the code search responses. In the refactoring study,
programmers were comparing two pipes for preference, so the
responses could simply point out the differences. Second, the
Pipes language is visual and less expressive than Java. For
the code search study, the participant had to explain why Java
code does or does not work, which can be approached from
many angles. For example, some explanations point to what
the source code does and why it is wrong (theme #), whereas
others point to what the code does not do (theme $).

2) Comparing Quantitative and Qualitative: Participants
could only answer yes or no; there was no in-between response.
An expectation is that an answer of yes for relevance would
mean the textual response also indicates yes. In this analysis,
we looked for general agreement compared to the quantitative
responses as presented in prior work [3].

Works for all values as-is

Works for all values at some point

Works for 1+ values as-is

Works for 1+ values at some point

Nearly complete

far from complete

Exhibits useful behavior

Exhibits behavior unuseful to this task

Exhibits behavior unlikely ever to be useful
Exhibits behavior that would work, but is not optimal
No notable behavior

Makes high-level recommendation

Makes functional recommendation to a specific line of code
Makes recommendation re: naming conventions
Makes recommendation re: organization of code
Makes recommendation re: algorithm change
Incorrect output type

Incorrect output medium (e.g., print vs. return)
Constant output

Positive note on output

Incorrect input type

Note on input medium (e.g., global variable)
Input is fixed (at least one)

Other negative input note

Positive note on input

Not Java

Does not compile/runtime error

Missing a method

Describes program’s capabilities

Describes program’s deficiencies

Describes program’s behavior

Program cannot be salvaged

Maybe (hopeful)

Maybe (doubtful)

Maybe (confusing)

ool | #| @ N[XS a|F|r|wo|"|lo|Z2| R R u|H|Z|Q|HEElO|Q|w] >

+

C. Results

1) Themes: The themes are listed in Table IV and Table V The most common theme was H, indicating that the snippet
presents the frequency of occurrence of the most common exhibits behavior unuseful to the task. This is most commonly
17 themes, that is, the themes that appear in at least 10% of found among the Merobase snippets, followed by the Satsy
the responses. These are broken down by search algorithm. snippets and then those from Google. This is in contrast to
For example, theme E, which states that the snippet is nearly ~the next most common theme, G, which states the program
complete, appears in 51 responses, representing 21% of the exhibits useful behavior. Many of the responses also describe
snippets. Breaking this down by search approach, 19 came the program’s behavior as a component of the explanation
from Google results, 17 from Merobase, and 15 from Satsy. (theme %). Surprisingly, approximately 10% of the responses
In Table VI, the theme frequencies are broken down by make a recommendation about naming conventions (theme N).
programming task. For example, theme Z appears in 10 of the 2) Quantitative vs. Qualitative: The search approach with
responses for programming task 1. the highest relevance score overall was Google, with 67.5%

of the results being marked as relevant [3, p.139]. This is
consistent with our results here, where Table V shows that 45
(56%) of the responses matched theme G, where the behavior
is useful. Google was also the mostly likely to provide a result
that works as-is (theme A), where 25 responses had that theme
compared to five from Merobase and 13 from Satsy.

Theme H indicates that the behavior of the snippet is not
useful for the task and 131 (55%) of all snippets had a response
that indicated this. Based on the quantitative analysis, 52%
of all the snippets were found to be relevant [3, p.139], and
thus 48% were irrelevant/unuseful. Theme G, that the snippet
exhibits useful behavior, is present in 39% of the responses.
The take-away message here is that the quantitative responses
were slightly more positive than the qualitative.

Table VI presents the results broken down by programming
task. Two-thirds of the responses we evaluated for tasks 2 and
3 indicated theme H, where the behavior is unuseful, yet the
overall relevance of the snippets as found in prior work was
51% and 44%, respectively. Again, the quantitative results are
more positive than the qualitative.

Of the responses analyzed, programming task 4 was the
most likely to have results that work as-is (theme 2), yet its
quantitative relevance score was only third highest among all
the programming tasks [3, p.139]

Among the quantitative responses, task 8 had the lowest
quantitative score, where only 40% of the results were found to
be relevant [3, p.139]. Considering the qualitative responses, 9
responses (27% of those we analyzed) described the deficiencies
of the code (theme $), which could be considered in future
work when tuning our search approach to better meet user
needs. The quantitative responses for tasks 5 and 6 were the
most relevant overall, with over 60% relevance [3, p.139].
Considering the free-text responses, rather than focusing on
the code’s deficiencies, over 25% of the responses we analyzed
discussed the code’s capabilities (theme #).

We also found is that the quantitative responses were perhaps
too narrow, as indicated by the presence of theme C where the
code will only work for a small set of potential inputs. For
example, for the task, Get the character representation of a
String., one participant indicated the code snippet,

Character toCharacter (String self) {
return self.charAt(0);
}

would solve the problem, “...only with strings of length 1.”,
and answered yes that it would solve the problem.

In the end, we found that the yes/no response format for
these tasks may have been too narrow. Future work should
incorporate an in-between response or likert-scale response to
capture the degree of relevance between a snippet and a task.

“«

V. DISCUSSION

Overall, the results indicate the qualitative and quantitative
results provide similar results, though for the code search study
in which the quantitative responses were yes/no with no in-
between, the quantitative responses were more positive than

TABLE V
POPULARITY OF THEMES IN SEARCH RESPONSES, BY SEARCH APPROACH

Theme | Google Merobase Satsy | Total
H 30 52 49 131 54%
G 45 21 30 9% 39%
% 21 20 25 66 27%
E 19 17 15 51 21%
Z 22 14 13 49 20%
20 14 15 49 20%
K 16 16 14 46 19%
$ 11 19 16 46 19%
A 25 5 13 43 18%
C 11 11 10 32 13%
D 11 7 9 27 11%
F 8 7 12 27 11%
N 5 11 8 24 10%

TABLE VI
POPULARITY OF THEMES IN SEARCH RESPONSES, BY PROGRAMMING
TASK
Programming Task

2 3 4 5 6 7 8 | Total
H |1 20 20 15 16 14 15 18 131
G|13 10 10 14 14 17 10 8 96
% 8 9 6 8 8 9 10 8 66
E 7 5 9 6 8 10 3 3 51
zZ | 10 7 7 8 4 6 5 2 49
6 4 6 6 8 8 4 7 49
K | 10 5 5 4 6 7 6 3 46
$ 4 6 5 5 3 6 8 9 46
A 5 5 310 4 7 4 5 43
C 4 2 6 5 3 6 3 3 32
D 2 2 5 5 3 6 2 2 27
F 2 4 3 2 3 1 7 5 27
N 2 2 4 2 4 7 2 1 24

the free-text responses. There were only a few instances where
there was disagreement between the responses. This could
mean one of two things: either the inclusion of the free-text
responses in the HITs serves the intended purpose of preventing
people from answering randomly, or the free-text responses
are largely unnecessary. Replications of these studies without
the free-text responses are needed to compare results.

As with most empirical studies, there appears to be a tradeoff
between the expressiveness of the results and the cost of
the study. When the quantitative results are unexpected, the
free-text responses provide insights that would not otherwise
be gathered. On the other hand, the presence of the free-
text responses may deter a larger group of participants from
completing the HITs, and are more difficult to analyze.

At the very least, qualitative responses are very useful for
pilot studies. It can show that perhaps the quantitative responses
are too narrow, or give insights to why the results were different
than expected, allowing the study designer to refine the tasks
and study structure as needed.

There still remain some open questions for how to handle
certain scenarios we encountered:

1) When there is disagreement between the quantitative and

free-text response, which should be used in an analysis?
Should the response be thrown out?

2) What is the impact of including the free-text responses
on participants likelihood of completing HITs?

3) Does the free-text response actually control participant
quality, or is it redundant?

VI. THREATS TO VALIDITY

The threats to validity of this work are inherited from the
original studies [1]-[3]. In addition:

A. Internal

For the code search study, we only analyzed 33% of the
qualitative responses. While sampling was uniform and no bias
was intentionally introduced, some of the differences between
the quantitative results from prior work and qualitative results
in this work may be attributed to the sample.

In the coding process, we may have introduced bias since we
knew the results from the original studies. To mitigate this, the
authors who coded the free-text responses were not involved
in designing or analyzing the original studies.

B. External

The observations we made may not translate to other crowd-
sourced studies. To mitigate this, we considered two different
crowdsourced studies with different research objectives to reach
more general conclusions.

VII. RELATED WORK

Researchers have sought to use crowdsourcing to complete
various software development tasks, such as GUI testing [8],
software verification [9], or programming tasks [10]. Our
approach is different, in that we use crowdsourcing as a way to
recruit participants and evaluate our research. In prior work, we
reported on our initial impressions and lessons learned using
crowdsourcing for one software engineering study [11].

In this work, we compare the internal consistency of quanti-
tative and qualitative responses in two crowdsourced studies.
Other work has compared the quality of a crowdsourcing study
to the same study performed in a controlled lab setting [12].
The results from crowdsourcing were not as good as a lab study,
primarily because the ability to ask follow-up or clarification
questions was stunted.

The goal of including redundant metrics in our studies was
to control participant quality. Kim et al. evaluated the impact
of payment schemas on random clickers in crowdsourced
studies [13]. They found that higher payments discourage
random clickers, but the increase in quality may not justify the
additional costs. This could be another approach to controlling
user quality beyond using free-text responses.

VIII. CONCLUSION

Crowdsourcing software engineering evaluations can be an
economical way to recruit participants and evaluate research
that needs human opinions. In our prior work, we crowdsourced
evaluations for two goals: evaluating the impact of refatorings
on developers’ preferences in Yahoo! Pipes, and evaluating the

relevance of source code snippets to various programing tasks.
In both studies, we used redundant metrics to control participant
quality, requiring quantitative and free-text responses.

In this work, we explore the free-text responses. We found
high consistency between the quantitative and textual responses,
indicating that either the free-text responses served the intended
purpose, or were unnecessary. While the free-text responses
may deter participants and are more difficult to analyze, the
responses can inform refinements to an existing study or
research. Future work is needed to replicate our studies and
remove the free-text response to observe the impact on the
responses.

ACKNOWLEDGEMENTS

Special thanks to Sebastian Elbaum for his guidance in
designing the original studies. This work is supported in part
by NSF SHF-1218265, NSF SHF-EAGER-1446932, and the
Harpole-Pentair endowment at Towa State University.

REFERENCES

[1] K. T. Stolee and S. Elbaum, “Refactoring pipe-like mashups for end-user
programmers,” in International Conference on Software Engineering,
2011.

, “Identification, impact, and refactoring of smells in pipe-like web
mashups,” IEEE Trans. Softw. Eng., vol. 39, no. 12, pp. 1654-1679,
Dec. 2013. [Online]. Available: http://dx.doi.org/10.1109/TSE.2013.42

[3] K. T. Stolee, “Solving the Search for Source Code,” PhD Thesis,
University of Nebraska—Lincoln, August 2013.

[4] K. T. Stolee, S. Elbaum, and D. Dobos, “Solving the search for source
code,” ACM Trans. Softw. Eng. Methodol., vol. 23, no. 3, pp. 26:1-26:45,
Jun. 2014. [Online]. Available: http://doi.acm.org/10.1145/2581377

[5] “Amazon Mechanical Turk,” https://www.mturk.com/mturk/welcome,
June 2010. [Online]. Available: https://www.mturk.com/mturk/welcome

[6] “Yahoo! Pipes,” http://pipes.yahoo.com/, June 2012.

[71 K. T. Stolee and S. Elbaum, “Toward semantic search via smt solver,”
in Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering, ser. FSE *12. New York, NY,
USA: ACM, 2012, pp. 25:1-25:4.

[8] E. Dolstra, R. Vliegendhart, and J. Pouwelse, “Crowdsourcing gui tests,”
in Software Testing, Verification and Validation (ICST), 2013 IEEE Sixth
International Conference on, March 2013, pp. 332-341.

[9]1 T. W. Schiller and M. D. Ernst, “Reducing the barriers to writing verified

specifications,” in Proceedings of the ACM International Conference on

Object Oriented Programming Systems Languages and Applications, ser.

OOPSLA ’12. New York, NY, USA: ACM, 2012, pp. 95-112.

T. D. LaToza, W. B. Towne, C. M. Adriano, and A. van der

Hoek, “Microtask programming: Building software with a crowd,”

in Proceedings of the 27th Annual ACM Symposium on User

Interface Software and Technology, ser. UIST ’14. New York,

NY, USA: ACM, 2014, pp. 43-54. [Online]. Available: http:

//doi.acm.org/10.1145/2642918.2647349

K. T. Stolee and S. Elbaum, “Exploring the use of crowdsourcing to

support empirical studies in software engineering,” in International

Symposium on Empirical Software Engineering and Measurement, 2010.

D. Liu, R. G. Bias, M. Lease, and R. Kuipers, “Crowdsourcing for

usability testing,” Proceedings of the American Society for Information

Science and Technology, vol. 49, no. 1, pp. 1-10, 2012.

S.-H. Kim, H. Yun, and J. S. Yi, “How to filter out random

clickers in a crowdsourcing-based study?” in Proceedings of

the 2012 BELIV Workshop: Beyond Time and Errors - Novel

Evaluation Methods for Visualization, ser. BELIV ’12. New

York, NY, USA: ACM, 2012, pp. 15:1-15:7. [Online]. Available:

http://doi.acm.org/10.1145/2442576.2442591

[2]

[10]

(11]

[12]

[13]

