
ARTICLE IN PRESS
JID: JSS [m5G;May 21, 2015;10:52]

The Journal of Systems and Software 000 (2015) 1–14

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Code search with input/output queries: Generalizing, ranking,

and assessment

Kathryn T. Stolee a,∗, Sebastian Elbaum b, Matthew B. Dwyer b

a Iowa State University, Ames, IA 50011, United States
b University of Nebraska-Lincoln, Lincoln, NE, United States

a r t i c l e i n f o

Article history:

Received 29 August 2014

Revised 27 February 2015

Accepted 21 April 2015

Available online xxx

Keywords:

Semantic code search

Symbolic execution

SMT solvers

a b s t r a c t

In this work we generalize, improve, and extensively assess our semantic source code search engine through

which developers use an input/output query model to specify what behavior they want instead of how it

may be implemented. Under this approach a code repository contains programs encoded as constraints and

an SMT solver finds encoded programs that match an input/output query. The search engine returns a list of

source code snippets that match the specification.

The initial instantiation of this approach showed potential but was limited. It only encoded single-path pro-

grams, reported just complete matches, did not rank the results, and was only partly assessed. In this work,

we explore the use of symbolic execution to address some of these technical shortcomings. We implemented

a tool, Satsy, that uses symbolic execution to encode multi-path programs as constraints and a novel rank-

ing algorithm based on the strength of the match between an input/output query and the program paths

traversed by symbolic execution. An assessment about the relevance of Satsy’s results versus other search

engines, Merobase and Google, on eight novice-level programming tasks gathered from StackOverflow, us-

ing the opinions of 30 study participants, reveals that Satsy often out-performs the competition in terms of

precision, and that matches are found in seconds.

© 2015 Elsevier Inc. All rights reserved.

1

g

a

t

s

s

m

p

t

n

o

t

r

t

t

b

d

o

p

p

A

t

n

v

b

i

t

a

p

p

p

r

i

s

h

0

. Introduction

Programmers frequently search for code when performing pro-

ramming tasks (Sim et al., 2011; Stolee et al., 2014). The search

pproaches vary across several dimensions, including the scope of

he search (from local to web-scale repositories), the purpose of the

earch (from learning to reuse), or the search tool (from general

earch engines to code specific search engine). Yet one aspect that

ost search approaches share is the use of keywords in the query to

erform a search. To illustrate, a keyword query could be a descrip-

ion of a programming task, such as remove the file extension from a file

ame in Java. The search engine then traverses an indexed repository

f programs in an attempt to find a syntactic match to the keywords.

In previous work, we defined a semantic approach to code search

hat takes an input/output query model and retrieves code from a

epository that behaves as specified, using a constraint solver to iden-

ify search results (Stolee and Elbaum, 2012; Stolee et al., 2014) (illus-

rated as part of Fig. 7). The approach’s value resides in enabling a
∗ Corresponding author. Tel.: +1 515 294 0222.

E-mail addresses: kstolee@iastate.edu (K.T. Stolee), elbaum@cse.unl.edu (S. El-

aum), dwyer@cse.unl.edu (M.B. Dwyer).

s

e

s

i

ttp://dx.doi.org/10.1016/j.jss.2015.04.081

164-1212/© 2015 Elsevier Inc. All rights reserved.

Please cite this article as: K.T. Stolee et al., Code search with input/outp

Systems and Software (2015), http://dx.doi.org/10.1016/j.jss.2015.04.081
ifferent type of search where users search for what they want with-

ut knowing how it may have been implemented. Using the same

rogramming task as an example, this query model would let the

rogrammer specify an input, such as “file.txt”, and an output, “file”.

naïve semantic approach would attempt to execute programs with

hose inputs and outputs to find a match, but it would fail if the sig-

atures differ or if there is only a partial match (a program that pro-

ides extra behavior or is missing some behavior). Instead, to enable a

roader use of such queries, our approach performs a program index-

ng that considers the program’s semantics. This indexing is done by

ransforming code snippets into constraints; at search time, to find

match an SMT solver is used to check for satisfiability between a

rogram constraints and the input/output query. As previously pro-

osed (Stolee et al., 2014), the approach was able to encode single-

ath programs with string, integer, character and boolean data types,

eturn all code snippets that completely matched a specification, and

ts potential was illustrated through its application to three language

ubsets (SQL Select, Yahoo! Pipes, and Java Strings). The assessment

howed that it was a feasible alternative to keyword based searches,

specially when the precision of the results was a priority.

In this work, we use the program characterization produced by

ymbolic execution to significantly extend the previous search work

n two dimensions. First, we generalize the encoding to include
ut queries: Generalizing, ranking, and assessment, The Journal of

http://dx.doi.org/10.1016/j.jss.2015.04.081
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
mailto:kstolee@iastate.edu
mailto:elbaum@cse.unl.edu
mailto:dwyer@cse.unl.edu
http://dx.doi.org/10.1016/j.jss.2015.04.081
http://dx.doi.org/10.1016/j.jss.2015.04.081

2 K.T. Stolee et al. / The Journal of Systems and Software 000 (2015) 1–14

ARTICLE IN PRESS
JID: JSS [m5G;May 21, 2015;10:52]

1 LS = { ({"alpha", "PHA"}, {true}), \\ lsa
2 ({"beta", "bet"}, {true}) \\ lsb

Fig. 1. Specification for containment, case insensitive.

i

m

2

o

T

k

e

a

R

t

t

t

u

t

p

1

b

h

t

t

t

c

p

s

b

o

s

m

l

w

o

r

b

C

s

p

F

i

p

1 http://stackoverflow.com/questions/86780/is-the-contains-method-in-java-lang-

string-case-sensitive .
multi-path, non-looping programs by integrating symbolic execution

into the indexing phase of the code search approach. During indexing,

each code snippet is executed symbolically and the path conditions

at the leaves of the symbolic execution tree are collected; the set of

path conditions represents the potential behaviors for the program.

Then, during a search, programs are identified as matches when at

least part of a specification matches at least one path in a program

(leading to partial matches).

Second, we use the output from symbolic execution to rank the

search results based on the strength of a match between an in-

put/output specification and a source code snippet. To prioritize the

matches, the ranking algorithm analyzes the level of correspondence

between the input/output queries and the traversed program paths.

We have defined various levels of matching between a specification

and a program, including a full match, an under match in which the

program is missing some behavior in the specification, and an over

match in which the program contains extra behavior.

In addition to the technical extensions, in this paper we also per-

form an extensive evaluation of the approach implemented in a tool

we call Satsy. In the context of Java programs, we compare Satsy with

Google (which has been shown to be the state-of-the-practice code

search tool (Sim et al., 2011; Stolee et al., 2014)) and a source code

search engine, Merobase. The study includes eight novice-level pro-

gramming problems posed on stackoverflow.com primarily related

to string manipulation, which has been found to be medium diffi-

culty for novice Java programmers (Milne and Rowe, 2002). For each

programming task, queries were issued to each search approach. The

study shows that, based on an evaluation by 30 programmers, Satsy is

on average more effective than Google, and significantly more effec-

tive than Merobase. As part of the study we also evaluate Satsy’s per-

formance and began to investigate the impact of the specification size

on the results. The results also indicate that the ranking algorithm has

a profound impact on the relevance of Satsy’s results, a larger repos-

itory could really improve the number of matches, and the approach

does well when specifications contain 3–4 input/output examples.

Even considering the current limitations in scalability for sym-

bolic execution, the code search context provides a compelling

application for this powerful technique. First, performance is not a

concern as indexing happens offline. Second, the target code frag-

ments can be rather small, which is where symbolic execution excels.

Last, just like when supporting test case generation, even if symbolic

execution fails to complete it can still collect partial program encod-

ings to enable search albeit with less precision.

The contributions of this work are:

• Generalization of our semantic search technique and matching

criteria to consider multi-path programs through the use of sym-

bolic execution and partial matches.
• The first semantic ranking algorithm for source code search re-

sults based on the strength of a match between a specification

and the program paths.
• Evaluation with human participants showing that Satsy often out-

performs Google, and that both are better than a code search spe-

cific search engine, Merobase, when searching for solutions to

novice-level programming tasks.
• Evaluations measuring Satsy’s performance and illustrating the

impact of the number of input/output examples on result rele-

vance.

2. Motivation and overview

In this section, we motivate the general search approach of using

input/output examples and a constraint solver for search. Then, we

present the need for the particular contributions of this work, specif-

ically the need for multi-path program encoding, provide intuition

for how to generate such encodings through symbolic execution, and
Please cite this article as: K.T. Stolee et al., Code search with input/outp

Systems and Software (2015), http://dx.doi.org/10.1016/j.jss.2015.04.081
llustrate how this creates an opportunity to use the strength of a

atch between specification and program in a ranking algorithm.

.1. Limitations with keyword-based search and testing

The search approach we propose in this work is based on the use

f input/output queries and a constraint solver to identify programs.

his is specifically in contrast to previous work that has focused on

eyword-based approaches (e.g., Bajracharya et al., 2006; Grechanik

t al., 2010; Inoue et al., 2003; McMillan et al., 2011) or testing-based

pproaches (e.g., Lemos et al., 2007; Podgurski and Pierce, 1993;

eiss, 2009, details in Section 8).

Keyword-based approaches to code search generally require users

o formulate text that describes their needs, and then match that tex-

ual query to the text contained in source code or related documen-

ation. Thus, the success of the search is generally dependent on the

sers’ abilities to select words that may have been used (or are similar

o) words that exist in a program that performs the desired task. This

rocess may require several reformations of the query (Fischer et al.,

991; Haiduc et al., 2013), and motivates the exploration of behavior-

ased approaches.

Testing-based approaches to code search find code based on be-

avior and work well when the signature of the specification matches

he signature of a code snippet. However, when the specification con-

ains too much information, or does not contain enough information

o exactly fit a snippet’s signature, such approaches fall short.

To illustrate, consider the problem of determining if one string

ontains another, case insensitive (this question is similar to one

osed by a real developer on stackoverflow.com 1 and is used in our

tudy – question 1 in Table 3). The keyword query to Google formed

y one of the study participants, “String contains String Java”, returns

ver 1.5 million results. Four of the top five results provide a case-

ensitive, rather than case-insensitive, solution. For this example, it

ay take clicks on several results and ultimately query refinement to

earn that one needs to specify, “case insensitive” to get better results.

An enriched, hybrid search approach matches code based on key-

ords and type signatures. This is allowed by the search engine, Mer-

base. For instance, the query, boolean substr(String, String),

epresenting the type signature of the desired method, was generated

y one of the study participants. It returns results like the following:

1 boolean validatePassword(String inputPassword,
String password) {

2 if(inputPassword.equals(password)){
3 return true;
4 } else {
5 return false;
6 }
7 }

learly, this result does not capture the concept of searching for a sub-

tring, even if the type signature is the same as the desired method.

In our approach, the programmer would specify input/output

airs for the desired code, illustrating how the code should behave.

or this programming task, an example lightweight specification, LS,

s shown in Fig. 1. Two input/output pairs form the specification (in-

uts and outputs are quoted and separated by braces), lsa and lsb,
ut queries: Generalizing, ranking, and assessment, The Journal of

http://stackoverflow.com
http://stackoverflow.com
http://stackoverflow.com/questions/86780/is-the-contains-method-in-java-lang-string-case-sensitive
http://dx.doi.org/10.1016/j.jss.2015.04.081

K.T. Stolee et al. / The Journal of Systems and Software 000 (2015) 1–14 3

ARTICLE IN PRESS
JID: JSS [m5G;May 21, 2015;10:52]

1 boolean isReserved(String str) {
2 return reserved.contains(str.toLowerCase());
3 }

Fig. 2. The isReserved method.

1 boolean lastIndexOf(String str, int fromIndex,
String stringToSearch) {

2 if(stringToSearch.lastIndexOf(str, fromIndex)
== -1) {

3 return false;
4 }
5 return true;
6 }

Fig. 3. The lastIndexOf method.

1 LS = { ({"log.txt"}, {"log"}), \\ ls1

2 ({"log.txt.txt"}, {"log.txt"}) \\ ls2

3 ({"log"}, {"log"}) } \\ ls3

Fig. 4. Specification for trimming file extension.

a

i

i

t

c

“

a

t

i

t

v

i

m

s

t

w

s

i

m

“

c

n

c

f
m

m

f

a

2

e

o

T

s

1 String stripExtension(String scriptFile) {
2 int extension = scriptFile.lastIndexOf(’.’);
3 if(extension > 0) {
4 int start = scriptFile.indexOf("/") + 1;
5 if(start > 0){
6 return scriptFile.substring(start,

extension);
7 }
8 return scriptFile.substring(0, extension);
9 } else {

10 return scriptFile;
11 }
12 }

Fig. 5. The stripExtension method.

l

p

s

m

t

s

q

c

w

c

s
l

i

i

f

s

t

i

l

C

i

r

a

n

L

a

1

c

s

i

fl

2

u

K

d

i

t

c

nd each contains two input strings and a boolean output, specify-

ng examples of the desired behavior. For example, “PHA” is a case-

nsensitive substring of “alpha”, so a relevant function should return

rue.

Also consider the relevant2 code snippet in Fig. 2. Both specifi-

ations, lsa and lsb, are matched by the code in Fig. 2 (i.e., where

PHA” �→ str and “alpha” �→ reserved for lsa, and where “bet” �→ str
nd “beta” �→ reserved for lsb). However, the specification provides

wo input values whereas there is only one argument to the method

n Fig. 2. Thus, the method cannot be executed; in order to identify

his code as a match, the field reserved must be set to the first input

alue, so a testing approach may not be appropriate with this method

n isolation. For the purposes of a testing approach, a simple analysis

ay suffice to reveal that that is the case for this example, but more

ophisticated and expensive analyses and mocking would be needed

o generalize such an approach.

The other case in which a testing approach is not appropriate is

hen the specification does not provide enough information. Con-

ider the same problem of matching strings case insensitive, the spec-

fication in Fig. 1, and the source code in Fig. 3. Here, the method

atches the specification for lsb when “beta” �→ stringToSearch and

bet” �→ str. The variable, fromIndex, is not mapped to the specifi-

ation. Without a value for the argument, a testing approach would

ot be able to consider this somewhat relevant method as a viable

andidate for results. However, when using the solver, the value for

romIndex is merely constrained to be greater than zero (a require-

ent of the lastIndexOf method), and is set to 0 in the satisfiable

odel identified by the solver for lsb. Thus, even with too little in-

ormation in the specification, this method is found relevant by our

pproach.

.2. Beyond single source line matches

Imagine that a programmer wants to find code to remove the file

xtension from a file name (this question was posed by a real devel-

per on stackoverflow.com 3 and is used in our study – question 4 in

able 3).

An example lightweight specification generated by one of our

tudy participants is shown in Fig. 4. The three input/output pairs,
2 Relevance was determined by study participants. See Section 5.
3 http://stackoverflow.com/questions/941272/.

n

i

p

Please cite this article as: K.T. Stolee et al., Code search with input/outp

Systems and Software (2015), http://dx.doi.org/10.1016/j.jss.2015.04.081
s1, ls2, and ls3, define values for an input string and a trimmed out-

ut string.

Now consider a source code repository that includes the

tripExtension method shown in Fig. 5.

Our previous approach (Stolee et al., 2014) only supported the

atching of single-line snippets of source code. Using that approach,

he code in Fig. 5 would have been split into five independent code

nippets for lines 2, 4, 6, 8, and 10, none of which provides an ade-

uate solution to the query.

The previous approach would encode each single-line snippet as a

onstraint. For instance, line 8 would be encoded as R = S.sub(0, E)

here sub denotes the substring function. Here R stands for the

omputed result – the return – and S and E for input values

criptFile and extension. The latter variables are free in the formu-

ae describing program behavior to reflect the fact that no assumption

s made about the input values.

At search time, these five snippets would be candidates for match-

ng against the specification LS. Finding a match consists of checking

or satisfiability of each snippet constraint set conjoined with a con-

traint encoding each element of the specification. For line 8 and ls1,

he resulting formula, R = S.sub(0, E) ∧ R = “log′′ ∧ S = “log.txt′′

s satisfiable, when E �→ 3, and thus ls1 would match line 8. Similarly

s2 and ls3 would match line 8, when E �→ 7 and E �→ 3, respectively.

onsequently line 8 would match for any single specification lsi, but

t would not be a match for the whole LS since the matching criteria

equires that the value for any free variables, such as E, be the same

mong all input/output pairs in a specification. That is, the code can-

ot be tweaked to satisfy all the input/output pairs simultaneously.

ine 6 would not be judged as a match for the same reasons, lines 2

nd 4 would not match since they produce integer outcomes, and line

0 would fail to match ls1 and ls2.

This single-line encoding has the advantage of simplicity and it

an still match non-trivial snippets of code (e.g., compositions of

tring function calls). However, its value is limited by the inabil-

ty to account for intermediate computation and non-trivial control

ow.

.3. Generalizing program matches

In this paper, we generalize the process of encoding programs by

sing symbolic execution (Clarke, 1976; Clarke and Richardson, 1985;

ing, 1976) to capture the behavior of all paths in a method. Fig. 6

epicts the symbolic execution tree for the code in Fig. 5. Each node

n the tree corresponds to a branch in the program’s execution where

he right child denotes the true outcome and the left the false out-

ome. The dereference of scriptFile is an implicit branch, since a

ull value leads to throwing a NullReferenceException; the remain-

ng branches are all explicit in the source code.

In the symbolic execution of a method, the input values, (e.g.,

arameter scriptFile), are assigned free-variables, (e.g., S in
ut queries: Generalizing, ranking, and assessment, The Journal of

http://stackoverflow.com
http://stackoverflow.com/questions/941272/
http://dx.doi.org/10.1016/j.jss.2015.04.081

4 K.T. Stolee et al. / The Journal of Systems and Software 000 (2015) 1–14

ARTICLE IN PRESS
JID: JSS [m5G;May 21, 2015;10:52]

. . . = scriptFile.lastIndexOf(. . .);

extension>0

R = S : {ls3}

¬(S.last(‘.’) > 0)

start>0

R = S.sub(0, S.last(‘.’)) : {ls1, ls2}

¬(S.idx(“/”) + 1 > 0)

R = S.sub(S.idx(“/”) + 1, S.last(‘.’)) : {}

S.idx(“/”) + 1 > 0

S.last(‘.’) > 0

¬(S = null)

NRE

S = null

Fig. 6. Symbolic execution tree for Fig. 5.

Fig. 7. Satsy and approach overview (new components are grayed, query matching is

performed online, repository encoding offline).

t

i

w

i

m

t

m

t

s

r

b

i

t

b

e

(

c

a

c

m

t

r

w

3

t

p

p

s

a

p

d

3

o

t

t

o

a

w

O

o

p

4 This is in contrast to our previous work where the input was a single element

(Stolee et al., 2014).
Fig. 6); we again denote the return value with another variable, R.

For each branch outcome, a symbolic expression that encodes the

constraints on the input values required to produce that outcome is

recorded. For instance, the false branch of the test on line 5, start
>0, has a constraint ¬(S.idx(“/′′) + 1 > 0) where idx is a short-hand

for the string operation indexOf; similarly sub and last abbreviate

substring and lastIndexOf, respectively. For a path in the tree to

be executable the conjunction of its constraints – the path condition

(PC) – must be satisfiable.

Along a path, assignment statements may set the value of vari-

ables that serve as outputs of a code fragment (e.g., return values,

side-effected fields). We capture these effect constraints along with

the PC. For instance on the leftmost path in Fig. 6 the return state-

ment produces the effect constraint R = S .

To find a match with an input/output example, for each feasible

path captured during symbolic execution, we conjoin the PC, the ef-

fect constraints, and a constraint encoding the binding of individ-

ual input/output pairs, and then check for satisfiability. Fig. 6 gives

the set of satisfiable input/output pairs from LS for each path at ev-

ery leaf node after the “:”. For example, the leftmost path in the

tree, corresponding to the return statement on line 10, has a PC of

¬(S = null) ∧ ¬(S.last(‘.’) > 0) and effects of R = S . For ls3 we con-

join S = “log′′ ∧ R = “log′′ and the result is satisfiable. Similarly we

determine that ls1 and ls2 satisfy the constraints associated with the

return at line 8.

Unlike the previous approach, a Java method here is represented

as a set of paths, characterized as constraints, generated using sym-

bolic execution. This allows the matching of larger, more complex

snippets with multiple paths.

2.4. Matching levels and ranking

In the example described above, each ls ∈ LS is matched to some

path in stripExtension; thus, this method may be a relevant search

result. The path leading to the return on line 6, the lowest and right-

most branch in the symbolic execution tree, is unsatisfiable when

combined with any lsi from the example. Thus, there exists a path

in Fig. 5 that is not exercised by any of the input/output pairs in Fig. 4.

While stripExtension is a match for LS, it over matches the specifica-

tion by providing extra behavior that is unnecessary according to the

specification.

If we were to strengthen LS by adding the input/output pair ls4 =
({“C : /abc.tex′′}, {“abc′′}), then stripExtension would be judged a

full match since ls4 is satisfiable on the path leading to line 6, and

then all paths and all input/output pairs would be matched.

Further strengthening LS by adding the input/output pair ls5 =
({“ftp : //path/abc.tex′′}, {“abc′′}) would result in stripExtension
being judged an under match since there is no path on which ls5 is

satisfiable, and thus the behavior of the method is less than what the

specification states.
Please cite this article as: K.T. Stolee et al., Code search with input/outp

Systems and Software (2015), http://dx.doi.org/10.1016/j.jss.2015.04.081
In this paper we utilize the partiality of matching to rank poten-

ially relevant source code results. With our more successful rank-

ng algorithm (see Section 4.3), our basic intuition is to rank matches

ith extra behavior at the top (the specification model is weak, mak-

ng it difficult to express all the desired behavior), followed by full

atches. Matches with less behavior are not included as we expect

hat the user input/output pairs represent behavior that cannot be

issed from the search code. It is also important to keep in mind that

he degree of matching described here is from a program analysis per-

pective, and these notions may differ from a user’s perspective on

elevance. For this reason, the relevance of search results is evaluated

y study participants.

We note that the example in this section, and the approach stud-

ed in detail in this paper, consider symbolic execution-driven seman-

ic search in a restricted setting. While such methods can be handled

y, for example, Symbolic PathFinder (SPF), the symbolic execution

xtension (JPF, 2012; Khurshid et al., 2003) to the Java PathFinder

JPF) model checker (Visser et al., 2003), symbolic execution tools

ome with limitations. For example, not all Java string API functions

re fully supported in SPF yet. Generalizing the approach to index

ode that, for instance, manipulates data other than strings, invokes

ethods, and involves exceptional and iterative control flow, rests on

he ability of symbolic execution engines to generate a sufficiently

epresentative set of paths. Exploring those directions is in our future

ork (Section 9).

. Approach

We present a brief definition of each piece of our original approach

o semantic search via an SMT solver, depicted in Fig. 7. As this ap-

roach was first introduced in the context of programs with a single

ath (Stolee et al., 2014), and the Java specifications contained only

ingle input values of type String, we now focus on generalizing the

pproach to richer specifications and how multi-path, non-looping

rograms are processed, highlighting the adaptations to the original

efinition.

.1. Querying with input/output examples

This search approach takes lightweight specifications in the form

f input/output examples that characterize the desired behavior of

he code. These specifications, LS, are lightweight and incomplete in

hat they consist of concrete input/output pairs that exemplify part

f the desired system behavior. As illustrated in Fig. 4, LS is defined as

set of input/output examples, LS = {ls1, ls2, …, lsk}, for k examples

here lsj = (Ij, Oj). Each input, Ij, is a set of elements4 and each output,

j, is a set of elements related to Ij. Each element of the input and the

utput also has a defined type used to identify potentially matching

rograms.
ut queries: Generalizing, ranking, and assessment, The Journal of

http://dx.doi.org/10.1016/j.jss.2015.04.081

K.T. Stolee et al. / The Journal of Systems and Software 000 (2015) 1–14 5

ARTICLE IN PRESS
JID: JSS [m5G;May 21, 2015;10:52]

1 int start;
2 int extension;
3 String scriptFile;
4 extension = scriptFile.lastIndexOf(’.’);
5 pc: extension > 0
6 start = scriptFile.indexOf("/") + 1;
7 pc: start <= 0
8 return scriptFile.substring(0,extension);

Fig. 8. Path q2 for Fig. 5.

3

l

S

p

o

A

t

f

v

p

e

W

s

c

t

p

e

c

r

b

t

i

m

s

c

P

a

r

a

c

t

o

c

p

n

p

R
s

c

T

o

q

F

s

c

s
i

f

s

a

a

w

{

c

P

3

s

e

g

r

l

c

a

r

f

a

m

T

T

l

c

F

t

s

l

t

s

P

fi

c

s

n

D

∃
T

a

t

i

D

=
T

s

D

=

3

u

I

5 In the future, the solver could be invoked as Solve((
∨

ls ∈ LS) ∧ (
∨

q ∈ QP)) to re-

duce solver calls on fully mismatched methods and potentially optimize the runtime

of the search.
.2. Indexing: from code to constraints

Source code is indexed by symbolically executing code and col-

ecting constraints that represent the semantics, as illustrated in

ection 2. The encoding process takes a collected set of independent

rograms RepP = {P1, P2, …Pn} and transforms it into a collection

f independently-encoded programs, RepPenc = {P1enc
, P2enc

, . . . , Pnenc}.

t a high level, each encoded program Penc is represented as a disjunc-

ion of its paths, and each path is represented in conjunctive normal

orm.

Since the specification model requires concrete input and output

alues, each will exercise a single path, as illustrated with the exam-

les in Section 2. For each program P ∈ RepP, a symbolic execution

ngine traverses the paths in P so each can be encoded separately.

e define QP = {q1, q2, …, qm} as the m paths in P, and QP ⊆ QP as the

et of paths computed by symbolic execution and retained by our en-

oding. For those paths where symbolic execution fails, we can back-

rack and continue gathering information for other paths, leading to a

artial description of the program. We currently filter out paths that

nd in an exception state since we conjecture developers almost ex-

lusively search for positive examples of behavior, but this conjecture

equires more study.

To illustrate, consider again the method from Fig. 5 whose sym-

olic execution tree is shown in Fig. 6. The process of symbolic execu-

ion records symbolic expressions for intermediate program variables

n terms of the free input variables, e.g., S . For instance, the assign-

ent on line 2 sets the value of extension to be S.last(‘.’). This allows

ubsequent references to variables along a path to express branch

onstraints in terms of symbolic expressions in order to construct a

C. In this example the true outcome of the branch at line 3 gener-

tes the constraint S.last(‘.’) > 0. Continuing along this path to the

eturn at line 8, results in setting the value of start to S.idx(“/′′) + 1,

t line 4, and then taking the false branch outcome at line 5, which

ontributes S.idx(“/′′) + 1 ≤ 0 to the PC.

At a leaf in the tree there are two distinct sources of informa-

ion, the PC and the effects – expressed as equality constraints on

utput variables. The PC defines the constraints on input values that

ause the program path to execute, and the effects define the com-

uted results. Along this path ending at line 8, the PC is: ¬(S =
ull) ∧ (S.last(‘.’) > 0) ∧ (S.idx(“/′′) + 1 ≤ 0) and the symbolic ex-

ression is S.sub(0,S.last(‘.’)) which is equated to the return value

. While not present in this example, variables can, of course, be as-

igned multiple times along a path. To record such updates, we simply

reate a new version of the assigned variable and use it subsequently.

his produces what amounts to a static single assignment encoding

f the path.

The tree in Fig. 6 has four paths. The first three, from left to right

1, q2, and q3, encode the non-exceptional behavior of the method.

or each such path our approach produces a path encoding as de-

cribed above. Fig. 8 shows the path encoding resulting from this pro-

ess for the second path ending at line 8 in the source code; since

criptFile is declared but never defined it is interpreted as a free

nput variable. Note how the encoding includes two sources of in-

ormation, the path condition (lines 5 and 7) and the equality con-

traints (lines 4, 6, and 8). The fourth path, q , ends with a throw of
4

Please cite this article as: K.T. Stolee et al., Code search with input/outp

Systems and Software (2015), http://dx.doi.org/10.1016/j.jss.2015.04.081
NullReferenceException and is filtered out. Here, QP = {q1, q2, q3}
nd QP \ QP = {q4}.

In the end, an encoded program Penc is a set of its encoded paths,

here each path is represented in conjunctive normal form, Cq =
c1∧c2∧…}. Encoding is performed for every path to create an en-

oded representation of P as a disjunction of its paths. In the example,

enc = {Cq1
∨ Cq2

∨ Cq3
}.

.3. Matching code to specifications

To support the search for programs with multiple paths, the con-

traint solver must be invoked on each path in a program, rather than

ach program as a whole (Stolee et al., 2014), to determine if the pro-

ram matches a specification. The SMT solver returns three possible

esults, sat, unsat, or unknown. We say a path q satisfies a specification

s if Solve(Cq∧Cls) = sat.

To find matches in a repository, the approach first checks for type

ompatibility between the path q and the specification ls. We define

type signature for an input/output pair ls as TSls. This is derived by

eplacing the concrete values in ls by their types. For example, T Sls1

or Fig. 4 is represented as ({String}, {String}). The type signature for

path q, TSq, is based on the parameters and return values for the

ethod. The type signature for path q2 in Fig. 8 is the same as for ls1.

o match code to a specification, it is required that TSq ⊇ TSls. When

Sq ⊃ TSls, there exist extra parameters in q that are not specified in

s, such as the type signature ({String, int, String}, {boolean}) from the

ode in Fig. 3 compared to T Slsa
= ({String, String}, {boolean}) from

ig. 1. Any extra parameters are left symbolic and the solver attempts

o find a value for each such that ls is satisfied. Allowing the super-

et relationship in type matching is a form of relaxed search. Such re-

axation highlights the solver’s advantage over concretely executing

he code with the input/output, since matches can be found when the

pecification is incomplete in terms of the type signature for the code.

The approach invokes the solver with Solve(Cq∧Cls) for every Cq ∈
enc such that TSq ⊇ TSls and for every Penc ∈ RepPenc.5 When a speci-

cation contains multiple input/output pairs (i.e., k > 1), each pair is

hecked separately. A match is identified if at least one path q ∈ QP

atisfies at least one input/output pair ls ∈ LS. For the following defi-

itions, we assume type matching between ls and q.

efinition 1. A program P is a match for LS if

q ∈ QP, ∃ls ∈ LS : Solve(Cq ∧ Cls) = sat

he strength of a match is defined by how well a program P satisfies

specification LS. We define two properties to help describe the rela-

ionship between P and LS. The first, Qsat, identifies the set of paths q

n a program P such that at least one ls ∈ LS returns sat:

efinition 2. Qsat

{q ∈ QP | ∃ls ∈ LS : Solve(Cls ∧ Cq) = sat}
he second property, LSsat, identifies the set of input/output pairs ls

uch that at least one path q ∈ QP returns sat:

efinition 3. LSsat

{ls ∈ LS | ∃q ∈ QP : Solve(Cls ∧ Cq) = sat}
.4. Ranking results

Rather than string matching, structural properties, popularity, or

sage information (Bajracharya et al., 2006; Holmes et al., 2006;

noue et al., 2003; McMillan et al., 2011), the ranking approach we
ut queries: Generalizing, ranking, and assessment, The Journal of

http://dx.doi.org/10.1016/j.jss.2015.04.081

6 K.T. Stolee et al. / The Journal of Systems and Software 000 (2015) 1–14

ARTICLE IN PRESS
JID: JSS [m5G;May 21, 2015;10:52]

Table 1

High level ranking.

| LSsat |= ∅ LSsat⊂LS LSsat = LS

| Qsat |= ∅ – – –

Qsat ⊂ QP – Splintered Over match

Qsat = QP – Under match Full match

4

R

fl

f

m

1

s

t

s

p

s

t

a

s

m

[

e

m

s

a

s

i

h

m

i

c

p

i

2

d

a

i

t

s

f

a

s

i

a

s

R

4

f

w

i

T

i

m

a

p

F

a

p

i

6 Full transformation details are available [(Stolee, 2013) Appendix A].
propose considers the strength of a match between a specification

and a program when returning search results. The strength of the

match is calculated using QP, as it represents the paths we have ac-

cess to and can handle.

For a program P and a specification LS, when LS = LSsat, all ls ∈ LS

have a match in P. When QP = Qsat , all paths captured in P are covered

by LS. In Section 2 we illustrated two partial matching conditions, an

over match and an under match, to describe when a program P con-

tains more or less behavior compared to LS.

Definition 4. P over matches LS when:

∃q ∈ QP, ∀ls ∈ LS : ¬(Solve(Cq ∧ Cls) = sat)

The example in Fig. 5 has extra behavior compared to the speci-

fication in Fig. 4 since the third path q3 matches none of the ls ∈ LS.

In this way, P is an over match for LS. The extra behavior may be ir-

relevant, or it might be desirable if the developer missed part of the

specification. This example also illustrates the fact that specifications

can contain redundancy, since both ls1 and ls2 return sat for q2.

The relationship between LS and LSsat can identify an instance of a

under match:

Definition 5. P under matches LS when:

∃ls ∈ LS, ∀q ∈ Qp : ¬(Solve(Cq ∧ Cls) = sat)

As discussed earlier, considering LS in Fig. 4 and ls4 and ls5 from

Section 2.4, the method in Fig. 5 matches only part of the specifica-

tion. Hypothetically, if QP ⊂ QP, the unmatched ls ∈ LS may be sat-

isfied by a path q ∈ QP \ QP . When possible, executing the program

given the unmatched specification could provide more information

on the completeness of P with respect to LS.

Table 1 presents a matrix with property relationships that can

be used to rank programs at a high level. If either | Qsat |= ∅ or

| LSsat |= ∅, P is not a result and thus is not part of the ranking. In

the former case, this means none of the program was matched; in

the latter, none of the specification was satisfied. If LSsat = LS and

Qsat = QP, P is a full match. When Qsat = QP and LSsat ⊂ LS, P is an

under match as all paths are matched but only part of LS contributed

to the match. When LSsat = LS and Qsat ⊂ QP, P is an over match as

it contains additional behavior not explored by LS, but all of LS was

matched. The final condition is a splintered match, which happens

when Qsat ⊂ QP ∧ LSsat ⊂ LS, so only part of P is matched by only part

of LS. As explained in Section 2.4, our best ranking algorithm consid-

ers over matches followed by full matches (see Section 4.3).

4. Implementation

Satsy is a source code search engine that has implemented seman-

tic search using input/output queries on multi-path programs with

ranking, as illustrated in Fig. 7. Satsy is a Java application that runs on

a standard desktop and interacts with a MySQL database containing

the repository data. Compared to the previous version (Stolee et al.,

2014), the primary additions described in this work are in bold, gray

boxes (i.e., Symbolic Execution and Ranking in Fig. 7). Here, we describe

the implementation details for Satsy.
Please cite this article as: K.T. Stolee et al., Code search with input/outp

Systems and Software (2015), http://dx.doi.org/10.1016/j.jss.2015.04.081
.1. Transforming source code with SPF

The repository of programs RepP (Fig. 7) is encoded to form

epPenc. This encoding process is akin to indexing and happens of-

ine; it does not impact the run-time of the search, thus the per-

ormance of symbolic execution does not impact the search perfor-

ance. Regardless, it is efficient. For our study (Section 5), encoding

000 programs takes approximately 4 min.

All programs P ∈ RepP contain only constructs supported by a

ubset of the Java language covering conditionals, assignments, re-

urn statements, and boolean, integer, character, and string expres-

ions including most of the java.lang.String API. Compared to the

revious implementation (Stolee et al., 2014), this Satsy-supported

ubset of the Java grammar has the addition of predicates, conjunc-

ion and disjunction, relational expressions, multiplicative, additive,

nd modulo expressions, and additional String API functions: equal-

IgnoreCase, toLowerCase, toUpperCase, replace, and trim. A full gram-

ar specification for the Satsy-supported Java grammar is available

(Stolee, 2013) Fig. 6.3]. Loops and non-library method calls can be

ncoded by symbolic execution, e.g., by unrolling loops and inlining

ethods. In this work, we explore the cost-effectiveness of Satsy in a

etting where symbolic execution can produce nearly complete char-

cterizations of code, i.e., where QP \ QP is small. This led us to con-

ider code that is free of loops and method calls.

Code snippets that Satsy can encode are removed from their orig-

nal implementation and considered independently. That is, if a class

as only one method that conforms to the Satsy-supported gram-

ar, we keep that method and throw away the rest. If a field value

s accessed, we declare it within the method. Methods that contain a

onditional, conjunction, or disjunction are processed as multi-path

rograms using symbolic execution, as described in Section 3.2. This

s done using a listener attached to SPF (JPF, 2012; Khurshid et al.,

003). The basic process involves two steps. First, Satsy writes a SPF

river to invoke the method under evaluation, since SPF can only an-

lyze executable code and the methods are removed from their orig-

nal implementation. Second, the listener is attached and traverses

he paths in the method, recording path conditions and the executed

tatements along those paths, as illustrated in Section 2.3. The output

rom the listener is a set of paths QP for each program P.

Next, each path is encoded using constraints. This is done using

set of transformation rules that map program constructs onto con-

traints in SMT-LIB2 (SMT-LIB, 2012) format assuming the availabil-

ty of the UFNIA: Non-linear integer arithmetic with uninterpreted sort

nd function symbols theory in the SMT solver.6 These constraints are

tored with the original method in a constraint database, forming

epPenc.

.2. Matching with Z3

Given LS from a programmer, Satsy first encodes the specification,

orming CLS. For each Cls ∈ CLS, Satsy joins the encoded specification

ith each path with a type signature match compared to the spec-

fication (i.e., TSq ⊇ TSls) and invokes the Z3 SMT solver (Z3, 2011).

he joining process involves mapping each of the inputs and outputs

n each ls to the symbolic variables in the path q. When there are

ultiple inputs with the same data type and multiple free variables,

ll possible permutations of the mapping are considered. For exam-

le, given the specification in Fig. 3, both inputs are of type string.

or the code snippet in Fig. 2, there are two free string variables, str
nd reserved. Thus, the joining process will create two possible map-

ings, either (i0 �→ str ∧ i1 �→ reserved) ∨ (i0 �→ reserved ∧ i1 �→ str). It

s the solver’s decision which mapping will lead to a satisfiable result.
ut queries: Generalizing, ranking, and assessment, The Journal of

http://dx.doi.org/10.1016/j.jss.2015.04.081

K.T. Stolee et al. / The Journal of Systems and Software 000 (2015) 1–14 7

ARTICLE IN PRESS
JID: JSS [m5G;May 21, 2015;10:52]

Table 2

Implemented ranking scheme.

|LSsat| = 1 1 < |LSsat| < |LS| LSsat = LS

Qsat (10) (7) |LSsat| ≤ |Qsat| (3) |LS| ≤ |Qsat|
⊂ QP (8) |LSsat| > |Qsat| (4) |LS| > |Qsat|
Qsat (9) (5) | LSsat |≤| QP | (1) | LS |≤| QP |
= QP (6) | LSsat |>| QP | (2) | LS |>| QP |

Satsy Round Robin (RR): 2, 1, 4, 3, 6, 5, 8, 7, 9, 10.

Satsy Ranked: 4, 2, 1, 3.

P

S

s

S

n

e

t

4

f

r

g

a

a

i

e

o

m

t

g

W

T

|
m

R

t

T

o

r

f

w

a

t

i

a

b

5

t

b

M

R

R

G

o

R

c

Fig. 9. Evaluation workflow.

e

e

s

o

l

t

i

5

p

e

a

f

r

c

r

r

h

n

G

d

e

t

g

d

a

t

f

p

O

t

o

e

t

s

i

e

f

f

c

t

D

erformance information about the matching process can be found in

ection 6.2.

As a sanity check during the matching phase, the executable

nippets could be run against the specifications, as discussed in

ection 2.1. However, as with the example described in Section 2.1,

ot all snippets matched with Z3 would also be matched through ex-

cution; this information may prove useful in future refinements of

he ranking algorithm as executing matches may be preferred.

.3. Ranking results

Satsy provides ranking algorithms with access to the matching in-

ormation in Table 2, a refinement of what was presented in the quad-

ants of Table 1. The first refinement considers how saturated a pro-

ram is by LS, as a finer-grain ranking consideration. If |LSsat| > |Qsat|,
t least one of the matched paths is covered by two or more ls ∈ LSsat

nd the program is saturated by the specification. On the other hand,

f |LSsat| ≤ |Qsat|, each path is traversed by a single ls. Consider, for

xample, when Qsat = QP and LSsat = LS both hold (lower right cell

f Table 2). In bucket (2) there exists a path in P that is covered by

ultiple ls ∈ LS, so a program in bucket (2) is more saturated by LS

han a program in bucket (1). The second refinement provides more

ranularity on the relationship between LS and LSsat in the columns.

e point out that all single-path programs fall into the bottom row of

able 2 since Qsat = QP when P is a match and has one path. If |LS| =
LSsat| = 1, the right-most column was assumed since it conceptually

aps to a full specification match.

Satsy Round Robin (RR): Our baseline algorithm uses a Round-

obin approach to select a snippet randomly from each bucket, and

hen repeat until all results are used. This is done first with that

Sq = TSls, and followed by a relaxed search where TSq ⊃ TSls. The

rdering of buckets is listed in Table 2. The idea is that a more satu-

ated program better ‘fits’ a specification influenced the ordering, so

or example, bucket (2) appears before bucket (1).

Satsy Ranked: With the intuition that a programmer is likely to

ant their entire specification matched (LSsat = LS), our Satsy Ranked

lgorithm uses only buckets (1)–(4) and requires TSq = TSls. This in-

uition was built based on an initial study with Satsy RR and observ-

ng the precision of results. Unlike Satsy RR, here we use a greedy

pproach, grabbing the results from bucket (4) first, followed by

ucket (2), and so forth.

. Study

To evaluate Satsy, we designed and implemented an experiment

o measure the relevance of search results from Satsy RR, a keyword-

ased search engine, Google, and a code-specific search engine,

erobase. After its completion, we replicated the study with Satsy

anked. Our goal was to evaluate the research questions:

Q1: How do search results from Satsy compare to those found using

oogle and using Merobase, in terms of relevance, from the perspective

f a programmer?

Q2: How quickly can Satsy find results when linearly searching the en-

oded repository?
Please cite this article as: K.T. Stolee et al., Code search with input/outp

Systems and Software (2015), http://dx.doi.org/10.1016/j.jss.2015.04.081
Google was selected because it is the most common, and often

ffective, way in which programmers currently search for code (Sim

t al., 2011; Stolee et al., 2014). Since Google was not specifically de-

igned to search for source code, we also compare Satsy against Mer-

base, a code-specific search engine that has indexed over eight mil-

ion Java components and allows programmers to search using the

ype signature of the desired code, which is the feature we explored

n this evaluation.

.1. Experimental design

An ideal evaluation of our search approach would involve issuing

recisely the same queries to each search engine and for each search

ngine to retrieve results from the same repository. However, such

comparison is not possible as each search approach utilizes a dif-

erent query format and we do not have access to their indexing and

anking algorithms. In our prior work (Stolee et al., 2014), we did a

omparison of our search approach against Google using the same

epository and found that our approach far outperformed Google in

eturning relevant results. Yet, we also recognize that Google was

andicapped in that scenario since it did not have access to click data

ecessary for the PageRank algorithm (Page et al., 1999), thus treating

oogle as simply a textual search engine. To combat this bias, we have

esigned an experiment that uses queries in the formats required by

ach specific search engines and allows those search engines to re-

urn results from their own repositories using their own ranking al-

orithms. Fig. 9 depicts the workflow and the threats to validity are

iscussed in Section 7.3.

To obtain queries in each format while avoiding researcher bias,

group of human query generators evaluated each of several ques-

ions from stackoverflow.com and composed queries in each of three

ormats: keyword for Google, method signature for Merobase, and in-

ut/output for Satsy (Defining Tasks and Generating Queries in Fig. 9).

btaining Search Results involved invoking each search approach with

heir respective queries and collecting the top 10 results. Then, each

f the 10 results was evaluated by a human study participant for rel-

vance (Assessing Relevance).

Treatment structure: Search queries were generated with respect

o eight programming tasks or questions in a format dictated by the

earch approach. These form the two treatments that we manipulate

n this experiment. The treatment structure is a 4 × 8 full factorial as

very level of every factor is combined with every level of every other

actor. The factors and their levels are:

A: Search approach (Google, Merobase, Satsy Round Robin, Satsy

Ranked)

B: Question/programming task (8 questions)

Metrics: For RQ1, we use four precision metrics common in In-

ormation Retrieval: top-10 precision (P@10), normalized discounted

umulative gain (nDCG), mean average precision (MAP), the rank of

he first false positive (f.f.p.), and the mean reciprocal rank (MRR).

escriptions and definitions of the metrics follow:
ut queries: Generalizing, ranking, and assessment, The Journal of

http://stackoverflow.com
http://dx.doi.org/10.1016/j.jss.2015.04.081

8 K.T. Stolee et al. / The Journal of Systems and Software 000 (2015) 1–14

ARTICLE IN PRESS
JID: JSS [m5G;May 21, 2015;10:52]

Table 3

Programming tasks for query generators.

Q Description Sample LS Snippets

1 Check if one string contains another, case insensitive ({“aBCd”, “cd”}, {true}) 292

2 Capitalize the first letter of a string ({“foo”}, {“Foo”}) 2575

3 Determine if a number is positive ({2}, {true}), ({−4}, {false}) 820

4 Trim the file extension from a file name ({“foo.txt”}, {“foo”}) 2575

5 Trim the last character from a string ({“admirer”}, {“admire”}) 2575

6 Turn a string into a char ({“c”}, {‘c′}) 11

7 Determine if a character is numeric ({‘5′}, {true}), ({‘F′}, {false}) 136

8 Check if one string is a rotation of another (a rotation is when

the first part of a string is spliced off and tacked onto the end)

({“stack”, “cksta”}, {true}), ({“stack”, “stakc”}, {false}) 292

q

e

t

a

5

b

o

e

m

[

s

a

i

t

f

h

l

r

r

o

5

t

s

d

g

i

b

s

a

h

s

i

g

g

s

p

P@10: This metric represents the number of relevant documents

among the top 10 search results for each query (or in some

cases, the top n results when fewer than 10 are returned); it is

a typical IR measure to assess the precision of search engine

results (Craswell and Hawkings, 2004). For each search query

and each of the top 10 results, a study participant determined

if it was relevant to the question, where relevance means the

source code can be easily adapted to solve the problem. This is

computed by:

P@10 =
∑n

k=1 relk
n

where n is the number of results (maximum 10) and relk is the

relevance of the kth result. Relevance in our study is either 1

for relevant of 0 for irrelevant.

nDCG: This metric is sensitive to the ranking of the results and pe-

nalizes relevant documents that appear lower in the search

list. We begin by computing the discounted cumulative gain

(DCG) as follows:

DCG = rel1 +
n∑

k=1

relk
log2(k)

where k is the rank in the list and n is the number of results,

maximum 10. Next, the results list is sorted so the relevant

items appear first, forming the ideal ranking, and DCG is com-

puted to create IDCG. The normalized metric is computed as

follows:

nDCG = DCG

IDCG

MAP: Average precision is sensitive to the ranking and gives higher

weight to relevant results appearing higher in the list. Average

precision for a single query is computed as follows:

AveP =
∑n

k=1(P(k) × relk)

number of relevant documents

where P(k) is the precision of the list at some rank k in the list.

For instance, if a list has two relevant documents that appear

at ranks 1 and 3, then P(1) = 1.00 and P(3) = 0.67. The mean

average precision is for a set of queries and is computed as

follows:

MAP =
∑Q

q=1 AveP(q)

Q

For our study, Q = 3 since we evaluated the results of three

different queries in each search approach for each program-

ming task.

f.f.p: The rank of the first false positive shows how far down the

list a person must look to find a poor result. If all results are

relevant, a value of n + 1 was assigned, since only the top n

results were evaluated.
Please cite this article as: K.T. Stolee et al., Code search with input/outp

Systems and Software (2015), http://dx.doi.org/10.1016/j.jss.2015.04.081
MRR: The mean reciprocal rank measures the inverse of the rank of

the first positive result. This is calculated as follows:

MRR =
∑n

k=1
1

ranki

Q

where ranki is the rank of the first relevant result. For exam-

ple, if we have three queries where the first positive results

appear at ranks 1, 2, and 4, MRR = 1+1/2+1/4
3 = 0.58.

With all metrics for R1, higher values are better.

For RQ2, we measure the time from search initiation with a given

uery until search completion (until the repository is exhaustively

xplored). When a result is found, we also compute the average time

o find a result. For example, if it takes 100 s to find 15 results, the

verage time to find each result is 100/15 = 6.67s.

.2. Defining programming tasks

Based on the hypothesis that certain search approaches are

etter suited for certain types of problems, we selected a variety

f questions to explore the approaches’ effectiveness under differ-

nt contexts. To identify these questions, we performed a cursory

anual analysis of 3500 stackoverflow.com questions tagged with

java], ordered by popularity on April 16, 2013. Among the pool, we

elected 13 questions that represent novice-level programming tasks

nd could be illustrated by input/output examples supported by our

mplementation (hence the narrow focus on string manipulation

asks), ignoring duplicates. In the end, eight questions were retained

or the evaluation. These are the questions for which queries from

uman generators for Satsy Round Robin and Merobase returned at

east 10 results; Google always returned 10 results, but since some

esults may not contain code, we ignore questions or queries that

eturned fewer than seven web pages with source code. The final set

f questions, and sample LS, are shown in Table 3.

.3. Generating queries

Twelve human query generators were used to generate queries

hat would be issued against each search engine in the context of the

tackoverflow.com questions. These generators were graduate stu-

ents and staff in Computer Science and Engineering at UNL. The

enerators were given paper packets with a page for each question,

n random order. The question was stated at the top, followed by a

ox for a descriptive (keyword) query, a type signature for the de-

ired code (for Merobase), and input/output pairs for Satsy. For ex-

mple, given Question 4 in Table 3, a keyword query created by a

uman generator was, “trim extension of a file name in java”, a type

ignature query was, removeExtension (String) : String;, and an

nput/output query is shown in Fig. 4. Or, as illustrated in Section 2,

iven Question 1 in Table 3, a keyword query created by a human

enerator was, “java string contain substring case insensitive”, a type

ignature query was boolean contains(String, String), and an in-

ut/output query included the examples, ({“food”, “foo”}, {true}) and
ut queries: Generalizing, ranking, and assessment, The Journal of

http://stackoverflow.com
http://stackoverflow.com
http://dx.doi.org/10.1016/j.jss.2015.04.081

K.T. Stolee et al. / The Journal of Systems and Software 000 (2015) 1–14 9

ARTICLE IN PRESS
JID: JSS [m5G;May 21, 2015;10:52]

(

t

t

a

g

t

5

1

F

a

t

l

a

e

f

f

p

n

b

o

t

c

s

t

a

t

b

t

[
w

t
∗

O

g

o

5

p

c

3

n

w

q

i

r

w

q

w

l

S

t

t

F

i

e

T

o

2

w

5

i

m

f

M

u

s

F

E

t

f

c

i

q

r

m

t

c

o

e

q

t

a

H

I

s

s

w

w

t

T

a

a

d

6

p

6

e

i

T

T

a

h

f

a

7 30 HITs ∗ 8 questions ∗ 3 snippets = 720 snippets.
8 https://sites.google.com/site/semanticcodesearch/publications/generalizing-

ranking/empirical-evaluation .
{“food”, “f99”}, {false}). In the end, we obtained 12 queries for each of

he eight questions and each of the three search approaches.

Since each search result is evaluated by a study participant, to con-

rol the cost of the study, within each combination of search approach

nd question, we randomly sampled three queries from the 12 human

enerators. For internal consistency, Satsy RR and Satsy Ranked were

reated the same.

.4. Obtaining search results

With each query to each search engine, code snippets from the top

0 search results were obtained, as follows.

Google: Each of the queries to Google returned millions of results.

or each of the top 10 results, we clicked through to the webpage

nd grabbed the first code snippet (i.e., block, line, method). Some-

imes, results would not be provided in Java, but in another language

ike PHP or C#, and those snippets were still collected and provided

s a potential result (frequently, study participants found those rel-

vant). When a webpage had no code, we ignored it and returned

ewer than 10 results. This happened for 9% of webpages explored

rom the Google search results (i.e., 22 of 240), so the average results

er query was 9.1. In those cases, the metrics are calculated over the

umber of returned results. The alternative would have been to look

eyond the top 10 results, which would violate the assumptions of

ur chosen metric.

Merobase: When searching the Merobase website, we restricted

he results to Java using a flag in the search options. If a query in-

luded a method name, Merobase first returned methods with the

ame name and type signature, and then methods with just the same

ype signature. For each of the top 10 results, we clicked on the files

nd copied the method with the matched signature.

Satsy: For Google and Merobase, repositories already exist so ob-

aining results was a matter of issuing queries. For Satsy, we had to

uild the repository to search over. To do so, we collected an ini-

ial repository of programs by first scraping 2952 projects tagged as

java] from GitHub.com, a project hosting website. These projects

ere scraped on February 3, 2013, and represented about 10% of the

otal Java projects accessible through the website. We explored all the

.java files, accounting for 197,473 files with over 700,000 methods.

f the files, 5506 contained at least one method Satsy could encode

iven its current supported Java semantics. We encoded 8430 meth-

ds in total with 9909 paths among the methods. Of the methods,

34 had multiple paths, with an average of 3.8 paths were captured

er multi-path method. For example, with the method in Fig. 5, we

aptured three paths. Indexing this whole corpus took approximately

4 min. For each of the programming tasks in Table 3, we list the

umber of potentially matching snippets in the Snippets column

hen TSls = TSq.

To gather search results, for each question and each input/output

uery, we searched Satsy using the repository. Then, using the rank-

ng algorithms described in Section 4.3, we put together the top 10

esults that would be evaluated. In Satsy Ranked, there were cases

hen 10 results were not returned; this happened for 19 of the 24

ueries, and the total results evaluated were 130. As with Google,

hen fewer than 10 results were available, the metrics were calcu-

ated out of the number of returned results. For example, in Q1 with

atsy Ranked, two queries returned 10 results and one query returned

wo results. Thus, only 22 snippets were evaluated for this ques-

ion, and P@10 is computed over the returned results. As an example,

ig. 2 shows a code snippet result from a query to Satsy related to Q1;

t was ranked third.

As a point of comparison against the previous approach (Stolee

t al., 2014), five of the eight sample LS would have been unsupported.

hat is, the prior work required a single input and single output, both

f type string; the prior work would only be able to handle questions
Please cite this article as: K.T. Stolee et al., Code search with input/outp

Systems and Software (2015), http://dx.doi.org/10.1016/j.jss.2015.04.081
, 4, and 5. The extensions to the specification model used in this

ork allow for the rest of the questions to be evaluated.

.5. Assessing relevance of results

After collecting the code snippets for all the queries, calculat-

ng relk, which is required for all the precision metrics, involves hu-

an participants evaluating each search result for relevance. We per-

ormed two iterations of this study. In the first, results from Google,

erobase, and Satsy RR were used. Then, a replication was performed

sing just Satsy Ranked.

A basic task presents a participant with a programming task de-

cription and three code snippets. An example snippet is shown in

ig. 5, which was found by a query to Satsy related to Q4 in Table 3.

ach code snippet is accompanied by two questions. The first asks if

he code is relevant to the task (yes/no response), and the second asks

or a justification (free response). In the first iteration, each basic task

ontained one code snippet from each search approach. The order-

ng of search approaches was randomized within each basic task. The

uery from which the search result came was randomized, as was the

ank of the snippet within the search results. The participant was not

ade aware of the search engine used to obtain the code, the rank of

he result, or the query used. In the second iteration, all three results

ame from Satsy Ranked.

To recruit participants we deployed the assessment of relevance

n Amazon’s Mechanical Turk (Amazon Mechanical Turk, 2010). An

xperimental task is composed of eight basic tasks, with one from each

uestion in Table 3. The ordering of basic tasks within an experimen-

al task was randomized. Each experimental task is implemented as

human intelligence task, or HIT. For the first iteration, we created 30

ITs, so each search result from each query appeared exactly once.7

f fewer than 10 results were returned for a search approach, we in-

erted a dummy snippet that was not included in the results. For the

econd iteration, we created 10 HITs. When fewer than 10 results

ere returned for a query, we replicated the results randomly from

ithin all queries for that question. Each HIT paid $3.25 and each par-

icipant could complete one HIT.

A prerequisite for participation was to pass a qualification test.

his included four Java questions to ensure participants are reason-

bly competent with Java before participating.]Participants spent an

verage of 55 min to complete a HIT, which includes any pauses and

istractions.

. Results

Here, we present the results for our research questions. All snip-

ets and results from the Mechanical Turk study are available.8

.1. RQ1: relevance assessment

We computed all four metrics for each of the three queries from

very combination of search approach and question, using both rank-

ngs for Satsy. Averages for P@10 are shown in Table 4, for nDCG in

able 5, for MAP in Table 6, for f.f.p in Table 7, and for MRR in Table 8.

he search approaches are in the columns (Google, Merobase, Satsy RR

nd Satsy Ranked), and questions in the rows. For a given question, the

ighest value is bolded. The final row reports the column averages.

For three metrics, P@10, nDCG, and f.f.p, Satsy Ranked outper-

orms the other search approaches overall. For the other metrics, MAP

nd MRR, Google outperforms the other search approaches overall.
ut queries: Generalizing, ranking, and assessment, The Journal of

http://GitHub.com
https://sites.google.com/site/semanticcodesearch/publications/generalizing-ranking/empirical-evaluation
http://dx.doi.org/10.1016/j.jss.2015.04.081

10 K.T. Stolee et al. / The Journal of Systems and Software 000 (2015) 1–14

ARTICLE IN PRESS
JID: JSS [m5G;May 21, 2015;10:52]

Table 4

P@10 responses from evaluation.

Q Google Merobase Satsy RR Satsy Ranked

1 0.63 0.50 0.53 0.57 (22)

2 0.73 (28) 0.17 0.63 1.001 (16)

3 0.57 (26) 0.37 0.40 0.40 (25)

4 0.67 (25) 0.33 0.67 1.001 (19)

5 0.73 0.63 0.47 1.001 (10)

6 0.60 (27) 0.60 0.83 0.67

7 0.67 (26) 0.27 0.47 1.001 (2)

8 0.80a (26) 0.13 0.27 0.671 (9)

Avg. 0.675 0.375 0.533 0.709

Notes: The bold values denote the highest value per row.
a The top result for each query came from the original Stackoverflow

question.
1 The query from n user(s) returned 0 results.

(x) For some queries, fewer than 10 results are returned. The total snip-

pets, summed over the three queries, is represented by x. By default, x =
30.

Table 5

nDCG from evaluation.

Q Google Merobase Satsy RR Satsy Ranked

1 0.86 0.81 0.82 0.87

2 0.90 0.49 0.81 1.00

3 0.77 0.58 0.70 0.61

4 0.99 0.64 0.87 1.00

5 0.91 0.91 0.69 1.00

6 0.75 0.80 0.96 0.74

7 0.91 0.51 0.67 1.00

8 0.91 0.45 0.53 1.00

Avg. 0.876 0.649 0.756 0.902

Note: The bold values denote the highest value per row.

Table 6

MAP from evaluation.

Q Google Merobase Satsy RR Satsy Ranked

1 0.76 0.66 0.65 0.49

2 0.82 0.27 0.74 1.00

3 0.62 0.48 0.60 0.38

4 0.97 0.52 0.80 1.00

5 0.87 0.82 0.56 1.00

6 0.65 0.65 0.89 0.63

7 0.84 0.35 0.53 1.00

8 0.87 0.24 0.38 0.67

Avg. 0.800 0.499 0.644 0.771

Note: The bold values denote the highest value per row.

Table 7

f.f.p (+ indicates a default value of 11 was used when no false

positive was found in the top 10 results).

Q Google Merobase Satsy RR Satsy Ranked

1 3.00 2.33 2.67 1.00

2 +6.00 2.00 +5.00 +11.00

3 2.00 3.33 2.00 1.00

4 5.67 1.33 4.67 +6.50

5 6.00 5.00 2.00 +8.50

6 3.33 2.33 4.67 1.33

7 2.67 1.33 1.33 2.00

8 5.00 1.00 1.33 7.00

Avg. 4.208 2.333 2.958 4.792

Note: The bold values denote the highest value per row.

Table 8

MRR from Evaluation.

Q Google Merobase Satsy RR Satsy Ranked

1 1.00 0.83 0.83 0.42

2 0.83 0.31 1.00 1.00

3 0.83 0.45 1.00 0.40

4 1.00 0.61 1.00 1.00

5 1.00 0.83 0.53 1.00

6 0.58 0.67 1.00 0.67

7 0.83 0.50 0.58 1.00

8 1.00 0.22 0.48 0.67

Avg. 0.885 0.553 0.803 0.769

Note: The bold values denote the highest value per row.

f

0

a

(

0

t

s

w

t

q

a

R

2

r

e

v

a

W

h

(

s

i

t

v

i

i

v

S

m

o

t

a

e

a

S

d

h

s

p

f

t

9 For Q8 and Google, all three queries found first the question on stackoverflow.com

from which the task was generated, biasing toward Google.
This is interesting as two of the metrics are sensitive to the rank-

ing, MAP and nDCG, yet one favors Satsy Ranked and the other fa-

vors Google. Similarly f.f.p and MRR are dependent on the ranks of

the first false positive and the first true positive, respectively, yet one

favors Satsy Ranked and the other favors Google.
Please cite this article as: K.T. Stolee et al., Code search with input/outp

Systems and Software (2015), http://dx.doi.org/10.1016/j.jss.2015.04.081
For P@10 (Table 4), the highest is Satsy Ranked with P@10 = 0.709,

ollowed by Google at 0.6759, Satsy RR at 0.533, and Merobase at

.375. Further, Satsy Ranked outperforms Google for 5/8 questions,

nd than Merobase for 8/8 questions. The story is similar for MAP

Table 6), except in that Google is the winner overall with MAP =
.800 versus MAP = 0.771 for Satsy Ranked.

For nDCG, Google outperforms Satsy Ranked on only 2/8 ques-

ions. Overall the average across all questions for Google is 0.876 ver-

us 0.902 for Satsy Ranked. Satsy Ranked also outperforms Google

ith f.f.p.

For MRR, there were many ties, notably for Q4 on which three of

he four search approaches returned relevant results at rank 1 for all

ueries. While Google has the highest MRR value overall, Satsy RR has

higher overall value than Satsy Ranked. As shown in Table 2, Satsy

anked puts results from bucket 4 ahead of results from buckets 1 and

, which may have led Satsy Ranked to underperform on measures

elated to ranking.

In summary, it would seem that Satsy is more likely to return rel-

vant results overall (P@10), but Google is more likely to rank a rele-

ant result first (MRR). When Satsy Ranked finds results, it either has

very high MAP (Table 6, Q2, Q4, Q5, Q7), or it does quite poorly.

e can see this in the range of MAP values, where Satsy Ranked

as a large range, (0.38, 1.00), and Google has a much smaller range

0.65, 0.97).

Looking qualitatively at the questions, Satsy experienced the most

uccess when the task required the output to be a modification of the

nput, rather than computing something new. Four of the top ques-

ions for Satsy, 2, 4, 5, and 6 (Satsy RR), involve an output that is a

ariant on the input (e.g., capitalize a letter, remove a suffix, trim the

nput, type conversion). Conversely, the lowest questions, 1, 3, and 8

nvolve computing something new based on the input (e.g., a boolean

alue). The exception is task 7, which computes something new, but

atsy Ranked performs very well.

Statistical analysis: As the experiment has a full factorial treat-

ent structure, to understand why differences in the means were

bserved, we use a 2-factor ANOVA. Considering each of the metrics,

he F-ratios are significant for the search factor, the question factor,

nd the interaction at α = 0.001, indicating that the observed differ-

nces in means are not likely due to chance and depend on the search

pproach, the question selected, and the combination thereof. When

atsy does better for certain tasks and with the ranking algorithm we

eveloped, this may not always be the case.

We continue the statistical analysis on the P@10 metric since it

as one of the larger overall difference in values between the top two

earch approaches, with Satsy Ranked at 0.709 and Google at 0.693,

roviding a greater chance of finding a statistical difference.

Let μg be the average P@10 for Google, μrr for Satsy RR, μsr

or Satsy Ranked, and μm for Merobase. Assuming non-normality of

he data, we perform a test of means between Google and Satsy RR
ut queries: Generalizing, ranking, and assessment, The Journal of

http://stackoverflow.com
http://dx.doi.org/10.1016/j.jss.2015.04.081

K.T. Stolee et al. / The Journal of Systems and Software 000 (2015) 1–14 11

ARTICLE IN PRESS
JID: JSS [m5G;May 21, 2015;10:52]

Table 9

P@10 for Satsy Ranked with I/O breakdown; with zeros assigns

a precision of 0 when no results are returned; no zeros ignores

those queries.

|LS| = 1 |LS| = 2 |LS| = 3 |LS| = 4

With zeros 0.344 0.498 0.536 0.636

Count 2 8 8 6

No zeros 0.344 0.796 0.857 0.636

Count 2 5 5 6

Table 10

Total search time per query, in seconds.

Min Mean Median Max σ

Satsy RR 1.3 64.4 26.5 180.1 66.1

Satsy Ranked 0.4 42.8 29.8 113.8 43.0

u

≥
h

m

w

μ
f

e

N

o

M

t

α
e

t

t

r

(

o

i

q

t

t

z

O

t

f

p

q

t

p

b

6

e

p

a

a

S

s

t

y

1 2 3 4 5 6 7 8

0
20

40
60

80
10

0

Question

T
im

e
in

 S
ec

on
ds

Fig. 10. Time to find a result in Satsy Ranked .

i

d

fi

s

s

s

R

t

6

a

e

o

t

b

u

o

c

r

w

n

c

e

o

t

1

Q

t

t

t

n

7

m

F

i

c

w

w

M

t

f

e

a

l

e

sing the Mann–Whitney Wilcox test and the null hypothesis, H0: μg

μrr, is not rejected with p = 0.9831. Substituting μsr for μrr, the null

ypothesis is also not rejected with p = 0.3273. Testing for equality of

eans, H0: μg = μrr is rejected at α = 0.05 with p = 0.0355. However,

e see that Google and Satsy Ranked are statistically equal, with H0:

g = μsr not being rejected as p = 0.6545. So, the ranking algorithm

or Satsy provides an advantage, since Google is significantly differ-

nt than Satsy RR, but not statistically different from Satsy Ranked.

o difference is detected between Google and Satsy Ranked for the

ther metrics, either.

With no difference between Google and Satsy Ranked, we turn to

erobase and compare it to Satsy RR (its closest competitor), with

he null hypothesis, H0: μm ≥ μrr. The null hypothesis is rejected at

= 0.05 with p = 0.0163. Substituting μsr for μrr, the null hypoth-

sis is rejected at α = 0.001 with p = 0.0002. The conclusion here is

hat Satsy is significantly more effective at retuning relevant results

han Merobase. In conclusion, Satsy Ranked returns significantly more

elevant results than Merobase and results at least as relevant as Google

but complementary in many cases, depending on the task).

Sensitivity to I/O sizes: Using input/output queries provides the

pportunity to manipulate the strength of a query by adding, remov-

ng, or modifying input/output pairs. In the evaluation, the human

uery generators were able to specify as many input/output pairs as

hey wished and each used between one and four pairs. Table 9 shows

he average precision based on the specification size for Satsy Ranked.

The table is separated based on whether or not a precision of

ero was used in the averages for queries that returned zero results.

verall, six queries had four input/output pairs. For those queries,

he average precision is 0.636, which is the highest average relevance

or all the search approaches when zeros are considered. The highest

recision among the queries that returned results comes from those

ueries with three input/output pairs where precision is 0.857. From

his, precision seems quite sensitive to the number of input/output

airs. With larger, but still modestly sized specifications, Satsy does

etter.

.2. RQ2: performance assessment

We measured the performance of Satsy as is, without any special

ffort allocated to performance enhancements, tweaking the solver

arameters, or modifying SPF, and running the queries in Eclipse seri-

lly on a standard laptop. Total search times for each of the 24 queries

re shown in Table 10, averaged over three runs. The performance of

atsy Ranked is on average better than Satsy RR since Satsy RR con-

iders subset relationships on the type signatures (Section 4.3) and

hus checks on average 16% more snippets per query.

Since Satsy Ranked had the highest precision, the rest of this anal-

sis focuses on it. If a result exists using Satsy Ranked, it will be found
Please cite this article as: K.T. Stolee et al., Code search with input/outp

Systems and Software (2015), http://dx.doi.org/10.1016/j.jss.2015.04.081
n an average of 16.2 s with a median of 5.7 s. The average is skewed

ue to poor performance on Q5; Fig. 10 shows the average time to

nd a result for each of the questions. Several factors influence the

earch time, including the type and size of the specification and the

ize and content of the repository.

There is a weak but positive correlation between the specification

ize and the total search time, with Spearman’s r = 0.21 for Satsy

anked. Interestingly, the data type for the query impacts the search

ime. Half of the queries were specified with a string output (Q2, 3, 5,

) and half with a boolean output (Q1, 4, 7, 8). In Satsy Ranked, finding

result takes 2.5 times longer with a string output than boolean, av-

raging 23.8 and 9.7 s, respectively. This is likely due to a combination

f factors, including how strings are represented in our encoding, and

he fact that the boolean data type is native to the UFNIA theory used

y the solver, whereas the String data type was implemented using

ninterpreted functions.

The time to find a result also depends on the size and content

f the repository. For example, the larger the repository, the more

andidate snippets for a given query. Similarly, the content of the

epository makes a big difference; if there is only one result, in the

orst case, every candidate snippet must be checked before the win-

er is encountered. In the average case, half of the snippets must be

hecked. This is likely why the performance on Q5 was so poor; for

ach of the two queries that returned results with Satsy Ranked, only

ne result out of 2,575 snippets (Table 3) was found. Q4 and Q2 have

he same number of potential snippets, but there were between 5 and

3 results for each of those queries in Satsy Ranked. While Q7 and

8 have similar solution densities in the repository, their output data

ypes are booleans, leading to faster solver times. Thus, the search

ime is dependent on when that snippet is checked. On average, it

akes 21.8 ms for the SMT solver to make a decision about whether or

ot a snippet is a match for an input/output pair.

. Discussion

Code search does not have a one-size-fits-all solution as program-

ers have various goals and purposes for searching for source code.

or code searches with the goal of reuse and where the desired behav-

or can be expressed in terms of inputs and outputs, Satsy provides a

ompelling alternative or complement to the state-of-the-practice.

The judges of the relevance of search results are users, which is

hy we turned to humans to evaluate relevance. For Satsy Ranked,

e observe that the average relevance is higher than that for Google,

erobase, and Satsy RR. Of course, we cannot ignore the fact that

he query model necessary for Satsy is drastically different from that

or Google. The user cost of changing the query model has yet to be

valuated and is left for future work. That said, the costs for evalu-

ting Google results include clicking through to the result page and

ocating the code; these costs are not captured in the evaluation,

ither.
ut queries: Generalizing, ranking, and assessment, The Journal of

http://dx.doi.org/10.1016/j.jss.2015.04.081

12 K.T. Stolee et al. / The Journal of Systems and Software 000 (2015) 1–14

ARTICLE IN PRESS
JID: JSS [m5G;May 21, 2015;10:52]

r

v

t

t

d

r

S

c

i

h

c

r

d

l

p

a

h

d

i

c

o

t

t

t

p

t

H

f

c

q

t

o

s

c

j

s

i

r

8

t

i

t

g

b

i

e

o

2

S

a

u

r

p

7.1. Opportunities

There are opportunities with this work to impact and benefit from

other applications of symbolic execution. Satsy could be adapted

to take advantage of recent techniques that store path conditions

from symbolic execution in a repository (Visser et al., 2012; Yang

et al., 2012), though additional meta-data might be needed to support

Satsy. Other symbolic execution application, such as test case gener-

ation, (e.g., Cadar et al., 2008; Tillmann and De Halleux, 2008; Visser

et al., 2004), could also leverage such repositories thereby amortizing

the cost of symbolic execution.

Programs that under-match a specification provide an opportu-

nity for program synthesis approaches (e.g., Gulwani et al., 2011;

Harris and Gulwani, 2011; Solar-Lezama et al., 2006) to bring pro-

grams closer to the specification. Additionally, test generation tech-

niques that use the control flow graph could be used to create test

case that cover parts of the graph, or cover the graph in particular

ways, such as using edge-pair or prime-path coverage (Ammann and

Offutt, 2008). Providing these additional test cases to the user would

allow them to better evaluate if a particular snippet is appropriate for

their application. Alternatively, pruning the control flow graph, and

thus the code, could create a minimal solution to a query.

Another opportunity comes from automated reuse, where the in-

put/output query could be extracted from a test case and the search

automatically plugs in the top-ranked code snippet. This form of au-

tomated test-driven development could be promising as the language

coverage of our approach grows.

Exploring these opportunities is part of our future work.

7.2. Limitations

Our work is subject to several limitations, both in the implemen-

tation presented here and also in a more general, practical sense.

A major limitation in operating Satsy for our study was the repos-

itory size. We collected fewer than 10,000 methods (Section 5.4), and

considering the sizes of the projects we scraped, these numbers seem

low. We identify two reasons for this. The first is that our encoding is

missing some commonly-used constructs, specifically loops, objects,

and the value, null. The second reason follows from some limitations

of SPF. String processing is incomplete, meaning errors are thrown on

some multi-path methods that match the Satsy-supported Java gram-

mar, and thus those methods are not encoded and stored. A second

limitation comes from the use of Z3 as a prover, since we are lim-

ited by its capabilities. For instance, integer overflow is handled by

returning unsat when an integer exceeds 32-bits.

A limitation of the approach in general relates to scaling to larger,

more complex pieces of code. As the number of paths in a program

increases (e.g., due to loops or nested if-statements), the number of

paths that need to be checked with the solver increases, impacting

the search performance. This may necessitate heuristics to limit the

number of paths, which would lead to an incomplete approach that

could miss matches. Careful study is needed to weigh the tradeoff be-

tween the search time and the completeness of the search algorithm.

7.3. Threats to validity

The evaluation required many steps and processes and each intro-

duces threats to validity.

Internal: When building the repository of encoded programs, we

remove each code snippet from its context so the encoded programs

may not be entirely representative of the actual behavior of the orig-

inal full code. For example, if a method accesses a field and it has a

static value defined within a class, we ignore that value and represent

the field value symbolically. Addressing this threat and considering a

broader scope of code snippets is part of future work.
Please cite this article as: K.T. Stolee et al., Code search with input/outp

Systems and Software (2015), http://dx.doi.org/10.1016/j.jss.2015.04.081
Google, Merobase, and Satsy returned matches from separate

epositories of varying sizes and content, yet we compared the rele-

ance of the results directly. Google searches over a web-scale reposi-

ory and Merobase over a very large source code repository. Allowing

hose search engines to return code that Satsy couldn’t support was a

esign choice to preserve external validity.

Questions used in the evaluation were selected if they could be

epresented with input/output examples, which may have favored

atsy. Yet, the questions came from StackOverflow, so Google has ac-

ess to community-accepted answers. Questions were also selected

f searches returned enough results (Section 5.2). This decision may

ave favored Satsy or Google as no questions were rejected on ac-

ount of the Merobase results.

The performance of Satsy was measured on a standard laptop

ather than using a large distributed computing infrastructure, as is

one with the compared search approaches. Thus these measures are

ikely not representative of performance if adapted and deployed for

ublic use.

The query generators were graduate students in computer science

nd were accustomed to writing Google queries. This may have led to

igher quality queries for Google compared to Merobase and Satsy.

External: We chose to compare Satsy to Google and Merobase, un-

er the assumption that tools such as these are used for code search

n practice. Google is reported to be the most common tool used for

ode search (Sim et al., 2011; Stolee et al., 2014), but the actual usage

f Merobase is unknown.

The selection of programming tasks may not be representative of

asks for which programmers would search for answers. To increase

he potential for using representative questions, we selected ques-

ions from stackoverflow.com.

In the evaluation, we separated the query generator from the

erson who is evaluating the relevance of the results. In practice,

hese two roles are held by the same person with the same context.

ere, the query generators may have interpreted the question dif-

erently than the study participants who judged the relevance. To

ombat this, three different query generators were assigned to each

uestion/approach combination.

Construct: We use P@10, nDCG, f.f.p, MRR, and MAP as metrics

o indicate relevance of search results. Yet, these might not capture

ther aspects of search, such as the cost of looking at irrelevant re-

ults or the search latency. Further study is needed to understand the

ost tradeoffs between using the three search approaches.

Conclusion: The relevance of each source code snippet was

udged by a Mechanical Turk participant based on a static view of the

ource code. Their judgment of relevance may not be reliable which

s why we compute and report average relevance among the top 10

esults per query.

. Related work

To our knowledge, this is the first work to apply symbolic execu-

ion to the code search problem and to use semantic levels of match-

ng in a ranking algorithm for search results. Our previous work in-

roduced this approach to code search but targeted single-path pro-

rams (Stolee and Elbaum, 2012; Stolee et al., 2014). The differences

etween the previous work and this work were made explicit earlier

n the paper.

Many code search tools have been proposed and evaluated. Sev-

ral search approaches use keyword queries and rank results based

n component usage or structural information (Bajracharya et al.,

006; Grechanik et al., 2010; Inoue et al., 2003; McMillan et al., 2011).

ourcerer searches open source code and exploits structural and us-

ge information to rank results (Bajracharya et al., 2006). Portfolio

ses visualization in the results to illustrate how the code is used and

anks code based on the call graphs (McMillan et al., 2011). Exem-

lar takes a natural-language query and uses information retrieval
ut queries: Generalizing, ranking, and assessment, The Journal of

http://stackoverflow.com
http://dx.doi.org/10.1016/j.jss.2015.04.081

K.T. Stolee et al. / The Journal of Systems and Software 000 (2015) 1–14 13

ARTICLE IN PRESS
JID: JSS [m5G;May 21, 2015;10:52]

a

(

a

m

X

p

2

v

o

w

p

o

(

a

p

q

r

t

A

c

a

d

r

t

b

c

S

d

2

S

s

(

r

(

g

m

(

s

2

i

t

(

l

e

e

s

e

a

g

d

t

9

c

r

S

f

i

S

a

W

c

t

e

a

c

a

b

t

e

e

s

s

k

e

A

E

e

A

R

A

A

B

B

C

C

C

C

F

G

G

G

G

H

H

H

I

nd program analysis techniques to retrieve relevant applications

Grechanik et al., 2010).

More relevant to our approach are the code searches that target

specific code search sub-problem and include non-standard query

odels (Milne and Rowe, 2012; Sahavechaphan and Claypool, 2006).

Snippet allows programmers to search over a repository for sam-

le code related to object instantiation (Sahavechaphan and Claypool,

006). The query model exploits the type and hierarchy of the pro-

ided object and matches are based on mining code for instantiations

f that object. Another approach focuses on searching for source code

ith specific API usage (Milne and Rowe, 2012). Queries use a partial

rogram and an automata-based approach finds source code based

n mined temporal specifications.

Other research has sought to recommend code-related web pages

Sawadsky et al., 2013) or to augment web searches with context from

programming environment (Brandt et al., 2010). Our search ap-

roach operates under a similar assumption, that programmers fre-

uently search the web for source code, except we return source code

elevant to a behavioral example.

In semantic code search, our work is most related to approaches

hat use theorem provers to identify relevant components (Penix and

lexander, 1999; Zaremski and Wing, 1997) and those that use test

ases to execute against source code (Lemos et al., 2007; Podgurski

nd Pierce, 1993; Reiss, 2009). Compared to the former, our work

iffers in the use of a lightweight, input/output specification model

ather than formal logic. Compared to the latter, our work differs in

hat we do not execute the code, allowing us to identify close matches

y applying abstractions to the constraints (Stolee et al., 2014) or by

onsidering code that has extra parameters (i.e., when TSq ⊃ TSls,

ection 3.3).

Also close to our work is program synthesis that uses solvers to

erive a function that maps an input to an output (e.g., Gulwani,

011; Gulwani et al., 2011; Harris and Gulwani, 2011; Jha et al., 2010;

ingh and Solar-Lezama, 2011). The domains of applicability include

tring processing (Gulwani, 2011), spreadsheet table transformations

Harris and Gulwani, 2011), a domain-specific language for geomet-

ic constructions (Gulwani et al., 2011), data structure manipulations

Singh and Solar-Lezama, 2011), and loop-free bit manipulation pro-

rams (Jha et al., 2010). Some of these approaches also utilize supple-

entary information like the code structure to help guide the solver

Singh and Solar-Lezama, 2011). Another means for program synthe-

is utilizes partial programs called sketches (e.g., Raabe and Bodik,

009; Solar-Lezama et al., 2007, 2008, 2006). These approaches typ-

cally operate over small, low-level and finite programs like bit vec-

or manipulation (Solar-Lezama et al., 2006) and hardware circuits

Raabe and Bodik, 2009), but more recently have targeted higher-

evel applications such as concurrent data structures (Solar-Lezama

t al., 2008) and optimizing code (Solar-Lezama et al., 2007). Recent

fforts add context from a program execution using breakpoints and

uggests snippets of code to integrate into a code base (Galenson

t al., 2014). The key difference between program synthesis and our

pproach is that we use the solver to find a match against real pro-

rams that have been encoded, while these synthesis efforts must

efine a domain specific grammar that can be traversed exhaustively

o generate a program that matches the programmers’ constraints.

. Conclusion

We have implemented and evaluated a significant extension to a

ode search approach that uses input/output queries and identifies

esults using an SMT solver. This extension, implemented in our tool

atsy, takes advantage of symbolic execution to traverse and identify

easible paths in a multi-path method and uses that information to

dentify partial matches and rank search results. We have shown that

atsy returns more relevant results than Merobase and results at least

s good as Google, based on the responses of 30 study participants.
Please cite this article as: K.T. Stolee et al., Code search with input/outp

Systems and Software (2015), http://dx.doi.org/10.1016/j.jss.2015.04.081
e have also started to explore the execution cost of Satsy, which is

learly more expensive than existing approaches but still viable given

he precision of the results.

There are multiple avenues for improving Satsy: extending the

ncoding to consider loops, method calls, nulls, exceptions, objects

nd arrays, strengthening the specification model by allowing wild-

ards (e.g., (E.txt, E) where E is any string) or regular expressions,

llowing for cross-snippet matches where multiple programs could

e returned if they matched different parts of the same specifica-

ion, extending the size and richness of the repository, increasing the

fficiency of the implementation to put it in the hands of develop-

rs, and refining the ranking algorithm based on larger data sets. We

peculate that addressing these issues in future work will lead to ver-

ions of Satsy that will outperform keyword-based queries for certain

ind of code search problems that can be described succinctly with an

xample.

cknowledgements

This work is supported in part by NSF SHF-1218265, NSF SHF-

AGER-1446932, NSF GRFP under CFDA-47.076, the Harpole-Pentair

ndowment at Iowa State University, a Google Faculty Research

ward, and AFOSR #9550-10-1-0406.

eferences

mazon Mechanical Turk Command Line Tool Reference. http://docs.

amazonwebservices.com/AWSMturkCLT/2008-08-02/, January 2010.
mmann, P., Offutt, J., 2008. Introduction to Software Testing. Cambridge University

Press, Cambridge, UK.

ajracharya, S., Ngo, T., Linstead, E., Dou, Y., Rigor, P., Baldi, P., Lopes, C., 2006. Sourcerer:
a search engine for open source code supporting structure-based search. In: Com-

panion to the 21st ACM SIGPLAN Symposium on Object-oriented Programming
Systems, Languages, and Applications, OOPSLA ’06. ACM, New York, NY, USA,

pp. 681–682.
randt, J., Dontcheva, M., Weskamp, M., Klemmer, S.R., 2010. Example-centric pro-

gramming: integrating web search into the development environment. In: Pro-

ceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI
’10. ACM, New York, NY, USA, pp. 513–522.

adar, C., Dunbar, D., Engler, D., 2008. Klee: unassisted and automatic generation of
high-coverage tests for complex systems programs. In: Proceedings of the 8th

USENIX Conference on Operating Systems Design and Implementation, OSDI’08.
USENIX Association, Berkeley, CA, USA, pp. 209–224.

larke, L.A., 1976. A system to generate test data and symbolically execute programs.

IEEE Trans. Soft. Eng. SE-2 (3), 215–222.
larke, L.A., Richardson, D.J., 1985. Applications of symbolic evaluation. J. Syst. Softw. 5

(1), 15–35.
raswell, N., Hawkings, D., 2004. Overview of the rrec 2004 webl track. In: Proceedings

of the 13th Text Retrieval Conference. NIST, pp. 1–9.
ischer, G., Henninger, S., Redmiles, D., 1991. Cognitive tools for locating and compre-

hending software objects for reuse. In: Proceedings of the 13th International Con-

ference on Software Engineering, pp. 318–328.
alenson, J., Reames, P., Bodik, R., Hartmann, B., Sen, K., 2014. Codehint: dynamic and

interactive synthesis of code snippets. In: Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014. ACM, New York, NY, USA, pp. 653–

663.
rechanik, M., Fu, C., Xie, Q., McMillan, C., Poshyvanyk, D., Cumby, C., 2010. A search en-

gine for finding highly relevant applications. In: Proceedings of the 32nd ACM/IEEE

International Conference on Software Engineering – Volume 1, ICSE ’10. ACM, New
York, NY, USA, pp. 475–484.

ulwani, S., 2011. Automating string processing in spreadsheets using input-output ex-
amples. In: Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL ’11. ACM, New York, NY, USA, pp. 317–
330.

ulwani, S., Korthikanti, V.A., Tiwari, A., 2011. Synthesizing geometry constructions.

In: Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’11. ACM, New York, NY, USA, pp. 50–61.

aiduc, S., Bavota, G., Marcus, A., Oliveto, R., De Lucia, A., Menzies, T., 2013. Automatic
query reformulations for text retrieval in software engineering. In: Proceedings of

the 2013 International Conference on Software Engineering, ICSE ’13, pp. 842–851.
arris, W.R., Gulwani, S., 2011. Spreadsheet table transformations from examples.

SIGPLAN Not. 46 (6), 317–328.
olmes, R., Walker, R.J., Murphy, G.C., 2006. Approximate structural context matching:

an approach to recommend relevant examples. IEEE Trans. Soft. Eng. 32 (12), 952–

970.
noue, K., Yokomori, R., Fujiwara, H., Yamamoto, T., Matsushita, M., Kusumoto, S., 2003.

Component rank: relative significance rank for software component search. In:
Proceedings of the 25th International Conference on Software Engineering, ICSE

’03. IEEE Computer Society, Washington, DC, USA, pp. 14–24.
ut queries: Generalizing, ranking, and assessment, The Journal of

http://dx.doi.org/10.13039/100000001
http://dx.doi.org/10.13039/100000001
http://dx.doi.org/10.13039/100000001
http://dx.doi.org/10.13039/100000181
http://docs.amazonwebservices.com/AWSMturkCLT/2008-08-02/
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0006
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0006
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0006
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0015
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0015
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0015
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0015
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0016
http://dx.doi.org/10.1016/j.jss.2015.04.081

14 K.T. Stolee et al. / The Journal of Systems and Software 000 (2015) 1–14

ARTICLE IN PRESS
JID: JSS [m5G;May 21, 2015;10:52]

S

S

S

S

T

V

V

V

Y

Z
Z

K

p

S
U

p
t

S

s

t
t

r
a

M

S
i

o

s
F

F
E

Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A., 2010. Oracle-guided component-based pro-
gram synthesis. In: Proceedings of the 32nd ACM/IEEE International Conference on

Software Engineering – Volume 1, ICSE ’10. ACM, New York, NY, USA, pp. 215–224.
JPF Symbolic PathFinder. http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-

symbc, December 2012.
Khurshid, S., Păsăreanu, C.S., Visser, W., 2003. Generalized symbolic execution for

model checking and testing. In: Proceedings of the 9th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, TACAS’03.

Springer-Verlag, Berlin, Heidelberg, pp. 553–568.

King, J.C., 1976. Symbolic execution and program testing. Commun. ACM 19 (7), 385–
394.

Lemos, O.A.L., Bajracharya, S.K., Ossher, J., 2007. Codegenie: a tool for test-driven source
code search. In: Companion to the 22nd ACM SIGPLAN Conference on Object-

Oriented Programming Systems and Applications Companion, OOPSLA ’07. ACM,
New York, NY, USA, pp. 917–918.

McMillan, C., Grechanik, M., Poshyvanyk, D., Xie, Q., Fu, C., 2011. Portfolio: finding rel-

evant functions and their usage. In: Proceedings of the 33rd International Confer-
ence on Software Engineering, ICSE ’11. ACM, New York, NY, USA, pp. 111–120.

Milne, I., Rowe, G., 2002. Difficulties in learning and teaching programming - views of
students and tutors. Educ. Inf. Technol. 7 (1), 55–66.

Mishne, A., Shoham, S., Yahav, E., 2012. Typestate-based semantic code search over par-
tial programs. In: Proceedings of the ACM International Conference on Object Ori-

ented Programming Systems Languages and Applications, OOPSLA ’12. ACM, New

York, NY, USA, pp. 997–1016.
Page, L., Brin, S., Motwani, R., Winograd, T., 1999. The pagerank citation ranking: bring-

ing order to the web.
Penix, J., Alexander, P., 1999. Efficient specification-based component retrieval. Autom.

Softw. Eng. 6, 139–170.
Podgurski, A., Pierce, L., 1993. Retrieving reusable software by sampling behavior. ACM

Trans. Softw. Eng. Methodol. 2, 286–303.

Raabe, A., Bodik, R., 2009. Synthesizing hardware from sketches. In: Proceedings of the
46th Annual Design Automation Conference, DAC ’09. ACM, New York, NY, USA,

pp. 623–624.
Reiss, S.P., 2009. Semantics-based code search. In: Proceedings of the International

Conference on Software Engineering, pp. 243–253.
Sahavechaphan, N., Claypool, K., 2006. Xsnippet: mining for sample code. SIGPLAN Not.

41 (10), 413–430.

Sawadsky, N., Murphy, G.C., Jiresal, R., 2013. Reverb: recommending code-related web
pages. In: Proceedings of the 2013 International Conference on Software Engineer-

ing, ICSE ’13. IEEE Press, Piscataway, NJ, USA, pp. 812–821.
Sim, S.E., Umarji, M., Ratanotayanon, S., Lopes, C.V., 2011. How well do search engines

support code retrieval on the web? ACM Trans. Softw. Eng. Methodol. 21 (1), 4:1–
4:25.

Singh, R., Solar-Lezama, A., 2011. Synthesizing data structure manipulations from sto-

ryboards. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th Euro-
pean Conference on Foundations of Software Engineering, ESEC/FSE ’11. ACM, New

York, NY, USA, pp. 289–299.
Solar-Lezama, A., Arnold, G., Tancau, L., Bodik, R., Saraswat, V., Seshia, S., 2007. Sketch-

ing stencils. SIGPLAN Not. 42 (6), 167–178.
SMT-LIB, December 2012.

Solar-Lezama, A., Jones, C.G., Bodik, R., 2008. Sketching concurrent data structures. In:
Proceedings of the 2008 ACM SIGPLAN Conference on Programming Language De-

sign and Implementation, PLDI ’08. ACM, New York, NY, USA, pp. 136–148.
Please cite this article as: K.T. Stolee et al., Code search with input/outp

Systems and Software (2015), http://dx.doi.org/10.1016/j.jss.2015.04.081
olar-Lezama, A., Tancau, L., Bodik, R., Seshia, S., Saraswat, V., 2006. Combinatorial
sketching for finite programs. In: Proceedings of the 12th International Confer-

ence on Architectural Support for Programming Languages and Operating Systems,
ASPLOS-XII. ACM, New York, NY, USA, pp. 404–415.

tolee, K.T., 2013. Solving the Search for Source Code (Phd thesis). University of
Nebraska–Lincoln.

tolee, K.T., Elbaum, S., 2012. Toward semantic search via SMT solver. In: Proceedings of
the ACM SIGSOFT 20th International Symposium on the Foundations of Software

Engineering, FSE ’12. ACM, New York, NY, USA, pp. 25:1–25:4.

tolee, K.T., Elbaum, S., Dobos, D., 2014. Solving the search for source code. ACM Trans.
Softw. Eng. Methodol. 23, 26:1–26:45.

illmann, N., De Halleux, J., 2008. Pex: White box test generation for .net. In: Proceed-
ings of the 2nd International Conference on Tests and Proofs, TAP’08. Springer-

Verlag, Berlin, Heidelberg, pp. 134–153.
isser, W., Geldenhuys, J., Dwyer, M.B., 2012. Green: reducing, reusing and recycling

constraints in program analysis. In: Proceedings of the ACM SIGSOFT 20th Interna-

tional Symposium on the Foundations of Software Engineering, FSE ’12. ACM, New
York, NY, USA, pp. 58:1–58:11.

isser, W., Havelund, K., Brat, G., Park, S., Lerda, F., 2003. Model checking programs.
Autom. Softw. Eng. 10 (2), 203–232.

isser, W., Pǎsǎreanu, C.S., Khurshid, S., 2004. Test input generation with java
pathfinder. SIGSOFT Softw. Eng. Notes 29 (4), 97–107.

ang, G., Păsăreanu, C.S., Khurshid, S., 2012. Memoized symbolic execution. In: Pro-

ceedings of the 2012 International Symposium on Software Testing and Analysis,
ISSTA 2012. ACM, New York, NY, USA, pp. 144–154.

3: Theorem Prover. http://research.microsoft.com/projects/z3/, November 2011.
aremski, A.M., Wing, J.M., 1997. Specification matching of software components. ACM

Trans. Softw. Eng. Methodol. 6, 333–369.

athryn T. Stolee is the Harpole-Pentair Assistant Professor in the Department of Com-

uter Science and the Department of Electrical and Computer Engineering at Iowa

tate University. She received her PhD degree in computer science in 2013 from the
niversity of Nebraska-Lincoln, where she also received her MS and BS degrees in com-

uter science. Her research uses program analysis to develop tools and techniques with
he goal of making software easier to build, maintain, and understand.

ebastian Elbaum is a Professor at the University of Nebraska-Lincoln. He received the

ystems engineering degree from the Universidad Catolica de Cordoba, Argentina, and

he PhD degree in computer science from the University of Idaho. His research aims
o improve software dependability through testing, monitoring, and analysis. He is the

ecipient of the US National Science Foundation (NSF) Career award, an IBM Innovation
ward, and two ACM SigSoft Distinguished Paper awards.

atthew B. Dwyer is the Lovell Professor and Chair of the Department of Computer

cience and Engineering at the University of Nebraska-Lincoln. He earned a Doctorate
n computer science from the University of Massachusetts at Amherst in 1995 for work

n data flow analysis of correctness properties of concurrent software – a topic that

till interests him to this day. Dr. Dwyer is an ACM Distinguished Scientist (2007), a
ulbright Research Scholar (2011), and an IEEE Fellow (2013). He has chaired the PC of

SE, ICSE, and OOPSLA and serves as Editor-in-Chief of IEEE Transactions on Software
ngineering.
ut queries: Generalizing, ranking, and assessment, The Journal of

http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0017
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0034
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0034
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0034
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0034
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0034
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0034
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0035
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0035
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0036
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0036
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0036
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0037
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0037
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0037
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0037
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0038
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0038
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0038
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0039
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0039
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0039
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0039
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0040
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0040
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0040
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0040
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0040
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0040
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0041
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0041
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0041
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0041
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0042
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0042
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0042
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0042
http://research.microsoft.com/projects/z3/
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0043
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0043
http://refhub.elsevier.com/S0164-1212(15)00087-4/sbref0043
http://dx.doi.org/10.1016/j.jss.2015.04.081

	Code search with input/output queries: Generalizing, ranking, and assessment
	1 Introduction
	2 Motivation and overview
	2.1 Limitations with keyword-based search and testing
	2.2 Beyond single source line matches
	2.3 Generalizing program matches
	2.4 Matching levels and ranking

	3 Approach
	3.1 Querying with input/output examples
	3.2 Indexing: from code to constraints
	3.3 Matching code to specifications
	3.4 Ranking results

	4 Implementation
	4.1 Transforming source code with SPF
	4.2 Matching with Z3
	4.3 Ranking results

	5 Study
	5.1 Experimental design
	5.2 Defining programming tasks
	5.3 Generating queries
	5.4 Obtaining search results
	5.5 Assessing relevance of results

	6 Results
	6.1 RQ1: relevance assessment
	6.2 RQ2: performance assessment

	7 Discussion
	7.1 Opportunities
	7.2 Limitations
	7.3 Threats to validity

	8 Related work
	9 Conclusion
	 Acknowledgements
	 References

