Exploring Regular Expression Usage and Context
in Python

Carl Chapman
Department of Computer Science
lowa State University
Ames, |IA, USA
carl1978@iastate.edu

ABSTRACT

Due to the popularity and pervasive use of regular expres-
sions, researchers have created tools to support their cre-
ation, validation, and use. However, little is known about
the context in which regular expressions are used, the fea-
tures that are most common, and how behaviorally similar
regular expressions are to one another.

In this paper, we explore the context in which regular
expressions are used through a combination of developer
surveys and repository analysis. We survey 18 professional
developers about their regular expression usage and pain
points. Then, we analyze nearly 4,000 open source Python
projects from GitHub and extract nearly 14,000 unique regu-
lar expression patterns. We map the most common features
used in regular expressions to those features supported by

four major regex research efforts from industry and academia:

brics, Hampi, RE2, and Rex. Using similarity analysis of
regular expressions across projects, we identify six common
behavioral clusters that describe how regular expressions are
often used in practice. This is the first rigorous examination
of regex usage and it provides empirical evidence to sup-
port design decisions by regex tool builders. It also points
to areas of needed future work, such as refactoring regular
expressions to increase regex understandability and context-
specific tool support for common regex usages.

CCS Concepts

eSoftware and its engineering — Software libraries
and repositories;

Keywords

regular expressions, repository analysis, developer survey

1. INTRODUCTION

Regular expressions (regexes) are an abstraction of key-
word search that enables the identification of text using a

Kathryn T. Stolee
Departments of Computer Science
North Carolina State University
Raleigh, NC, USA

ktstolee@ncsu.edu

pattern instead of an exact string. Regexes are commonly
used for parsing text using general purpose languages, vali-
dating content entered into web forms using Javascript, and
searching text files for a particular pattern using tools like
grep, vim or Eclipse. Although regexes are powerful and
versatile, they can be hard to understand, maintain, and
debug, resulting in tens of thousands of bug reports [30].

Due in part to their common use across programming lan-
guages and how susceptible regexes are to error, many re-
searchers and practitioners have developed tools to support
more robust regex creation [30] or to allow visual debug-
ging [6]. Other research has focused on learning regular ex-
pressions from text [421], avoiding human composition alto-
gether. Researchers have also explored applying regexes to
test case generation [2,/15,/16L[31], as specifications for string
constraint solvers [18)32], and using regexes as queries in a
data mining framework [7]. Regexes are also employed in
critical missions like MySQL injection prevention [35] and
network intrusion detection [26], or in more diverse applica-
tions like DNA sequencing alignment [3].

Regex researchers and tool designers must pick what fea-
tures to include or exclude, which can be a difficult design
decision. Supporting advanced features may be more expen-
sive, taking more time and potentially making the project
too complex and cumbersome to execute well. A selection
of only the simplest of regex features limits the applicability
or relevance of that work. Despite extensive research ef-
fort in the area of regex support, no research has been done
about how regexes are used in practice and what features
are essential for the most common use cases.

The goal of this work is to explore 1) the context in which
developers use regular expressions, and 2) the features and
similarities of reqular expressions found in Pythorﬂ projects.

First, we survey professional developers about how they
use regexes and their pain points. Second, we gather a sam-
ple of regexes from Python projects and analyze the fre-
quency of feature usage (e.g., kleene star: * and the end
anchor: $ are features). Third, we investigate what features
are supported by four major regex research efforts that aim
to support regex usage (brics |25, hampi [18], Rex [33], and
RE2 [2§]), and which features are not supported, but are
frequently used by developers. Finally, we cluster regular

!Python is the fourth most common language on GitHub
(after Java, Javascript and Ruby) and Python’s regex pat-
tern language is close enough to other regex libraries that
our conclusions are likely to generalize.

expressions that appear in multiple projects by behavior,
investigating high-level behavioral themes in regex usage.

Our results indicate that regexes are most frequently used
in command line tools and IDEs. Capturing the contents of
brackets and searching for delimiter characters were some
of the most apparent behavioral themes observed in our
regex clusters, and developers frequently use regexes to parse
source code. The contributions of this work are:

e A survey of 18 professional software developers about
their experience with regular expressions,

e An empirical analysis of regex feature usage in nearly
14,000 regular expressions in 3,898 open-source Python
projects, mapping of those features to those supported
by four major regex research efforts, and survey results
showing the impact of not supporting various features,

e An approach for measuring behavioral similarity of
regular expressions and qualitative analysis of the most
common behaviorally similar clusters, and

e An evidence-based discussion of opportunities for fu-
ture work in supporting programmers who use regular
expressions, including refactoring regexes, developing
regex similarity analyses, and providing migration sup-
port between languages.

2. RELATED WORK

Regular expressions have been a focus point in a variety
of research objectives. From the user perspective, tools have
been developed to support more robust creation [30] or to
allow visual debugging [6]. Building on the perspective that
regexes are difficult to create, other research has focused on
removing the human from the creation process by learning
regular expressions from text [4,21].

Regarding applications, regular expressions have been used
for test case generation [2l{15/[16,31], and as specifications for
string constraint solvers |18}[32]. Regexes are also employed
in MySQL injection prevention [35] and network intrusion
detection [26], or in more diverse applications like DNA se-
quencing alignment [3| or querying RDF data [1}[20].

As a query language, lightweight regular expressions are
pervasive in search. For example, some data mining frame-
works use regular expressions as queries (e.g., [7]). Efforts
have also been made to expedite the processing of regular
expressions on large bodies of text [5].

Research tools like Hampi [18], and Rex [33], and com-
mercial tools like brics [25] and RE2 [2§], all support the
use of regular expressions in various ways. Hampi was de-
veloped in academia and uses regular expressions as a spec-
ification language for a constraint solver. Rex was devel-
oped by Microsoft Research and generates strings for reg-
ular expressions that can be used in applications such as
test case generation [2,31]. Brics is an open-source package
that creates automata from regular expressions for manipu-
lation and evaluation. RE2 is an open-source tool created by
Google to power code search with an efficient regex engine.

Mining properties of open source repositories is a well-
studied topic, focusing, for example, on API usage pat-
terns [22] and bug characterizations [12]. Exploring lan-
guage feature usage by mining source code has been studied
extensively for Smalltalk [8.(9], JavaScript [29], and Java [14}
17123/|27], and more specifically, Java generics [27] and Java
reflection [23]. To our knowledge, this is the first work to

function pattern flags
r1 = re.compile("(@|-?[1-91[0-91%)$", re.MULTILINE)

Figure 1: Example of one regex utilization

mine and evaluate regular expression usages from existing
software repositories. Related to mining work, regular ex-
pressions have been used to form queries in mining frame-
work [7], but have not been the focus of the mining activi-
ties. Surveys have been used to measure adoption of various
programming languages [13]/24], and been combined with
repository analysis [24], but have not focused on regexes.

3. STUDY

To understand how programmers use regular expressions
in Python projects, we scraped 3,898 Python projects from
GitHub, and recorded regex usages for analysis. Throughout
the rest of this paper, we employ the following terminology:

Utilization: A wutilization occurs whenever a regex appears
in source code. We detect utilizations by statically analyzing
source code and recording calls to the re module in Python.
Within a source code file, a utilization is composed of a func-
tion, a pattern, and 0 or more flags. Figure |I| presents an ex-
ample of one regex utilization, with key components labeled.
The function call is re.compile, (0|-7[1-9] [0-9]%*)$ is the
regex string, or pattern, and re .MULTILINE is an (optional)
flag. When executed, this utilization will compile a regex
object in the variable r1 from the pattern (0|-7[1-9] [0-
91*)$, with the $ token matching at the end of each line
because of the re .MULTILINE flag. Thought of another way,
a regex utilization is one single invocation of the re library.

Pattern: A pattern is extracted from a utilization, as shown
in Figure In essence, it is a string, but more formally it
is an ordered series of regular expression language feature
tokens. The pattern in Figure [I] will match if it finds a zero
at the end of a line, or a (possibly negative) integer at the
end of a line (i.e., due to the -7 sequence denoting zero or
one instance of the -).

Note that because the vast majority of regex features are
shared across most general programming languages (e.g.,
Java, C, C#, or Ruby), a Python pattern will (almost al-
ways) behave the same when used in other languages, whereas
a utilization is not universal in the same way (i.e., it may not
compile in other languages, even with small modifications to
function and flag names). As an example, the re .MULTILINE
flag, or similar, is present in Python, Java, and C#, but the
Python re.DOTALL flag is not present in C# though it has
an equivalent flag in Java.

In this work, we primarily focus on patterns since they
are cross-cutting across languages and are the primary way
of specifying the matching behavior. Next, we describe the
research questions, data set collection, and analysis.

3.1 Research Questions

To understand the contexts in which regexes are used and
feature usage, we perform a survey of developers and explore
regular expressions found in Python projects on GitHub. We
alm to answer the following research questions:

RQ1: In what contexts do professional developers use reg-
ular expressions?

We designed and deployed a survey about when, why, and
how often they use regular expressions. This was completed
by 18 professional developers at a small software company.

RQ2: How is the re module used in Python projects?
We explore invocations of the re module in 3,898 Python
projects scraped from GitHub.

RQ3: Which regular expression language features are most
commonly used in Python?

We consider regex language features to be tokens that
specify the matching behavior of a regex pattern, for exam-
ple, the + in ab+. All studied features are listed and de-
scribed in Table@with examples. We then map the feature
coverage for four common regex support tools, brics, hampi,
RE2 and Rex, and explore survey responses regarding fea-
ture usage for some of the less supported features.

RQ4: How behaviorally similar are regexes across projects?

Exploring behavioral similarity can identify common use
cases for regexes, even when the regexes have different syn-
tax. As this is a first step in understanding behavioral
overlap in regexes, we measure similarity between pairs of
regexes by overlap in matching strings. For each regex,
matching strings are generated and then evaluated against
each other regex to compute pairwise similarity. Then we
use clustering to form behaviorally similar groupings.

3.2 Survey Design and Implementation

To understand the context of when and how program-
mers use regular expressions, we designed a survey, imple-
mented using Google Forms, with 40 questions. The ques-
tions asked about regex usage frequency, languages, pur-
poses, pain points, and the use of various language features
Though exact usage frequency may be hard to recall, we
mitigate this by asking for usage frequency in 15 specific
contexts before asking for the overall usage frequency. Par-
ticipation was voluntary and participants were entered in a
lottery for a $50 gift card.

Our goal was to understand the practices of professional
developers. Thus, we deployed the survey to 22 profes-
sional developers at Dwolla, a small software company that
provides tools for online and mobile payment management.
While this sample comes from a single company, we note
anecdotally that the company is a start-up and most of the
developers worked previously for other software companies,
thus bringing their past experiences with them. Surveyed
developers have nine years of experience, on average, in-
dicating the results may generalize beyond a single, small
software company, but further study is needed.

3.3 Regex Corpus

Our goal was to collect regexes from a variety of projects
to represent the breadth of how developers use the language
features. Using the GitHub API, we scraped 3,898 projects
containing Python code. We did so by dividing a range of
about 8 million repo IDs into 32 sections of equal size and
scanning for Python projects from the beginning of those
segments until we ran out of memory. At that point, we

Zhttps://github.com /softwarekitty /tour_de_source/blob/
master /regex_usage_in_practice_survey.pdf;

rmi(f(z))+l o 1]2 2] 1] o

(@b*clyzs)s—p| 1 | 2 o]l 2 o] 1]
OR KLE ADD CG STR END

Figure 2: Two patterns parsed into feature vectors

felt we had enough data to do an analysis without further
perfecting our mining techniques. We built the AST of each
Python file in each project to find utilizations of the re mod-
ule functions. In most projects, almost all regex utilizations
are present in the most recent version of a project, but to
be more thorough, we also scanned up to 19 earlier versions.
The number 20 was chosen to try and maximize returns on
computing resources invested after observing the scanning
process in many hours of trial scans. All regex utilizations
were obtained, sans duplicates. Within a project, a dupli-
cate utilization was marked when two versions of the same
file have the same function, pattern and flags. In the end,
we scanned 3,898 Python projects, 42.2% (1,645) of which
use the re module. From these projects, we observed and
recorded 53,894 non-duplicate regex utilizations.

In collecting the set of distinct patterns for analysis, we
ignore the 12.7% of utilizations using flags, which can alter
regex behavior. An additional 6.5% of utilizations contained
patterns that could not be compiled because the pattern was
non-static (e.g., used some runtime variable). The remaining
80.8% (43,525) of the utilizations were collapsed into 13,711
distinct pattern strings. Each of the pattern strings was pre-
processed by removing Python quotes (‘\\W becomes \\W),
unescaping escaped characters (\\W becomes \W) and pars-
ing the resulting string using an ANTLR-based, open source
PCRE parserﬂ This parser was unable to support 0.5% (73)
of the patterns due to unsupported unicode characters. An-
other 0.13% (19) of the patterns used regex features that
we chose to exclude because they appeared very rarely (e.g.,
reference conditions). An additional 0.16% (22) of the pat-
terns were excluded because they were empty or otherwise
malformed so as to cause a parsing error.

The 13,597 distinct pattern strings that remain were each
assigned a weight value equal to the number of distinct
projects the pattern appeared in. We refer to this set of
weighted, distinct pattern strings as the corpus.

3.4 Analyzing Features

For each escaped pattern, the PCRE-parser produces a
tree of feature tokens, which is converted to a vector by
counting the number of each token in the tree. For a sim-
ple example, consider the patterns in Figure[2] The pattern
‘“m+(£(z)*)+’ contains four different types of tokens. It
has the kleene star (KLE), which is specified using the as-
terisk ‘*’ character, additional repetition (ADD), which is
specified using the plus ‘+’ character, capture groups (CG),
which are specified using pairs of parenthesis ‘(...)’ char-
acters, and the start anchor (STR), which is specified using
the caret ¢~ character at the beginning of a pattern. A list
of all features and abbreviations is provided in Table [4

Once all patterns were transformed into vectors, we ex-
amined each feature individually for all patterns, tracking
the number of patterns and projects that the each feature
appears in at least once.

3https://github.com/bkiers/pcre-parser

https://github.com/softwarekitty/tour_de_source/blob/master/regex_usage_in_practice_survey.pdf
https://github.com/softwarekitty/tour_de_source/blob/master/regex_usage_in_practice_survey.pdf
https://github.com/bkiers/pcre-parser

Pattern A matches 100/100 of A’s strings A B
Pattern B matches 90/100 of A’s strings a0 loog
Pattern A matches 50/100 of B’s strings

Pattern B matches 100/100 of B’s strings Blo5 j1.0

Figure 3: A similarity matrix created by counting
strings matched

A B C D A B C D
Al1.0 0.0 [0.9 |0.0 Al10
Blo.2 |1.0 |08 |0.7 Blo.1 |10
Clos [o.8 |1.0 |02 »C 0.75/0.8 1.0
Do.o Jos 0.1 |1.0 D 0.0 Jo.65]0.15|1.0

Figure 4: Creating a similarity graph from a simi-
larity matrix

3.5 Clustering and Behavioral Similarity

An ideal analysis of regex behavioral similarity would use
subsumption or containment analysis. However, we strug-
gled to find a tool that could facilitate such an analysis.
Further, regular expressions in source code libraries are of-
ten not the same as regular languages in formal language
theory. Some features of regular expression libraries, such
as backreferences (e.g., supported in Python, Java), make
the libraries more expressive. This allows a regular expres-
sion pattern to match, for example, repeat words, such as
“cabcab”, using the pattern ([a-z]+)\1. However, build-
ing an automaton to recognize such a pattern and facilitate
containment analysis, is infeasible. For these reasons, we
developed a similarity analysis based on string matching.

Our similarity analysis clusters regular expressions by their
behavioral similarity on matched strings. Consider two un-
specified patterns A and B, a set mA of 100 strings that pat-
tern A matches, and a set mB of 100 strings that pattern B
matches. If pattern B matches 90 of the 100 strings in the
set mA, then B is 90% similar to A. If pattern A only matches
50 of the strings in mB, then A is 50% similar to B. We use
similarity scores to create a similarity matrix as shown in
Figure 3] In row A, column B we see that B is 90% similar
to A. In row B, column A, we see that A is 50% similar to B.
Each pattern is always 100% similar to itself, by definition.

Once the similarity matrix is built, the values of cells re-
flected across the diagonal of the matrix are averaged to
create a half-matrix of undirected similarity edges, as il-
lustrated in Figure This facilitates clustering using the
Markov Clustering (MCL) algorithnﬁ We chose MCL be-
cause it offers a fast and tunable way to cluster items by
similarity and it is particularly useful when the number of
clusters is not known a priori.

In the implementation, strings are generated for each pat-
tern using Rex [33]. Rex generates matching strings by rep-
resenting the regular expression as an automaton, and then
passing that automation to a constraint solver that gener-
ates members for itﬂ If the regex matches a finite set of
strings smaller than 400, Rex will produce a list of all possi-
ble strings. Our goal is to generate 400 strings for each pat-

4http://micans.org/mcl/
®http://research.microsoft.com/en-us/projects/rex/

tern to balance the runtime of the similarity analysis with
the precision of the similarity calculations.

For clustering, we prune the similarity matrix to retain all
similarity values greater than or equal to 0.75, setting the
rest to zero, and then using MCL. This threshold was se-
lected based on recommendations in the MCL manual. The
impact of lowering the threshold would likely result in either
the same number of more diverse clusters, or a larger num-
ber of clusters, but is unlikely to markedly change the largest
clusters or their summaries, which are the focus of our anal-
ysis for RQ4 (Section , but further study is needed to
substantiate this claim. We also note that MCL can also
be tuned using many parameters, including inflation and
filtering out all but the top-k edges for each node. After
exploring the quality of the clusters using various tuning pa-
rameter combinations, the best clusters (by inspection) were
found using an inflation value of 1.8 and k=83. The top 100
clusters are categorized by inspection into six categories of
behavior.

The end result is clusters and categories of highly be-
haviorally similar regular expressions, though we note that
this approach can only be an approximation, and may over-
estimate or under-estimate similarity depending on how the
test strings happen to interact with other regexes. To miti-
gate this threat, we chose a large number of generated strings
for each regex, but future work includes exploring other ap-
proaches to computing regex similarity.

4. RESULTS

Next, we present the results of each research question.

4.1 RQI1: How do developers use regexes?

The survey was completed by 18 participants (82% re-
sponse rate) that identified as software developer/maintainers.
Respondents have an average of nine years of programming
experience (o = 4.28). On average, survey participants re-
port to compose 172 regexes per year (o = 250) and compose
regexes on average once per month, with 28% composing
multiple regexes in a week and an additional 22% compos-
ing regexes once per week. That is, 50% of respondents uses
regexes at least weekly. Table [1f shows how frequently par-
ticipants compose regexes using each of several languages
and technical environments. Six (33%) of the survey par-
ticipants report to compose regexes using general purpose
programming languages (e.g., Java, C, C#) 1-5 times per
year and five (28%) do this 6-10 times per year. For com-
mand line usage in tools such as grep, 6 (33%) participants
use regexes Hl+4 times per year. Yet, regexes were rarely
used in query languages like SQL. Upon further investiga-
tion, it turns out the surveyed developers were not on teams
that dealt heavily with a database.

Table [shows how frequently, on average, the partici-
pants use regexes for various activities. Participants an-
swered questions using a 6-point likert scale including very
frequently (6), frequently (5), occasionally (4), rarely (3),
very rarely (2), and never (1). Averaging across partici-
pants, among the most common usages are capturing parts
of a string and locating content within a file, with both oc-
curring somewhere between occasionally and frequently.

Using a similar 7-point likert scale that includes ‘always’
as a seventh point, 89% (16) of developers indicated that
they test their source code at least frequently (average re-
sponse was 5.5), and 89% test their regexes at least occasion-

http://micans.org/mcl/
http://research.microsoft.com/en-us/projects/rex/

Table 1: Survey results for number of regexes com-
posed per year by technical environment (RQ1)

Language/Environment 0 1-5 6-10 11-20 21-50 51+
General (e.g., Java) 1 6 5 3 1 2
Scripting (e.g., Perl) 5 4 3 3 2 1
Query (e.g., SQL) 15 2 0 0 1 0
Command line (e.g., grep) 2 5 3 2 0 6
Text editor (e.g., IntelliJ) 2 5 0 5 1 5

Table 2: Survey results for regex usage frequencies
for activities, averaged using a 6-point likert scale:
Very Frequently=6, Frequently=5, Occasionally=4,
Rarely=3, Very Rarely=2, and Never=1 (RQ1)

Activity Frequency
Locating content within a file or files 4.4
Capturing parts of strings 4.3
Parsing user input 4.0
Counting lines that match a pattern 3.2
Counting substrings that match a pattern 3.2
Parsing generated text 3.0
Filtering collections (lists, tables, etc.) 3.0
Checking for a single character 1.7

ally (average response was 5.0). Half of the developers indi-
cate that they use external tools to test their regexes, and
the other half indicated that they only use tests that they
write themselves. Of the nine developers using tools, six
mentioned online composition aides such as regex101.com
where a regex and input string are entered, and the input
string is highlighted according to what is matched.

When asked an open ended question about pain points en-
countered with regular expressions, we observed three main
categories. The most common, “hard to compose,” was rep-
resented in 61% (11) responses. Next, 39% (7) developers
responded that regexes are “hard to read” and 17% (3) in-
dicated difficulties with “inconsistency across implementa-
tions,” which manifest when using regexes in multiple lan-
guages. These responses do not sum to 18 as three develop-
ers provided multiple parts in their answers.

Summary - RQ1: Common uses of regexes include lo-
cating content within a file, capturing parts of strings, and
parsing user input. The fact that all the surveyed developers
compose regexes, and half of the developers use tools to test
their regexes indicates the importance of tool development
for regex. Developers complain about regexes being hard to
read and hard to write.

4.2 RQ2: How is the re module used?

We explore regex utilizations and flags used in the scraped
Python projects. Out of the 3,898 projects scanned, 42.2%
(1,645) contained at least one regex utilization. To illustrate
how saturated projects are with regexes, we measure utiliza-
tions per project, files scanned per project, files contained
utilizations, and utilizations per file, as shown in Table

Table 3: How Saturated are Projects with Utiliza-
tions? (RQ1)

source

Ql Avg Med Q3 Max
2 32 5 19 1,427
2
1
1

utilizations per project

6 21 5,963
11 2 6 541
1 3 207

utilizing files per project

|
|
files per project |
|
|

utilizations per file

60000 -
50000 B re.subn 77 (0.1%)

| O re.sub 6,826 (12.7%)
40000 B re.finditer 124 (0.2%)
30000 — O re.findall 1,825 (3.4%)

| M re.split 1,084 (2%)
20000

O re.match 5,788 (10.7%)
10000 B re.search 7,116 (13.2%)
0 - B re.compile 31,054 (57.6%)

Figure 5: How often are re functions used? (RQ2)

Of projects containing at least one utilization, the average
utilizations per project was 32 and the maximum was 1,427.
The project with the most utilizations is a C# projectﬂ that
maintains a collection of source code for 20 Python libraries,
including larger libraries like pip, celery and ipython. These
larger Python libraries contain many utilizations. From Ta-
ble [3] we also see that each project had an average of 11
files containing any utilization, and each of these files had
an average of 2 utilizations.

The number of projects that use each of the re functions
is shown in Figure The y-axis denotes the total utiliza-
tions, with a maximum of 53,894. The re.compile function
encompasses 57.6% of all utilizations. Note that compiled
objects can also be used to call functions of the re module, ie
compiledObject.findall(...), but we ignore these utiliza-
tions so that our analysis is easier to automate, and because
we are primarily interested in extracting the patterns which
these 8 functions contain.

Of all utilizations, 87.3% had no flag, or explicitly specified
the default flag. The debug flag, which causes the re regex
engine to display extra information about its parsing, was
never observed. This may be because developers use it for
debugging and choose not to commit it to their repositories.

Summary - RQ2: Only about half of the Python projects
sampled contained any utilizations. Most utilizations used
the re.compile function to compile a regex object before
actually using the regex to find a match. Most utilizations
did not use a flag to modify matching behavior.

4.3 RQ3: Regex language feature usage

We count the usages of each feature per project and as
compared to all distinct regex patterns in the corpus.

4.3.1 Feature Usage

Table [displays feature usage from the corpus and relates
it to four major regex research efforts. Only features appear-
ing in at least 10 projects are listed. The first column, rank,

Shttps://github.com/Ouroboros/Arianrhod

regex101.com
https://github.com/Ouroboros/Arianrhod

Table 4: How Frequently do Features Appear in Projects? (RQ2)

rank code description example brics hampi Rex RE2 nPatterns % patterns nProjects % projects
1 ADD one-or-more repetition z+ ° ° °) 6,003 44.1 1,204 73.2
2 CcG a capture group (caught) ° ° o o 7,130 52.4 1,194 72.6
3 KLE zero-or-more repetition Lk ° ° ° o 6,017 44.3 1,099 66.8
4 CCC custom character class [aeiou] ° ° ° ° 4,468 32.9 1,026 62.4
5 ANY any non-newline char . ° ° ° o 4,657 34.3 1,005 61.1
6 RNG chars within a range [a-z] ° ° ° ° 2,631 19.3 848 51.6
7 STR start-of-line - o ° o o 3,563 26.2 846 51.4
8 END end-of-line $ o ° o o 3,169 23.3 827 50.3
9 NCCC negated CCC ["quxf] ° ° e o 1,935 14.2 776 47.2
10 WSP \t \n \r \v \f or space \s o) o o 2,846 20.9 762 46.3
11 OR logical or alb ° ° ° ° 2,102 15.5 708 43
12 DEC any of: 0123456789 \d o] ° . ° 2,297 16.9 692 42.1
13 WRD [a-zA-Z0-9_] \w o ° o o 1,430 10.5 650 39.5
14 QST zero-or-one repetition z? . . o o 1,871 13.8 645 39.2
15 LZY as few reps as possible Z+7? o ° o e 1,300 9.6 605 36.8
16 NCG group without capturing a(?:b)c o ° o e 791 5.8 404 24.6
17 PNG named capture group (?P<name>x) O . o ° 915 6.7 354 21.5
18 SNG exactly n repetition z{8} ° ° ° ° 581 4.3 340 20.7
19 NWSP any non-whitespace \S o . e o 484 3.6 270 16.4
20 DBB n < x < m repetition z{3,8} ° ° ° ° 367 2.7 238 14.5
21 NLKA sequence doesn’t follow a(?lyz) o o o o 131 1 183 11.1
22 WNW word/non-word boundary \b o o o e 248 1.8 166 10.1
23 NWRD non-word chars \W o ° ° ° 94 0.7 165 10
24 LWB at least n repetition z{15,} ° ° ° ° 91 0.7 158 9.6
25 LKA matching sequence follows a(?=bc) o o o o 112 0.8 158 9.6
26 OPT options wrapper (?7i)CasE o] o) 231 1.7 154 9.4
27 NLKB sequence doesn’t precede (7<!x)yz o o o o 94 0.7 137 8.3
28 LKB matching sequence precedes (?<=a)bc o o o o 80 0.6 120 7.3
29 ENDZ absolute end of string \Z o o o ° 89 0.7 90 5.5
30 BKR match the i" CG \1 o o o o 60 0.4 84 5.1
31 NDEC any non-decimal \D o . e o 36 0.3 58 3.5
32 BKRN references PNG (?P=name) o ° o) o 17 0.1 28 1.7
33 VWSP matches U+000B \v o o ° ° 13 0.1 15 0.9
34 NWNW negated WNW \B o o o e 4 0 11 0.7

lists the rank of a feature (relative to other features) in terms
of the number of projects in which it appears. The next col-
umn, code, gives a succinct reference string for the feature,
and is followed by a description column that provides a brief
comment on what the feature does. The example column
provides a short example of how the feature can be used.
The next four columns, (i.e., brics, hampi, Rez, and RE2),
map to the four major regex research efforts chosen for our
investigation (see Section @ We indicate that a project
supports a feature with the ‘@’ symbol, and indicate that a
project does not support the feature with the ‘0’ symbol.
The final four columns contain two pairs of usage statistics.
The first pair contains the number and percent of patterns
that a feature appears in, out of the 13,597 patterns that

make up the corpus. The second pair of columns contain
the number and percent of projects that a feature appears
in out of the 1,645 projects scanned that contain at least
one utilization.

One notable omission from Table [4] is the literal feature,
which is used to specify matching any specific character. An
example pattern that contains only one literal token is the
pattern ‘a’. This pattern only matches the lowercase letter
‘a’. The literal feature was found in 97.7% of patterns. We
consider the literal feature to be necessary for any regex
related tool to support, and so exclude it from Table 4] and
the rest of the feature analysis.

The eight most commonly used features, ADD, CG, KLE,
CCC, ANY, RNG, STR and END, appear in over half the

projects. CG is more commonly used in patterns than the
highest ranked feature (ADD) by a wide margin (over 8%),
even though they appear in similar numbers of projects.

4.3.2 Feature Support in Regex Tools

While there are many regex tools available, in this work,
we focus on the feature support for four tools, brics, hampi,
Rex and RE2, which offer diversity across developers (i.e.,
Microsoft, Google, open source, and academia) and applica-
tions. Further, as we wanted to perform a feature analysis,
these four tools and their features are well-documented, al-
lowing for easy comparison.

To create the tool mappings, we consulted documentation
for each tool. For brics, we collected the set of supported
features using the formal grammalﬂ For hampi, we manu-
ally inspected the set of regexes included in the 1ib/regex-
hampi/sampleRegex file within the hampi repositoryEI (this
may have been an overestimation, as this included more fea-
tures than specified by the formal grammai’). For RE2,
we used the supported feature documentatio For Rex,
we collected the feature set empirically because we tried to
parse all scraped patterns with Rex for the behavioral anal-
ysis (Section , and Rex provides comprehensive error
feedback for unsupported features.

Of the four regex research efforts selected for this anal-
ysis, RE2 supports the most studied features (28 features)
followed by hampi (25 features), Rex (21 features), and brics
(12 features). All research efforts support the 8 most com-
monly used features except brics, which does not support
STR or END. No research efforts support the four look-
around features LKA, NLKA, LKB and NLKB. RE2 and
hampi support the LZY, NCG, PNG and OPT features,
whereas brics and Rex do not.

4.3.3 Survey Results for Feature Usage

The pattern language for Python, which is used to com-
pose regexes, supports default character classes like the ANY
or dot character class: . meaning, ‘any character except

newline’. It also supports three other default character classes:

\d, \w, \s (and their negations). All of these default char-
acter classes can be simulated using the custom character
class (CCC) feature, which can create semantically equiv-
alent regexes. For example the decimal character class:
\d is equivalent to a CCC containing all 10 digits: \d =
[0123456789] = [0-9]. Other default character classes such
as the word character class: \w may not be as intuitive to
encode in a CCC: [a-zA-Z0-9_].

Survey participants were asked if they use only CCC, use
CCC more than default, use both equally, use default more
than CCC or use only default. Results for this question are
shown in Table [5] with 67% (12) indicating that they use
default the most. Participants who favored CCC indicated
that “it is more explicit,” whereas the participants who fa-
vored default character classes said, “it is less verbose” and
“I like using built-in code.”

To further explore how participants use various regex fea-
tures, participants were asked five questions about how fre-

"http:/ /www.brics.dk/automaton /doc/index.html?dk/
brics/automaton/Reglkxp.html

8https://code.google.com /p/hampi/downloads/list

http://people.csail.mit.edu/akiezun /hampi/Grammar.
html

https://re2.googlecode.com/hg/doc/syntax.html

Table 5: Survey results for preferences between cus-
tom character and default character classes (RQ3)

Preference Frequency
use only CCC 1
use CCC more than default 5
use both equally 2
use default more than CCC 10
use only default 2
Table 6: Survey results for regex usage fre-

quencies, averaged using a 6-point likert scale:
Very Frequently=6, Frequently=5, Occasionally=4,
Rarely=3, Very Rarely=2, and Never=1 (RQ3)

Group Code Frequency

endpoint anchors (STR, END) 4.4

capture groups (CG) 4.2

word boundaries (WNW) 3.5

lazy repetition (LZY) 2.9

(neg) look-ahead/behind (LKA, NLKA, 2.5
LKB, NLKB)

quently they use specific related groups of features, chosen
based on the tool feature support explored in Section
Results are shown in Table[6] indicating that lazy repetition
and look-ahead features are rarely used and capture groups
and endpoint anchors are occasionally to frequently used.

Summary - RQ3: The eight most common features are
found in over 50% of the projects. The STR and END fea-
tures are present in over half of the scanned projects con-
taining utilizations. In our survey, over half (56%) of the
respondents answered that they use endpoint anchors fre-
quently or very frequently.

The LZY feature is present in over 36% of scanned projects
with utilizations, and yet was not supported by two of the
four major regex research efforts we explored, brics and RE2.
In our developer survey, 11% (2) of participants use this fea-
ture frequently and 6 (33%) use it occasionally, showing a
modest impact on potential users. When survey participants
were asked if they prefer to always use numbered (BKR) or
named (BKRN) back references, 66% (12) of survey partic-
ipants said that they always use BKR, and the remaining
33% (6) said “it depends.” No participants preferred named
capture groups. BKR is present in 5% of scanned projects,
while BKRN is present in only 1.7%, which corroborates our
findings that numbered are generally preferred over named
capture groups.

4.4 RQ4: Regex behavioral similarity

The motivation for clustering regexes by behavior is to ob-
jectively identify common use-cases. In order to focus on the
most widespread use cases, the 10,015 (74%) patterns found
in only one project are ignored. We exclude an additional
711 (5%) patterns that contain features not supported by
Rex. We studied the remaining 2,871 (21%) patterns using
our similarity analysis technique. The impact is that 923

http://www.brics.dk/automaton/doc/index.html?dk/brics/automaton/RegExp.html
http://www.brics.dk/automaton/doc/index.html?dk/brics/automaton/RegExp.html
https://code.google.com/p/hampi/downloads/list
http://people.csail.mit.edu/akiezun/hampi/Grammar.html
http://people.csail.mit.edu/akiezun/hampi/Grammar.html
https://re2.googlecode.com/hg/doc/syntax.html

Table 7: Sample from an example cluster (RQ4)

index pattern nProjects | index pattern nProjects
1 i 8 5 ‘[:1° 6
2 (:)° 8 6 C([h:1H) x> 6
3 NEOK 8 7 ‘\s*:\s*x’ 4
4 “C()CGx) 8 8 \:? 2

Table 8: Cluster categories and sizes (RQ4)
Category

Clusters Patterns Projects

Multi Matches 21 237 295
Specific Char 17 103 184
Anchored Patterns 20 85 141
Content of Parens 10 46 111
Two or More Chars 16 40 120
Code Search 15 27 92

projects were excluded from the data set for the similarity
analysis. Omitted features are indicated in Table 4] for Rex.
From 2,871 distinct patterns, MCL clustering identified
186 clusters with 2 or more patterns, and 2,042 clusters of
size 1. The average size of clusters larger than size one was
4.5. Each pattern belongs to exactly one cluster.
Table [7] provides an example of a behavioral cluster con-

taining 12 patterns (four longer patterns omitted for brevity).

Patterns from this cluster are present in 31 different projects.
All patterns in this cluster share the literal ‘" character. The
smallest pattern, ¢:+’, matches one or more colons.

We observe that the smallest pattern in a cluster provides
insight about key characteristics that all the patterns in the
cluster have in common. A shorter pattern will tend to have
less extraneous behavior because it is specifying less behav-
ior, yet, in order for the smallest pattern to be clustered, it
had to match most of the strings created by Rex from many
other patterns within the cluster, and so we observe that the
smallest pattern is useful as a representative of the cluster.

For the rest of this paper, a cluster will be represented
by one of the shortest patterns it contains, followed by the
number of projects any member of the cluster appears in,
so the cluster in Table [7] will be represented as ‘:+’(31).
This representation is not an attempt to express all notable
behavior of patterns within a cluster, but is a useful abbrevi-
ation. Other regexes in the cluster may exhibit more diverse
behavior, for example the pattern ¢ ([~: 1+):(.*)’ requires
a non-colon character to appear before a colon character.

We manually mapped the top 100 largest clusters based
on the number of projects into 6 behavioral categories (de-
termined by inspection). The largest cluster was left out, as
it was composed of patterns that trivially matched almost
any string, such as ‘b*’> and ‘~’. The remaining 99 clus-
ters were categorized and are briefly summarized in Table
showing the name of the category and the number of clus-
ters it represents, patterns in those clusters, and projects.
The most common category is Multi Matches, which con-
tains clusters that have alternate behaviors (e.g., matching
a comma or a semicolon, as in ¢, |;’(18)). Each cluster
was mapped to exactly one category. Next, we describe the
categories, ordered by the number of projects.

4.4.1 Multiple Matching Alternatives

The patterns in these clusters match under a variety of
conditions by using a character class or a disjunctive |. For
example: ¢ (\W)’(89) matches any alphanumeric character,
“(\s)’(89) matches any whitespace character, ‘\d’(58)
matches any numeric character, and ,|;’(18) matches a
comma or semicolon. Most of these clusters are represented
by patterns that use default character classes, as opposed
to custom character classes. This provides further support
for our survey results to the question, Do you prefer to use
custom character classes or default character classes more
often?, in which a majority of participants indicated they
use the default classes more than custom.

4.4.2 Specific Character Must Match

Each cluster in this category requires one specific charac-
ter to match, for example: ‘\n\s*’(42) matches only if a
newline is found, ¢:+’(31) matches only if a colon is found,
‘%’ (22), matches only if a percent sign is found and ‘}’ (14)
matches only if a right curly brace is found. Table[] presents
a cluster that falls under this category. The commonality of
this cluster category contrasts with the survey in Section
in which participants reported to very rarely or never use
regexes to check for a single character (Table .

4.4.3 Anchored Patterns

Each of the clusters uses at least one endpoint anchor
to require matches to be absolutely positioned, for example:
¢ (\w+)$’ (35) captures the word characters at the end of the
input, ‘~\s’(16) matches a whitespace at the beginning of
the input, and ‘~-7\d+$’ (17) requires that the entire input
is an (optionally negative) integer. These anchors are the
only way in regexes to guarantee that a character does (or
does not) appear at a particular location by specifying what
is allowed. As an example, ~[-_A-Za-z0-9]+$ says that
from beginning to end, only [-_A-Za-z0-9] characters are
allowed, so it will fail to match if undesirable characters,
such as 7, appear anywhere in the string.

4.4.4 Content of Brackets and Parenthesis

The clusters in this category center around finding a pair
of characters that surround content, often also capturing
that content. For example, ‘\(.*\)’(29) matches when
content is surrounded by parentheses and ‘" .*"’ (25) matches
when content is surrounded by double quotes. The cluster
‘<(.+)>’(23) matches and captures content surrounded by
angled brackets.

4.4.5 Two or More Characters in Sequence

These clusters require several characters in a row to match
some pattern, for example: ‘\d+\.\d+’ (30) requires one or
more digits followed by a period character, followed by one
or more digits. The cluster ¢ °’(17) requires two spaces in
arow, and ‘@[a-z]+’ (9) requires the at symbol followed by
two or more lowercase characters, as in a twitter handle.

4.4.6 Code Search and Variable Capturing

These clusters show a recognizable effort to parse source
code or URLs. For example, ‘“https?://’(23) matches
a web address, and ¢ (.+)=(.+)’(9) matches an assignment
statement, capturing both the variable name and value. The
cluster ‘\$\{([\w\-1+)\1}’ (11) matches an evaluated string
interpolation and captures the code to evaluate.

Summary - RQ4: We identified six main categories that
define regex behavior at a high level: matching with alterna-
tives, matching literal characters, matching with sequences,
matching with endpoint anchors, parsing contents of brack-
ets or braces, or searching and capturing code.

S. DISCUSSION

In this section, we discuss the implications of these em-
pirical findings and opportunities for future work.

5.1 Implications For Tool Designers

The results have implications for regex tool designers.

5.1.1 Finding Specific Content

Two categorical clusters, Specific Characters Must Match
(Section [4.4.2) and Two or More Characters in Sequence
(Section [4.4.5)), deal with identifying the presence of spe-
cific character(s). While multiple character matching sub-
sumes single character matching, the overarching theme is
that these regexes are looking to validate strings based on
the presence of very specific content, as would be done for
many common activities listed in Table such as, “Locating
content within a file or files.” More study is needed into what
content is most frequently searched for, but from our cluster
analysis we found that version numbers, twitter or user han-
dles, hex values, decimal numbers, capitalized words, and
particular combinations of whitespace, slashes and other de-
limiters were discernible targets. Tools that support regex
creation for these purposes may be useful.

5.1.2 Capturing Specific Content Near A Delimiter

The survey results from Section [£.1] indicate that captur-
ing parts of strings is among the most frequent activities
for which developers use regexes. From a feature perspec-
tive, the capture group (CG) is the most frequently used in
terms of patterns (Table . This feature has two functions:
1) logical grouping as would be expected by parenthesis,
and 2) retrieval of information in one logical grouping. As
mentioned in Section [f4] capturing content was a primary
goal evident in several cluster categories. The fourth-largest
category is based entirely on capturing the content between
brackets or parentheses (Section .

Many uses of CG also use the ANY and KLE features, eg.
Cx) LRI and \\s*x([": I*)\\s*:(.*). This type
of usage frequently revolves around an important delimiter
character such as : or \. This use case is well supported by
existing tools for ASCII characters, but future tools should
consider the centrality of this use case and its implications
for non-English users of regex tools. For example, Uni-
code characters like ‘U+060D’ the Arabic Date Separator,
or ‘U+41806’ the Mongolian Todo Soft Hyphen may be used
to locate segments of text that a user would want to capture.

5.1.3 Counting Lines

Text files containing one unit of information per line are
common in a wide variety of applications (for example .log
and .csv files). Out of the 13,597 patterns in the corpus,
3,410 (25%) contained ANY followed by KLE (i.e., ¢.*?),
often at the end of the pattern. One reasonable explanation
for this tendency to put ¢.*’ at the end of a pattern is that
users want to disregard all matches after the first match on
a single line in order to count how many distinct lines the
match occurs on. Survey participants indicated an average

frequency of “Counting lines that match a pattern” at 3.2 or
rarely /occasionally. It may be valuable for tool builders to
include support for common activities such as line counting.

5.2 Opportunities For Future Work

There are many opportunities for future work.

5.2.1 Refactoring Regexes

The survey showed that users want readability and find
the lack of readable regexes to be a major pain point. This
provides an opportunity to introduce refactoring transfor-
mations to enhance readability or comprehension. As one
potential opportunity, certain character classes are logically
equivalent and can be expressed differently, for example, \d
= [0123456789] = [0-9]. While \d is more succinct, [0-9]
may be easier to read, so an appropriate refactoring could
be introduced. Human studies are needed to evaluate the
readability and comprehension of various regex features in
order to define and support appropriate regex refactorings.

Another avenue of refactoring could be for performance.
Various implementations of regex libraries may perform more
efficiently with some features than others. An evaluation of
regex feature implementation speeds would facilitate seman-
tic transformations based on performance, similar to perfor-
mance refactorings for LabVIEW [10}/11].

Additionally, some developers may find specific content
with a regex and then subsequently capture it with string
parsing, which may be more error prone than using a capture
group and indicates a missed opportunity to use the full
extent of regex libraries. Future work will explore source
code to identify the frequency of such occurrences and design
refactorings to better utilize regex library features.

5.2.2 Migration Support for Developers

Within standard programming languages, regular expres-
sions libraries are very common, yet there are subtle dif-
ferences between language libraries in the supported fea-
tures. For example, Java supports possessive quantifiers like

‘ab*+c’ (here the ‘+’ is modifying the ‘*’ to make it pos-
sessive) whereas Python does not. Differences among pro-
gramming language implementations was identified as a pain
point for using regular expressions by 17% of the survey par-
ticipants. This provides a future opportunity for tools that
translate between regex utilizations in various languages.

5.2.3 Similarity Beyond String Matching

There are various ways to compute similarity between
regexes, each with different tradeoffs. While the similarity
analysis we employ over-approximates similarity when com-
pared to containment analysis, it may under-approximate
similarity in another sense. For example, two regexes that
have dissimilar matching behavior could be very similar in
purpose and in the eyes of the developer. As an example,
commit:\[(\d+)\]-(.*) and push:\[(\d+)\1-(.*) could
both be used to capture the id and command from a version-
ing system, but match very different sets of strings. Future
work would apply abstractions to the regex strings, such as
removing or relaxing literals, prior to similarity analysis.

From another perspective, our regex similarity measure,
and even containment analysis, could treat behaviorally iden-
tical regexes as the same, when their usage in practice is
completely different. For example, in Table m the regexes
“:+’ and ‘(:+)’ are behaviorally identical in that they
match the same strings, except the latter uses a capture

group. In practice, these may be used very differently, where
the former may be used for validation and the latter for ex-
traction. This usage difference could be observed by code
analysis, and is left for future work.

5.2.4 Automated Regex Repair

Regular expression errors are common and have produced
thousands of bug reports |30]. This provides an opportu-
nity to introduce automated repair techniques for regular
expressions. Recent approaches to automated program re-
pair rely on mutation operators to make small changes to
source code and then re-run the test suite (e.g., [19,34]). In
regular expressions, it is likely that the broken regex is close,
semantically, to the desired regex. Syntax changes through
mutation operators could lead to big changes in behavior, so
we hypothesize that using the semantic clusters identified in
Section [£:4] to identify potential repair candidates could ef-
ficiently and effectively converge on a repair candidate.

5.2.5 Developer Awareness of Best Practices

One category of clusters, Content of Brackets and Paren-
thesis, parses the contents of angle brackets, which may in-
dicate developers are using regexes to parse HI'ML or XML.
As the contents of angle brackets are usually unconstrained,
regexes are a poor replacement for XML or HTML parsers.
This may be a missed opportunity for the regex users to take
advantage of more robust tools. More research is needed into
how regex users discover best practices and how aware they
are of how regexes should and should not be used.

5.2.6 Tool-Specific Regex Exploration

In some environments, such as command line or text edi-
tor, regexes are used extensively by the surveyed developers
(Section , but these regular expressions do not persist.
Thus, using a repository analysis for feature usage only il-
lustrates part of how regexes are used in practice. Exploring
how the feature usage differs between environments would
help inform tool developers about how to best support regex
usage in context, and is left for future work.

6. THREATS TO VALIDITY

The following threats impact our results and conclusions:

Reliability of Measures: The validity of our survey
results is dependent on the clarity of the questions. The
authors went through several iterations of the survey and
included examples for all the regex feature descriptions to
improve understandability.

The similarity measure between regexes used in the cluster
algorithm is computed empirically rather than analytically,
and the more Rex-generated strings used to compute the
similarity measure, the more likely it is to be accurate. Our
experiments used 400 strings to balance performance and
precision, but a higher number could lead to more cohesive
clusters. Additionally, regex patters that use any feature not
supported by Rex were omitted from the cluster analysis.
Last, the threshold of 0.75 was chosen based on the MCL
recommendation, but it may not create optimal clusters.

Instrumentation: Regular expression patterns were clus-
tered using strings generated by the Rex tool. We assume
that the strings generated by Rex are reasonably diverse
to help characterize the regex behavior. To mitigate this
threat, Rex generated 400 strings per regex and we inspected
strings randomly to ensure diversity.

Implementation errors are a risk for research involving
repository analysis. To combat this, we have tested our
code and made the repository publicly availabl

Selection: We mined 3,898 Python projects from GitHub,
which is small compared to all available projects with Python
code. The projects were mined using the GitHub API which
sorts the projects by creation date. By using the API, the
goal was to reduce sampling bias from the researchers.

We also did not scrape all commits in every project for reg-
ular expression utilizations, rather, we grabbed each project
every 20 commits. It is possible that in between the scanned
commits, a regex utilization was added and then removed,
leading to fewer utilizations in our final data set.

Recall bias: Survey participants were asked to reflect
on their past behavior, which may not represent actual be-
havior. To mitigate this, we designed the survey to lead
participants to think about their behavior before summariz-
ing (e.g., asking how often they use regexes in each of several
environments before asking about usage frequency).

Interaction of Selection and Treatment: Our survey
participants were software developers from a small startup
company and may not be representative of developers who
use regexes. Given that the average participant has nine
years of development experience, their responses likely pull
from a variety of experiences with regex usage, but replica-
tion with a more diverse set of developers is needed.

Interaction of Setting and Treatment: We only ex-
plore regexes in Python projects so these results may be
coupled with the activities performed using Python and not
generalize to other languages. The regex usage context re-
ported by survey participants, however, includes information
on regex usage in a variety of settings and languages.

7. CONCLUSION

In this work, we have explored the contexts in which reg-
ular expressions are used as well as the features and be-
havioral similarities of regexes found in open source Python
projects. In a survey of 18 professional developers, we find
that 50% compose regular expressions at least weekly. The
most common purposes are locating content within a file or
capturing parts of strings. The most difficult parts about
working with regular expressions were reported to be com-
posing and reading them. In a study of regular expression
usage in nearly 4,000 Python projects, we find that over 42%
of projects contain a regular expression. We present an ap-
proach to measure behavioral similarity between regexes by
generating strings that match one regex and pairwise testing
the remaining regexes against it. This similarity measure is
used to form cross-project behavioral clusters. In the top
100 largest clusters, we find that capturing the contents of
brackets, searching for delimiter characters and matching al-
ternative values were common behaviors. These results have
implications for tool designers and for future research aimed
at better supporting developers in using regular expressions.

Acknowledgment

Special thanks to the survey participants. This work is sup-
ported in part by NSF SHF-1218265, NSF SHF-EAGER-
1446932, and the Harpole-Pentair endowment at Iowa State
University.

Hhttps://github.com/softwarekitty /tour_de_source

https://github.com/softwarekitty/tour_de_source

8.
1]

2]

[10]

[11]

[12]

REFERENCES
F. Alkhateeb, J.-F. Baget, and J. Euzenat. Extending

sparql with regular expression patterns (for querying
rdf). Web Semant., 7(2):57-73, Apr. 2009.

S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B.
Cohen, W. Grieskamp, M. Harman, M. J. Harrold, and
P. Mcminn. An orchestrated survey of methodologies
for automated software test case generation. J. Syst.
Softw., 86(8):1978-2001, Aug. 2013.

A. Arslan. Multiple sequence alignment containing a
sequence of regular expressions. In Computational
Intelligence in Bioinformatics and Computational
Biology, 2005. CIBCB ’05. Proceedings of the 2005
IEEE Symposium on, pages 1-7, Nov 2005.

R. Babbar and N. Singh. Clustering based approach to
learning regular expressions over large alphabet for
noisy unstructured text. In Proceedings of the Fourth
Workshop on Analytics for Noisy Unstructured Text
Data, AND ’10, pages 43-50, New York, NY, USA,
2010. ACM.

R. A. Baeza-Yates and G. H. Gonnet. Fast text
searching for regular expressions or automaton
searching on tries. J. ACM, 43(6):915-936, Nov. 1996.
F. Beck, S. Gulan, B. Biegel, S. Baltes, and

D. Weiskopf. Regviz: Visual debugging of regular
expressions. In Companion Proceedings of the 36th
International Conference on Software Engineering,
ICSE Companion 2014, pages 504-507, New York,
NY, USA, 2014. ACM.

A. Begel, Y. P. Khoo, and T. Zimmermann.
Codebook: Discovering and exploiting relationships in
software repositories. In Proceedings of the 32Nd
ACM/IEEE International Conference on Software
Engineering - Volume 1, ICSE ’10, pages 125-134,
New York, NY, USA, 2010. ACM.

O. Callad, R. Robbes, E. Tanter, and

D. Rothlisberger. How developers use the dynamic
features of programming languages: The case of
smalltalk. In Proceedings of the 8th Working
Conference on Mining Software Repositories, MSR
'11, pages 23-32, New York, NY, USA, 2011. ACM.
O. Callai, R. Robbes, E. Tanter, and

D. Réthlisberger. How (and why) developers use the
dynamic features of programming languages: The case
of smalltalk. Empirical Software Engineering,
18(6):1156-1194, Dec. 2013.

C. Chambers and C. Scaffidi. Smell-driven
performance analysis for end-user programmers. In
Proc. of VLH/CC ’13, pages 159-166, 2013.

C. Chambers and C. Scaffidi. Impact and utility of
smell-driven performance tuning for end-user
programmers. Journal of Visual Languages &
Computing, 28:176-194, 2015. to appear.

T.-H. Chen, M. Nagappan, E. Shihab, and A. E.
Hassan. An empirical study of dormant bugs. In
Proceedings of the 11th Working Conference on
Mining Software Repositories, MSR, 2014, pages
82-91, New York, NY, USA, 2014. ACM.

R. Dattero and S. D. Galup. Programming languages
and gender. Commun. ACM, 47(1):99-102, Jan. 2004.
R. Dyer, H. Rajan, H. A. Nguyen, and T. N. Nguyen.

Mining billions of ast nodes to study actual and
potential usage of java language features. In

(15]

(16]

(17]

(18]

(19]

20]

21]

(22]

23]

24]

(25]

Proceedings of the 36th International Conference on
Software Engineering, ICSE 2014, pages 779-790, New
York, NY, USA, 2014. ACM.

S. J. Galler and B. K. Aichernig. Survey on test data
generation tools. Int. J. Softw. Tools Technol. Transf.,
16(6):727-751, Nov. 2014.

I. Ghosh, N. Shafiei, G. Li, and W.-F. Chiang. Jst: An
automatic test generation tool for industrial java
applications with strings. In Proceedings of the 2013
International Conference on Software Engineering,
ICSE ’13, pages 992-1001, Piscataway, NJ, USA,
2013. IEEE Press.

M. Grechanik, C. McMillan, L. DeFerrari, M. Comi,
S. Crespi, D. Poshyvanyk, C. Fu, Q. Xie, and

C. Ghezzi. An empirical investigation into a
large-scale java open source code repository. In
Proceedings of the 2010 ACM-IEEE International
Symposium on Empirical Software Engineering and
Measurement, ESEM ’10, pages 11:1-11:10, New York,
NY, USA, 2010. ACM.

A. Kiezun, V. Ganesh, S. Artzi, P. J. Guo,

P. Hooimeijer, and M. D. Ernst. Hampi: A solver for
word equations over strings, regular expressions, and
context-free grammars. ACM Trans. Softw. Eng.
Methodol., 21(4):25:1-25:28, Feb. 2013.

C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer.
GenProg: A generic method for automated software
repair. Transactions on Software Engineering,
38(1):54-72, 2012.

J. Lee, M.-D. Pham, J. Lee, W.-S. Han, H. Cho,

H. Yu, and J.-H. Lee. Processing sparql queries with
regular expressions in rdf databases. In Proceedings of
the ACM Fourth International Workshop on Data and
Text Mining in Biomedical Informatics, DTMBIO ’10,
pages 23-30, New York, NY, USA, 2010. ACM.

Y. Li, R. Krishnamurthy, S. Raghavan,

S. Vaithyanathan, and H. V. Jagadish. Regular
expression learning for information extraction. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing, EMNLP ’08, pages
21-30, Stroudsburg, PA, USA, 2008. Association for
Computational Linguistics.

M. Linares-Vasquez, G. Bavota, C. Bernal-Cérdenas,
R. Oliveto, M. Di Penta, and D. Poshyvanyk. Mining
energy-greedy api usage patterns in android apps: An
empirical study. In Proceedings of the 11th Working
Conference on Mining Software Repositories, MSR
2014, pages 2—-11, New York, NY, USA, 2014. ACM.
B. Livshits, J. Whaley, and M. S. Lam. Reflection
analysis for java. In Proceedings of the Third Asian
Conference on Programming Languages and Systems,
APLAS’05, pages 139-160, Berlin, Heidelberg, 2005.
Springer-Verlag.

L. A. Meyerovich and A. S. Rabkin. Empirical
analysis of programming language adoption. In
Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems
Languages E#38; Applications, OOPSLA ’13, pages
1-18, New York, NY, USA, 2013. ACM.

A. Mgller. dk.brics.automaton — finite-state automata
and regular expressions for Java, 2010.
http://www.brics.dk/automaton/.

[26]

[27]

[28]
[29]

[30]

31]

[32]

The Bro Network Security Monitor.
https://www.bro.org/, May 2015.

C. Parnin, C. Bird, and E. Murphy-Hill. Adoption and
use of java generics. Empirical Softw. Engg.,
18(6):1047-1089, Dec. 2013.

RE2. https://github.com/google/re2, May 2015.

G. Richards, S. Lebresne, B. Burg, and J. Vitek. An
analysis of the dynamic behavior of javascript
programs. SIGPLAN Not., 45(6):1-12, June 2010.

E. Spishak, W. Dietl, and M. D. Ernst. A type system
for regular expressions. In Proceedings of the 14th
Workshop on Formal Techniques for Java-like
Programs, FT{JP 12, pages 20-26, New York, NY,
USA, 2012. ACM.

N. Tillmann, J. de Halleux, and T. Xie. Transferring
an automated test generation tool to practice: From
pex to fakes and code digger. In Proceedings of the
29th ACM/IEEEFE International Conference on
Automated Software Engineering, ASE ’14, pages
385-396, New York, NY, USA, 2014. ACM.

M.-T. Trinh, D.-H. Chu, and J. Jaffar. S3: A symbolic
string solver for vulnerability detection in web

33]

(34]

35]

963

applications. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications
Security, CCS 14, pages 1232-1243, New York, NY,
USA, 2014. ACM.

M. Veanes, P. d. Halleux, and N. Tillmann. Rex:
Symbolic regular expression explorer. In Proceedings
of the 2010 Third International Conference on
Software Testing, Verification and Validation, ICST
’10, pages 498-507, Washington, DC, USA, 2010.
IEEE Computer Society.

W. Weimer, S. Forrest, C. Le Goues, and T. Nguyen.
Automatic program repair with evolutionary
computation. Communications of the ACM Research
Highlight, 53(5):109-116, May 2010.

A. S. Yeole and B. B. Meshram. Analysis of different
technique for detection of sql injection. In Proceedings
of the International Conference E#38; Workshop on
Emerging Trends in Technology, ICWET ’11, pages
966, New York, NY, USA, 2011. ACM.

	Introduction
	Related Work
	Study
	Research Questions
	Survey Design and Implementation
	Regex Corpus
	Analyzing Features
	Clustering and Behavioral Similarity

	Results
	RQ1: How do developers use regexes?
	RQ2: How is the re module used?
	RQ3: Regex language feature usage
	Feature Usage
	Feature Support in Regex Tools
	Survey Results for Feature Usage

	RQ4: Regex behavioral similarity
	Multiple Matching Alternatives
	Specific Character Must Match
	Anchored Patterns
	Content of Brackets and Parenthesis
	Two or More Characters in Sequence
	Code Search and Variable Capturing

	Discussion
	Implications For Tool Designers
	Finding Specific Content
	Capturing Specific Content Near A Delimiter
	Counting Lines

	Opportunities For Future Work
	Refactoring Regexes
	Migration Support for Developers
	Similarity Beyond String Matching
	Automated Regex Repair
	Developer Awareness of Best Practices
	Tool-Specific Regex Exploration

	Threats to Validity
	Conclusion
	References

