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Abstract—The regular expression (regex) is a powerful tool em-
ployed in a large variety of software engineering tasks. However,
prior work has shown that regexes can be very complex and that
it could be difficult for developers to compose and understand
them. This work seeks to identify code smells that impact
comprehension. We conduct an empirical study on 42 pairs of
behaviorally equivalent but syntactically different regexes using
180 participants and evaluate the understandability of various
regex language features. We further analyze regexes in GitHub
to find the community standards or the common usages of various
features. We found that some regex expression representations
are more understandable than others. For example, using a
range (e.g., [0-9]) is often more understandable than a default
character class (e.g., [\d]). We also found that the DFA size
of a regex significantly affects comprehension for the regexes
studied. The larger the DFA of a regex (up to size eight), the more
understandable it was. Finally, we identify smelly and non-smelly
regex representations based on a combination of community
standards and understandability metrics.

Index Terms—Regular expression comprehension, equivalence
class, regex representations

I. INTRODUCTION

Regular expressions (regexes) are used fundamentally in

string searching and substitution tasks, such as word searching,

text editing, file parsing, user input validation, and access con-

trols. More advanced uses can be seen in search engines [1],

database querying [2], and network security [3]–[5].

Recent research has suggested that regular expressions are

hard to understand, hard to compose, and error prone [6].

Given their frequent appearances in software source code

and the difficulty of working with them, some effort has

been put into easing the burden on developers by providing

environments that make regexes easier to understand. Some

tools provide debugging environments which explain string

matching results and highlight the parts of regex patterns

which match a certain string [7], [8]. Other tools present

graphical representations (e.g., finite automata) of the regular

expressions [9], [10]. Still, others can automatically generate

strings according to a given regular expression [11], [12]

or automatically generate regexes according to a given list

of strings [13], [14]. The commonality of such tools and

techniques provides evidence that developers need help with

regex composition and comprehension.

In software engineering, code smells have been found to

hinder understandability of source code [15], [16]. Once

* This work was done while this author was at Iowa State University.

removed through refactoring, the code becomes more under-

standable, easing the burden on the programmer. In regular

expressions, such code smells have not yet been defined, per-

haps in part because it is not clear what makes a regex difficult

to understand or maintain. This is one of the goals of this work,

to explore language features that impact comprehension and

begin to identify code smells in regexes.

In regular expressions as in source code, there are multiple

ways to express the same semantic concept. For example, the

regex, aa* matches an “a” followed by zero or more “a”, and

is equivalent to a+ , which matches one or more “a”. That is,

both regexes match the same language but are expressed using

different syntax. What is not clear is which representation,

aa* or a+, is more easily understood.

In this work, we focus on identifying regex comprehension

smells. We identify equivalence classes of regex represen-

tations that provide options for concepts such as double-

bounds in repetitions (e.g., a{1,2}, a|aa) or character

classes (e.g., [0-9], [\d]). Based on an empirical study

measuring regex comprehension on 42 pairs of regexes using

180 participants, as well as an empirical study of nearly

14,000 regexes and their features, we identify smelly and non-

smelly regex representations. For example, aa* is more smelly

than a+, based on feature usage frequency in source code

(conformance to community standards) and understandability.

Our contributions are:
• An empirical study to evaluate regex comprehension with

180 participants for studying regex understandability,

• Identification of five types of equivalence classes and

18 corresponding representations for regular expressions,

and

• Identification of smelly and non-smelly regex representa-

tions to optimize 1) understandability and 2) conformance

to community standards, backed by empirical evidence.
Despite the frequent usage of regexes in source code [17],

this is the first work to explore regex comprehension.

II. RESEARCH QUESTIONS

In this work, we use the term regex representation to refer

to the syntactic expression of a regular expression. A feature
is a structural component of a regular expression (e.g., Kleene

star: * or custom character class: [1-5]). An equivalence
class is a group of behaviorally equivalent regular expressions.

To explore regex comprehension, we answer the following

research questions:
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Fig. 1. Types of equivalence classes based on language features. DBB = Double-Bounded, SNG = Single Bounded, LWB = Lower Bounded, CCC = Custom
Character Class and LIT = Literal. We use concrete regexes along with their Deterministic Finite Automaton (DFA) in the representations for illustration.
However, the A’s in the LWB group (or B’s in DBB group, S’s in SNG group, and so forth) abstractly represent any pattern that could be operated on by a
repetition modifier (e.g., literal characters, character classes, or groups). The same is true for the literals used in all the representations.

RQ1: Which regex representations are most understandable?
To answer RQ1, we conduct a study in which programmers

are presented with a regex and asked comprehension ques-

tions about its matching behavior. By comparing accuracy

between regexes that match the same language but are ex-

pressed using different representations (e.g., tri[a-f]3 and

tri(a|b|c|d|e|f)3), we can measure understandability

and identify code smells.

We also explore factors that may impact comprehension,

namely regex string length, regex DFA size, and the equiva-

lence class representation. This analysis requires identification

of equivalence classes for regexes. By inspecting a Python

regex dataset of nearly 14,000 regexes [17], we formed an

initial set of five types of equivalence classes to explore.

RQ2: Which regex representations have the strongest commu-
nity support based on frequency? To answer RQ2, we explore

the publicly available regex dataset [17] and use the presence

and absence of language features as a proxy for community

support, where more frequently-used features are assumed to

be more understandable.

RQ3: Which regex representations are most desirable (i.e.,
least smelly) based on both community support and under-
standability? Based on RQ1 and RQ2, we identify smelly

and non-smelly regex features based on a combination of

comprehension metrics and community support.

III. EQUIVALENCE CLASSES

To explore understandability, we defined an initial set of

equivalence classes for regexes. Using the publicly available

behavioral clusters of Python regexes [17], we manually identi-

fied several representations that appeared in many of the larger

clusters. While they are not a complete set of equivalence

classes, this is the first work to explore regex understandability,

and these equivalence classes provide an initial testbed for

exploration.

Figure 1 shows five types of equivalence classes in grey

boxes and examples of behaviorally equivalent representations

in white boxes with identifiers in white circles. For example,

LWB is a type of equivalence class with representations L1,

L2, and L3. Regexes AAA* and AA+ map to L2 and L3,

respectively.

Each equivalence class is accompanied by a deterministic

finite automata (DFA) representing the behavior of the exam-

ple regexes. For example, with the SNG group, each of the

regexes accepts strings with a sequence of exactly three ‘S’

characters. The accept state is marked by a double-circle. Next,

we describe each equivalence class group.

A. Custom Character Class Group

The Custom Character Class (CCC) group has regex repre-

sentations that use the custom character class language feature

or can be represented by such a feature. A custom character

class matches a set of alternative characters. For example, the

regex c[ao]t will match strings “cat” and “cot” because,

between the c and t, there is a custom character class, [ao],

that specifies either a or o (but not both) must be selected.

We use the term custom to differentiate these classes from the

default character classes, : \d, \D, \w, \W, \s, \S and .,
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provided by most regex libraries, though the default classes

can be encapsulated in a custom character class.

C1: Any pattern that contains a (non-negative) custom char-

acter class with a range feature like [a-f] as shorthand

for all of the characters between ‘a’ and ‘f’ (inclusive)

belongs to C1.
C2: Any pattern that contains a (non-negative) custom char-

acter class without any shorthand representations, specifi-

cally ranges or defaults (e.g., [012] is in C2, but [0-2]
is not).

C3: Any pattern with a character class expressed using nega-

tion, indicated by a caret (i.e., ˆ) followed by a custom

character class. For example, the pattern [ˆao] matches

every character except a or o.
C4: Any pattern using a default character class such as \d or

\W within a (non-negative) character class.
C5: These can be transformed into custom character classes

by removing the ORs and adding square brackets (e.g.,

(\d|a) in C5 is equivalent to [\da] in C4). All

custom character classes expressed as an OR of length-

one sequences, including defaults or other custom classes,

are in C51.

Note that a pattern can belong to multiple representations.

For example, [a-f\d] belongs to both C1 and C4.

B. Double-Bounded Group

The Double-Bounded (DBB) group contains all regex pat-

terns that use some repetition defined by a (non-equal) lower

and upper boundary. For example, pB{1,3}s represents a p
followed by one to three sequential B patterns, then followed

by a single s. This matches “pBs”, “pBBs”, and “pBBBs”.

D1: Any pattern that uses the curly brace repetition with a

lower and upper bound, such as pB{1,3}s.
D2: Any pattern that uses the questionable (i.e., ?) modifier

implies a lower-bound of zero and an upper-bound of one

(and hence is double-bounded).
D3: Any pattern that has a repetition with a lower and upper

bound and is expressed using ORs (e.g., pB{1,3}s be-

comes pBs|pBBs|pBBBs by expanding on each option

in the boundaries).

Patterns can belong to multiple representations (e.g.,

(a|aa)X?Y{2,4} belongs to all three nodes: Y{2,4}
maps to D1, X? maps to D2, and (a|aa) maps to D3).

C. Literal Group

In the Literal (LIT) group, all patterns that are not purely

default character classes must use literal tokens. We use the

ASCII charset in which all characters can be expressed using

hex and octal codes such as \xF1 and \0108, respectively.

T1: Patterns that do not use any hex, wrapped, or octal

characters, but use at least one literal character. Special

characters are escaped using the backslashes.
T2: Any pattern using a hex token, such as \x07.
T3: Any pattern with a literal character wrapped in square

brackets. This style is used most often to avoid using a

1An OR cannot be directly negated, it there is no edge between C3 and C5

backslash for a special character in the regex language,

for example, [{] which must otherwise be escaped like

\{.
T4: Any pattern using an octal token, such as \007.

Patterns often fall in multiple of these representations. For

example, abc\007 includes literals a, b, and c, and also octal

\007, thus belonging to T1 and T4. Not all transformations

are possible in this group. If a hex representation used for a

character is not on the keyboard, a transformation to T1 or T3

is infeasible.

D. Lower-Bounded Group

The Lower-Bounded (LWB) group contains patterns that

specify only a lower boundary on repetitions. This can be

expressed using curly braces with a comma after the lower

bound but no upper bound. For example, A{2,} will match

“AA”, “AAA”, “AAAA”, and any number of A’s greater or

equal to 2. In Figure 1, we chose the lower bound repetition

threshold of 2 for illustration; in practice this could be any

number, including zero.

L1: Any pattern using this curly braces-style lower-bounded

repetition (i.e., {}) belongs to node L1.
L2: Any pattern using the Kleene star (i.e., *), which means

zero-or-more repetitions.
L3: Any pattern using the additional repetition (i.e., +). For

example, T+ means one or more T’s.

Patterns often fall into multiple nodes in this equivalence

class. For example, with A+B*, A+ maps it to L3 and B*
maps it to L2.

E. Single-Bounded Group

The Single-Bounded (SNG) equivalence class contains three

representations in which each regex has a fixed number of rep-

etitions of some element. The important factor distinguishing

this group from DBB and LWB is that there is a single finite

number of repetitions, rather than a bounded range on the

number of repetitions (DBB) or a lower bound on the number

of repetitions (LWB).

S1: Any pattern with a single repetition boundary in curly

braces belongs to S1. For example, S{3}, states that S

appears exactly three times in sequence.
S2: Any pattern that is explicitly repeated two or more times

and could use repetition operators.
S3: Any pattern with a double-bound in which the upper

and lower bounds are same belong to S3. For example,

S{3,3} states S appears a minimum of 3 and maximum

of 3 times.

The pattern fa[lmnop][lmnop][lmnop] is a mem-

ber of S2 as [lmnop] is repeated three times, and

it could be transformed to fa[lmnop]{3} in S1 or

fa[lmnop]{3,3} in S3.

IV. UNDERSTANDABILITY STUDY (RQ1)

This study presents programmers with regexes and asks

comprehension questions. By comparing the understandability
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TABLE I
MATCHING METRIC EXAMPLE

String ‘RR*’ Oracle P1 P2 P3 P4
1 “ARROW”

2 “qRs” � � ?

3 “R0R” ? -

4 “qrs” � � -

5 “98” � � � � -

Score 1.00 0.80 0.80 0.50 1.00

= match, �= not a match, ? = unsure, – = left blank

of semantically equivalent regexes that match the same lan-

guage but have different syntactic representations, we aim to

identify understandability code smells. This study was imple-

mented on Amazon’s Mechanical Turk with 180 participants.

A total of 60 regexes were evaluated, constructing 42 pairs

of regex comparison. Each regex pattern was evaluated by 30

participants.

A. Metrics

We measure the understandability of regexes using two

complementary metrics, matching and composition. These are

referred to as the comprehension metrics. For a deeper look at

the data to gain a better understanding of factors that impact

comprehension, we also compute regex length and DFA size
for each regex.

Matching: Given a pattern and a set of strings, a participant

determines by inspection which strings will be matched by

the pattern. There are four possible responses for each string,

matches, not a match, unsure, or blank. An example2 from our

study is shown in Figure 2.

The percentage of correct responses, disregarding blanks

and unsure responses, is the matching score. For example,

consider regex pattern ‘RR*’, the five strings shown in

Table I, and the responses from four participants in the P1,

P2, P3 and P4 columns. The Oracle indicates the first three

strings match and the last two do not; P1 answers correctly

for the first three strings and the fifth, but incorrectly on the

fourth, so the matching score is 4/5 = 0.80. P2 incorrectly

thinks that the second string is not a match, so the score is

also 4/5 = 0.80. P3 marks ‘unsure’ for the third string and

so the total number of attempted matching questions is 4. P3
is incorrect about the second and fourth string, so they score

2/4 = 0.50. For P4, we only have data for the first and second

strings, since the other three are blank. P4 marks ‘unsure’ for

the second string so only one matching question has been

attempted; the matching score is 1/1 = 1.00.

Blanks were incorporated into the metric because questions

were occasionally left blank in the study. Unsure responses

were provided as an option so not to bias the results through

blind guessing. These situations did not occur very frequently.

Out of 1,800 questions (180 participants * 10 questions each),

only 1.8%(32) were impacted by a blank or unsure response

(never more than four out of 30 responses per pattern).

2Task instructions are also available: https://github.com/wangpeipei90/
RegexSmells/blob/master/questionnaire.pdf

Fig. 2. Questions from one pattern in one HIT

Composition: Given a pattern, a participant composes a

string they think it matches (question 7.F in Figure 2). If the

participant is accurate, a composition score is 1, otherwise 0.

For example, given the pattern (q4fab|ab) from our study,

the string, “xyzq4fab” matches and gets a score of 1, but the

string, “acb” does not match and gets a score of 0.

To determine the match between a string and a pattern, the

pattern is compiled using the re.compile module in Python.

An instance of re.RegexObject m is created using the compiled

pattern. m.search() returns an instance of re.MatchObject m2
with the string given as the input to this function. If m2 is not

None, then that string was a match and scored 1; otherwise it

scored 0.

Regex Length: Given a pattern, the regex length is com-

puted by its literal string length. For example, regexes \072
and ab*c are both length four.

DFA Size: Given a pattern,To compute the size of minimal

DFA, we run both brics [18] and Rex [12] on each regex, and

manually check their results to guarantee their correctness.

B. Design

We implemented this study on Amazon’s Mechanical Turk

(MTurk), a crowdsourcing platform where requesters create

human intelligence tasks (HITs) for completion by workers.

Worker Qualification: Qualified workers had to answer

four of the five basic regex questions correctly. These questions

were multiple-choice and asked the worker to analyze the

following patterns: a+, (r|z), \d, q*, and [p-s].

Tasks: Guided by the patterns in the corpus, we created 60

regex patterns that were grouped into 26 semantic equivalence

groups. There were 18 groups with two regexes targeting

various edges in the equivalence classes. The other eight

groups had three regexes each. In total there are 42 pairs of

patterns. In this way, we can draw conclusions by comparing

representations since the regexes evaluated were semantically

equivalent.

To form the semantic groups, we took a regex from the

corpus, matched it to a representation in Figure 1, trimmed it

down so it contained little more than just the feature of interest,

and then created other regexes that are semantically equivalent

but belong to other nodes in the equivalence class. For

example, a semantic group with regexes ((q4f){0,1}ab,
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TABLE II
3-FACTOR ANOVA WITH AVERAGE MATCHING OR COMPOSITION

ACCURACY AS DEPENDENT VARIABLES, CONSIDERING REPRESENTATION

(REP), DFA SIZE (DFA SIZE), AND REGEX LENGTH (LEN) AS

INDEPENDENT VARIABLES

Average Matching Average Composition

Df F value Pr(>F) F value Pr(>F)

dfa size 1 7.632 0.0153 * 10.084 0.00674 **

len 1 3.325 0.0896 · 0.001 0.98161

rep 15 2.062 0.0921 · 1.224 0.35538

dfa size:len 1 1.002 0.3339 1.384 0.25907

dfa size:rep 14 0.709 0.7355 0.920 0.56075

len:rep 10 0.924 0.5397 0.599 0.79054

dfa size:len:rep 3 1.163 0.3589 0.678 0.58002

Residuals 14

·α = 0.10 *α = 0.05 **α = 0.01 ***α = 0.001

((q4f)?ab), and (q4fab|ab) belong to D1, D2, and D3,

respectively. A group with regexes ([0-9]+)\.([0-9]+)
and (\d+)\.(\d+) is intended to evaluate the edge between

C1 and C4. We note that if we only used regexes from the

corpus, we would have had regexes with different semantics at

each node, or with additional language features, which would

make the comparisons of the targeted features difficult.

For each of the 26 semantic groups, we created five strings

for the study, where at least one matched and at least one did

not match. These were used to compute the matching metric.

Once all the patterns and matching strings were collected, we

created tasks for the MTurk participants as follows: randomly

select a pattern from 10 of the 26 semantic groups. Randomize

the order of these 10 patterns, as well as the order of the

matching strings for each pattern. After adding a question

asking the participant to compose a string that each pattern

matches, this creates one task on MTurk, such as the example

in Figure 2. This process was completed until each of the 60

regexes appeared in 30 HITs, resulting in a total of 180 total

unique HITs.

Implementation: Workers were paid $3.00 for successfully

completing one and only one HIT. The average completion

time for accepted HITs was 682 seconds (11 mins, 22 secs).

A total of 54 HITs were rejected: 48 had too many blank

responses, four were double-submissions by same workers,

one did not answer composition questions, and one missed

data of 3 questions. Rejected HITs were returned to MTurk to

be completed by others.

Participants: In total, there were 180 participants. A major-

ity were male (83%). Most had at least an Associates degree

(72%), were at least somewhat familiar with regexes (87%),

and had prior programming experience (84%).

C. Analysis

We computed a matching and composition score for each

regex based on the 30 participant responses. The average

analysis or average composition is computed by averaging the

associated 26-30 values for each metric for each of the 60

regexes (fewer than 30 values were used if all the responses in

a matching question were a combination of blanks and unsure).

Of the original 42 pairs, we report scores for 41. Due to

a design flaw, the regexes evaluated, \..* and \.+. were

not semantically equivalent (the former is missing an escape

and should be \.\.*), so this was omitted from the data.

In the end, we analyzed 58 regexes that cover 17 edges from

Figure 1.

To gain a better understanding of why some regexes may

be more understandable than others, we also look at the

impact of the representation from Figure 1, regex length,

and DFA size3 on the comprehension metrics. Note that we

retain all 60 regexes for this analysis as we are looking at the

properties of regexes individually. We conduct two three-factor

analysis of variances (ANOVAs) with matching accuracy and

composition accuracy as the dependent variables. We also

conduct the correlation analysis between these three factors

and the composition metrics. We use Spearman’s Rank-Order

Correlation because we have no priori knowledge about the

distributions of the factors. Since the regex representations

are categorical data, these are excluded from the correlation

analysis.

D. Results

The ANOVA in Table II shows that DFA size significantly

affects both the average matching accuracy and the average

composition at α = 0.05 and α = 0.01, respectively. The

length and representation from Figure 1 each significantly

affect the average matching accuracy at α = 0.10. Since

the DFA sizes vary across the pairwise comparisons within

a representation, we present our results for matching and

composition using each of the 41 pairs of regexes separately,

rather than in aggregate over the equivalence class edges

explored.

For the comprehension metrics, Table III presents the re-

sults. Each row represents a Pair of regex evaluated by study

participants. The representations for the regexes per Figure 1

are shown in the Edge column, which is how the table is sorted.

The Regex1 and Regex2 columns identify the regexes used in

the study, mapping to the first and second representations in

the Edge column, respectively. Match1 is the average matching

for Regex1 and Match2 is the average matching for Regex2.

Using the Mann-Whitney test of means, the sigM column

following tests if there is a significant difference between the

accuracies. The Comp1 column presents the percentage of

the string responses for that were in fact correctly matched

by Regex1. Comp2 presents the same information, except

for Regex2. The following sigC column uses a test of two

proportions to identify if the percentage of the participants

who correctly composed a string for Regex1 is significantly

different than the percentage who correctly composed a string

for Regex2.

To illustrate, consider pair 16 in Table III. One pair of

regexes was ([}{]) and (\{|\}) in C4 and C5, respec-

tively, with average matching scores of 78.79% and 70.33%

and average composition scores of 50.00% and 86.67%,

respectively. The difference between the composition scores

3Note that the study was not specifically designed for regex length and
DFA size
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TABLE III
PAIRWISE COMPARISONS OF REGEXES. EACH MATCHING OR COMPOSITION VALUE IS COMPUTED BASED ON APPROXIMATELY 30 DATA POINTS FROM 30

STUDY PARTICIPANTS

Pair Edge Regex1 Regex2 Match1(%) Match2(%) SigM Comp1(%) Comp2(%) SigC

1 C1 – C2 tri[a-f]3 tri[abcdef]3 94.00 93.17 83.33 83.33

2 C1 – C2 no[w-z]5 no[wxyz]5 93.33 87.17 86.67 86.67

3 C1 – C3 no[w-z]5 no(w|x|y|z)5 93.33 93.67 86.67 96.67

4 C1 – C4 ([0-9]+)\.([0-9]+) (\d+)\.(\d+) 90.17 94.44 83.33 93.33

5 C1 – C4 xg1([0-9]{1,3})% xg1(\d{1,3})% 82.67 81.33 76.67 66.67

6 C1 – C4 [a-f]([0-9]+)[a-f] [a-f](\d+)[a-f] 91.17 83.33 80.00 70.00

7 C1 – C4 &([A-Za-z0-9_]+); &(\w+); 81.90 82.59 56.67 66.67

8 C1 – C4 1q[A-Za-z0-9_][A-Za-z0-9_]1q\w\w 86.00 78.11 83.33 70.00

9 C1 – C4 tuv[A-Za-z0-9_] tuv\w 89.17 86.00 83.33 70.00

10 C1 – C5 tri[a-f]3 tri(a|b|c|d|e|f)3 94.00 86.11 83.33 80.00

11 C2 – C4 [\t\r\f\n ] [\s] 82.99 92.41 · 3.33 0.00

12 C2 – C5 tri[abcdef]3 tri(a|b|c|d|e|f)3 93.17 86.11 83.33 80.00

13 C2 – C5 no[wxyz]5 no(w|x|y|z)5 87.17 93.67 86.67 96.67

14 C3 – C4 [ˆ0-9A-Za-z] [\W_] 64.50 61.00 46.67 53.33

15 C3 – C4 [ˆ0-9] [\D] 58.00 73.33 63.33 73.33

16 C4 – C5 ([}{]) (\{|\}) 78.79 70.33 50.00 86.67 **

17 C4 – C5 ([:;]) (:|;) 81.38 94.00 46.67 46.67

18 D1 – D2 ((q4f){0,1}ab) ((q4f)?ab) 82.93 79.25 50.00 40.00

19 D1 – D2 (dee(do){1,2}) (deedo(do)?) 84.83 77.17 66.67 60.00

20 D1 – D3 ((q4f){0,1}ab) (q4fab|ab) 82.93 84.50 50.00 60.00

21 D1 – D3 (dee(do){1,2}) (deedo|deedodo) 84.83 90.00 66.67 63.33

22 D2 – D3 ((q4f)?ab) (q4fab|ab) 79.25 84.50 40.00 60.00

23 D2 – D3 (deedo(do)?) (deedo|deedodo) 77.17 90.00 * 60.00 63.33

24 L2 – L3 zaa* za+ 86.67 90.67 70.00 50.00

25 L2 – L3 RR* R+ 86.00 91.56 66.67 66.67

26 S1 – S2 %([0-9A-Fa-f]{2}) %([0-9a-fA-F][0-9a-fA-F]) 77.78 73.44 50.00 60.00

27 S1 – S2 &d([aeiou]{2})z &d([aeiou][aeiou])z 91.28 95.34 83.33 83.33

28 S1 – S2 fa[lmnop]{3} fa[lmnop][lmnop][lmnop] 87.17 88.00 83.33 73.33

29 T1 – T2 xyz[_\[\]‘\ˆ\\] xyz[\x5b-\x5f] 77.78 78.67 86.67 56.67 *

30 T1 – T2 t[:;]+p t[\x3a-\x3b]+p 94.33 88.59 80.00 63.33

31 T1 – T3 (\$\{)\d+(:[ˆ}]+\}) ([$][{])\d+(:[ˆ}]+[}]) 81.61 75.18 63.33 73.33

32 T1 – T3 t\.\$+\d+\* t[.][$]+\d+[*] 88.67 94.00 56.67 73.33

33 T1 – T3 \{\$(\d+\.\d)\} [{][$](\d+[.]\d)[}] 93.28 89.33 70.00 66.67

34 T1 – T4 xyz[_\[\]‘\ˆ\\] xyz[\0133-\0140] 77.78 71.35 86.67 33.33 ***

35 T1 – T4 t[:;]+p t[\072\073]+p 94.33 90.00 80.00 70.00

36 T1 – T4 (\{|\}) ([\0175\0173]) 70.33 54.40 · 86.67 30.00 ***

37 T1 – T4 ([}{]) ([\0175\0173]) 78.79 54.40 ** 50.00 30.00

38 T1 – T4 (:|;) ([\072\073]) 94.00 65.77 ** 46.67 23.33

39 T1 – T4 ([:;]) ([\072\073]) 81.38 65.77 · 46.67 23.33

40 T2 – T4 xyz[\x5b-\x5f] xyz[\0133-\0140] 78.67 71.35 56.67 33.33

41 T2 – T4 t[\x3a-\x3b]+p t[\072-\073]+p 88.59 90.00 63.33 70.00
·α = 0.10 *α = 0.05 **α = 0.01 ***α = 0.001

is significant at α = 0.01, yet the difference between the

accuracies is not. In fact, the representation C5 was more

understandable in that participants could more effectively

compose a string that it would match, but C4 is more un-

derstandable in that participants could more easily determine

which of a set of strings would be matched by C4. Thus,

neither representation is bolded in the Edge column since

there is a conflict. If both comprehension metrics indicated

a preferred representation, that representation is bolded (e.g.,

C4 in pair 15). Ties are broken by deferring to the other

metric. For example, there’s a tie in composition for pair 17,

but matching indicates a preference for C5. Therefore C5 is

bolded.

For pairs 16, 29, 34, and 36, the difference in composition

is significant at α < 0.05, indicating differences favoring C5

over C4, T1 over T2, and twice favoring T1 over T4. For pairs

23, 37, and 38, the difference in matching is significant with

α < 0.05, indicating differences favoring D3 over D2 and

twice favoring T1 over T4. Interestingly, for pairs 16 and 29,

while the differences in composition are significant, there is a

conflict between the composition metrics. Further investigation

is needed to understand in what circumstances the metrics are

in conflict with one another. Recall that participants were able

to select unsure for whether a string is matched by a pattern.

From a comprehension perspective, this indicates some level

of confusion. For each pattern, we counted the number of
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responses containing at least one unsure. Overall, the highest

number of unsure responses came from T4 and T2, which have

octal and hex representations of characters. The least number

of unsure responses were in L3 and D3. These results mirror

the understandability analysis, as T4 and T2 are generally

lower in comprehension, and L3 and D3 are generally higher.

While the ANOVA indicates that variance in matching is

due to all three factors, representation, DFA size, and regex

length, it is not entirely clear why. Variance in composition is

impacted by DFA size only. Between DFA size and compo-

sition, there is a strong, positive correlation at α = 0.01 with

ρ = 0.354. At first, this result may seem counter-intuitive, but

considering that larger DFAs may represent more constrained

regex languages (i.e., languages that accept fewer strings),

these may be easier to compose a string for. However, as the

explored DFA size range was between two and eight nodes,

these results may not generalize to larger regexes. None of the

other correlations are significant with α < 0.05.

E. Summary

Matching and composition are impacted by DFA size, and

matching is also impacted by regex length and representation,

showing some support that the representation of the regex

impacts comprehension. The larger the DFA, the easier it

was for the community to generate strings that match it.

There also appears to be a clear trend favoring T1 over T4.

Representations D3 and C5 are also preferred. While C1

is favored comparisons against C2, C4, and C5, none are

significant.

V. COMMUNITY SUPPORT STUDY (RQ2)

The goal of this evaluation is to understand how frequently

each of the regex representations appears in source code, as a

way to identify community standards code smells [19], [20].

A. Artifacts

We analyzed an existing corpus of regexes collected from

Python code in GitHub projects [17]. This dataset has 13,597

distinct (non-duplicate) regex patterns from 1,544 projects.

This corpus was created by analyzing static invocations to

the Python re library. Consider the Python snippet:

r1 = re.compile(‘(0|-?[1-9][0-9]*)$’, re.MULTILINE)

The function re.compile compiles the regex (0|-?[1-
9][0-9]*)$ into r1, an object of re.RegexObject.

re.MULTILINE is a flag that changes the matching behavior

from the default one line to multiple lines. This particular

regex will match strings with any integer at the end of a line

(“-?” indicates the integer may be negative).

B. Metrics

We measure community support by matching regexes in

the corpus to representations in Figure 1 and by counting the

patterns and projects. These are referred to as the community

standards metrics. A regex can belong to multiple represen-

tations and to multiple projects since the corpus tracks its

duplicates.

C. Analysis

To match patterns to representations, we either used the

PCRE parser to parse features of patterns or extracted token

streams of them. The choice depends on the characteristics of

the representation. Our analysis code is available on GitHub4.

The details of this process are described as follows.

Presence of a Feature: For representations that require

a particular feature, we used the PCRE parser to decide

membership. This applies to C3, D1, D2, L1, L2, L3, S1,

and S3.

Features and Pattern: Identifying D3 requires an OR

containing at least two entries with a sequence repeated N

times in one entry and the same sequence repeated N+1 times

in another entry. We first looked for a sequence of N repeating

groups with an OR-bar (i.e., |) next to them on a side. This

produced a list of 113 candidates and we narrowed them down

manually to 10 actual members.

T1 requires that no characters are wrapped in brackets or

are hex or octal characters, which matches over 91% of the

patterns analyzed; T2 requires a literal character with a hex

structure; T3 requires that a single literal character is wrapped

in a custom character class (a member of T3 is always a

member of C2); T4 requires a literal character with a Python-

style octal structure.

Token Stream: C1 requires a non-negative class of charac-

ters whose ASCII codes are consecutive; C2 requires a custom

character class which does not use ranges or defaults; C4

requires the presence of a default character class within a

custom character class; C5 requires an OR of length-one se-

quences (literal characters or any character class); S2 requires

a repeated element which could be a character class, a literal

character, or a smaller regex encapsulated in parentheses.

These representations were treated as sequences of tokens. To

identify them, we chose token streams instead of the PCRE

parser.

D. Results

Table IV presents the results. Node references Figure 1;

Description briefly describes the representation; Example pro-

vides a regex from the corpus; nPatterns counts the patterns

that belong to the representation; % patterns shows the per-

centage of patterns out of 13,597; nProjects counts the projects

that contain a regex belonging to the representation; % projects
shows the percentage of projects out of 1,544. For example,

D1 is more concentrated in a few projects and T3 is more

widespread across projects. This is because comparing to D1,

T3 appears in 39 fewer patterns but 34 more projects.

The pattern frequency is our guide for setting the commu-

nity standards. For example, since C1 is more prevalent than

C2 in both patterns and projects, we could say that C2 is

4https://github.com/wangpeipei90/RegexSmells
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TABLE IV
HOW FREQUENTLY IS EACH REGEX REPRESENTATION STYLE USED?

Node Description Example nPatterns % patterns nProjects % projects

C1 char class using ranges ˆ[1-9][0-9]*$ 2,479 18.2% 810 52.5%

C2 char class explicitly listing all chars [aeiouy] 1,903 14.0% 715 46.3%

C3 any negated char class [ˆA-Za-z0-9.]+ 1,935 14.2% 776 50.3%

C4 char class using defaults [-+\d.] 840 6.2% 414 26.8%

C5 an OR of length-one sub-patterns (@|<|>|-|!) 245 1.8% 239 15.5%

D1 curly brace repetition like {M,N} with M<N ˆx{1,4}$ 346 2.5% 234 15.2%

D2 zero-or-one repetition using question mark ˆhttp(s)?:// 1,871 13.8% 646 41.8%

D3 repetition expressed using an OR ˆ(Q|QQ)\<(.+)\>$ 10 .1% 27 1.7%

T1 no HEX, OCT or char-class-wrapped literals get_tag 12,482 91.8% 1,485 96.2%

T2 has HEX literal like \xF5 [\x80-\xff] 479 3.5% 243 15.7%

T3 has char-class-wrapped literals like [$] [$][{]\d+:([ˆ}]+)[}] 307 2.3% 268 17.4%

T4 has OCT literal like \0177 [\041-\176]+:$ 14 .1% 37 2.4%

L1 curly brace repetition like {M,} (DN)[0-9]{4,} 91 .7% 166 10.8%

L2 zero-or-more repetition using Kleene star \s*(#.*)?$ 6,017 44.3% 1,097 71.0%

L3 one-or-more repetition using plus [A-Z][a-z]+ 6,003 44.1% 1,207 78.2%

S1 curly brace repetition like {M} ˆ[a-f0-9]{40}$ 581 4.3% 340 22.0%

S2 explicit sequential repetition ff:ff:ff:ff:ff:ff 3,378 24.8% 861 55.8%

S3 curly brace repetition like {M,M} U[\dA-F]{5,5} 27 .2% 32 2.1%

smelly since it could better conform to community standards

if expressed as C1.

E. Summary

Based on patterns, the winning representations per equiva-

lence class are C1, D2, T1, L2, and S2. With one exception,

these are the same project-based recommendations; L3 appears

in more projects than L2, so it is unclear which is smelly.

VI. DESIRABLE REPRESENTATIONS (RQ3)

To determine the overall trends in the data, we created

and compared total orderings on the representations in each

equivalence class with respect to the comprehension (RQ1)

and community standards (RQ2) metrics.

A. Analysis

Total orderings were represented in directed graphs with

representations as nodes and edge directions determined by

the metrics: matching and composition of understandability;

patterns and projects of community standards. The graphs for

comprehension are based on Table III and for community sup-

port are based on Table IV. Within each graph, a topological

sort created total orderings.

Building the Graphs: In the community standards graph,

a directed edge
−−−→
C2C1 is used when nPatterns(C1) > nPat-

terns(C2) and nProjects(C1) > nProjects(C2). When there is

a conflict between nPatterns and nProjects, as is the case

between L2 and L3, an undirected edge L2L3 is used. For

example, Figure 3 shows the graphs for the CCC group;

Figure 3b is based on community standards.

A similar process is used to build the graphs based on

the comprehension metrics. In Table III, each row maps to

an edge in the understandability graph. If the matching and

(a)

C2

C1

C4

C5

C3

(b)

C2

C1

C3

C4

C5

Fig. 3. Trend graphs for the CCC equivalence graph: (a) represent the
comprehension analysis (RQ1) and (b) represent the artifact analysis (RQ2)

composition results both indicate a favorite (i.e., a bolded

representation in the Edge column of Table III), there is

a directed edge. For example, in Pair 3, the matching and

composition metrics for C3 are higher than C1, resulting in a

directed
−−−→
C1C3 arrow. If one of the metrics is a tie, the other

is used to break the tie; in Pair 2, the composition scores are

the same but C1 is preferred based on matching, resulting in a−−−→
C2C1. If there is a conflict between the metrics, an undirected

edge is used, as is the case with Pair 14, resulting in C3C4.

An example is shown in Figure 3a, which has 17 total edges,

14 of which are directed and three are undirected.

As a general rule, for both graphs, the higher the ratio of

incoming edges to total edges, the less smelly the node.

Topological Sorting: Once the two graphs are built for each

equivalence class type, within each graph, we sort the nodes

to identify a (preferably unique) total ordering on the nodes.

This ordering represents preferences from the perspective of

the comprehension or community standards metrics.

For each node n, we compute the ratio of

in deg(n)/deg(n) where in deg(n) is the number of

incoming edges to n, and deg(n) is the total edges
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TABLE V
TOPOLOGICAL SORTING, WITH THE LEFT-MOST POSITION BEING HIGHEST

(NON-SMELLY) AND THE RIGHT-MOST BEING MOST SMELLY

Understandability Community

CCC C1 C5 C3 C4 C2 C1 C3 C2 C4 C5

DBB D3 D1 D2 D2 D1 D3

LBW L3 L2 L3 L2 L1

SNG S2 S1 S2 S1 S3

LIT T1 T3 T2 T4 T1 T3 T2 T4

touching n. For example, in Figure 3a, in deg(C5) = 2
and deg(C5) = 5. The higher the ratio (that is, the more

incoming edges indicating preference), the higher the node

appears in the sorted list. For example, with node C1 in

Figure 3a, the ratio is 7/10 since C1 is involved in ten total

comparisons and is favored in seven. The ratio for node C2

is 1/5 as C2 is involved in five comparisons, is preferred in

one, is strictly not preferred in three, and has one with no

preference, represented as an undirected edge.

One challenge with this (and any topological sorting ap-

proach, such as Kahn’s algorithm), is that the total ordering is

not necessarily unique and often multiple nodes have similar

properties. Thus, we mark ties in order to identify when a

tiebreaker is needed. Breaking ties on the community standards

graph involves choosing the representation that appears in a

larger number of projects, as it is more widespread across the

community. Breaking ties in the understandability graph uses

the RQ1 results. Based on Table III, we compute the average

metrics for each representation and select the winner.

B. Results

The total orderings on nodes for each graph are shown in

Table V. For example, given the graphs in Figure 3a and

Figure 3b, the topological sorts are C1 C5 C3 C4 C2 and

C1 C3 C2 C4 C5, respectively.

Considering both topological sorts, there is a clear winner

in each equivalence class except DBB. This is C1 for CCC,

L3 for LBW, S2 for SNG, and T1 for LIT. While L3 is the

winner for the LBW group, we note that L2 appears in slightly

more patterns. DBB is different as the orderings are completely

reversed depending on the analysis. Further study is needed

on this, as well as LBW and SNG since not all nodes were

considered in the understandability analysis.

These results can guide regex design. For example, to match

numbers from one to 999, there are (at least) three options:

A = [1-9]|[1-9][0-9]|[1-9][0-9][0-9], B = [1-
9][0-9]?[0-9]?, and C = [1-9][0-9]{0,2}. A con-

tains representations {C1, D3, S2}, B contains {C1, D2},

and C contains {C1, D1}. According to Table V, the sorting

in understandability is A>C>B since D3>D1>D2. However,

what we usually see in source code are B and C but not

A. The reason might be that the representation of A takes

more time to type, or may have a longer runtime performance.

In another example, we prefer $[0-9]*.[0-9][0-9] to

$[0-9]*.[0-9]{2} in order to match dollar amounts. This

is because S2 in the former regex is preferred to S1 in the latter

regex, for all metrics.

C. Summary
Having a consistent and clear winner is evidence of a pref-

erence with respect to community standards and understand-

ability, and thus provides guidance for potential refactoring.

This positive result, that the most popular representation in the

corpus is also the most understandable, makes sense as people

may be more likely to understand things that are familiar or

well documented.

VII. DISCUSSION

Based on our studies, we have identified preferred regex

representations that may make regexes easier to understand

than their smelly counterparts. Here, we summarize the results.

A. Implications
Our goal in this work was to identify code smells in regular

expressions. In an evaluation using humans where we measure

comprehension of various regular expressions, we find that it

is easier to understand regexes that do not use hex or octal

characters, that repetition operators, such as ? in D2 can

decrease comprehension, and that using ranges is preferred

to some character classes (e.g., [A-Za-z0-9_ is often more

understandable than \w).
In general, the factors that explain differences in compre-

hension metrics are the DFA size and the representation, where

DFA sizes range from two to eight and the representations are

as defined in Section 1. The implications of these results are

for refactoring tool designers and code maintainers. Opting to

use the preferred regex representations, when possible, may

increase the understandability of regexes in source code. Since

there are differences in regex comprehension based on how

regexes are syntactically composed, it also has implications for

refactoring tool designers to add refactoring for comprehen-

sion, which could enable developers to more easily compose

regexes that are easier to understand.

B. Opportunities For Future Work
Equivalence Class Models: We looked at five types of equiv-

alence classes, each with three to five representations. Future

work could consider models with more types of equivalence

classes, such as:

• Multiline option: (?m)G\n ≡ (?m)G$
• Case insensitive: (?i)[a-z] ≡ [A-Za-z]
• Backreference: (X)q\1 ≡ (?P<name>X)q\g<name>

There also may exist critical comprehension differences

within a representation. For example, between C1 (e.g., [0-
9a]) and C4 (e.g., [\da]), it could be that [0-9] is

preferred to [\d], but [A-Za-z0-9_] is not be preferred

to [\w]. By creating a more granular model of equivalence

classes and carefully evaluating alternative representations of

the most frequently used specific patterns, additional useful

smells could be identified.
Automated Improvement: Currently the equivalence classes

are identified manually. In future work, we will consider

automatically generating the equivalence classes by building

behavioral clusters and observing how regex representations

differ within those clusters.
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C. Threats to Validity

Internal: We measure understandability using two metrics:

matching and composition. These measures may not reflect the

actual understanding of regex behavior. To mitigate, we used

multiple metrics that require reading and writing regexes.

We measure community support using two metrics: patterns

and projects. These measures may not reflect the actual desire

of the community to use the representations contained within.

To mitigate, we use multiple metrics.

Participants evaluated regular expressions on MTurk, which

may not be reflective enough of the context in which pro-

grammers would encounter regexes in practice. Further study

is needed to determine the impact of the experimental context.

Some regex representations from the equivalence classes

were not involved in the understandability analysis and that

may have biased the results against those nodes. More com-

plete coverage of the edges in the equivalence classes is

needed.

We treated unsure responses as omissions that did not count

against the matching scores. Thus, if a participant answered

two strings correctly and marked the other three strings as

unsure, then this was 2/2 correct, not 2/5. This may have

inflated the matching scores, however, less than 5% of the

matching scores were impacted by such responses.

External: The regexes used in the evaluation were inspired

by those found in Python code, which is just one language

that has library support for regexes, and may not generalize to

other languages. Furthermore, the DFAs for the regexes ranged

in size from two to eight, so the comprehension metrics may

not generalize to larger regexes.

Our criteria for membership in a representation may overes-

timate the opportunities for refactoring to address the smells.

For example, [a-f] in C1 cannot be refactored to C4 since

there does not exist a default character class for that range of

characters. The transformation between T4 and T1 may not

be possible if the regex matches on non-printable characters,

which require hex or octal representation. A finer-grained

analysis is needed to identify actual refactoring opportunities

from the smells.

Participants in our survey came from MTurk, which may

not be representative of people who read and write regexes

on a regular basis. However, all participants demonstrated

knowledge of regexes through a qualification test. Our survey

are done online without supervision and cheating could also

be a factor impacting the results.

The results of the understandability analysis may be closely

tied to the particular regexes chosen for the experiment. For

many of the representations, we had several comparisons. Still,

replication with more regex patterns is needed.

VIII. RELATED WORK

Regular expression understandability has not previously

been studied directly, though prior work has suggested that

regexes are hard to read and understand [17] and noted

that there are tens of thousands of bug reports related to

regexes [6]. To aid in regex creation and understanding, tools

have been developed to support more robust creation [6], to

allow visual debugging [21], or to help programmers complete

regex strings [22]. Other research has focused on removing

the human from the creation process by learning regular

expressions from text [13], [14].

Code smells in object-oriented languages were introduced

by Fowler [23]. Researchers have studied the impact of code

smells on program comprehension [15], [16], finding that

the more smells in the code, the harder the comprehension.

Code smells have been extended to other language paradigms

including end-user programming languages [19], [24]–[26].

Using community standards to define smells has been used

in refactoring for end-user programmers [19], [26].

Regular expression refactoring has not been studied directly,

though refactoring literature abounds [27]–[29]. Refactoring

for conformance to the community in end-user programs [19],

[20] has been proposed previously, and is the inspiration

behind RQ2 in this work. The closest to regex refactoring

comes from research recent work that uses genetic program-

ming to optimize regexes for runtime performance while

maintaining their behavior in the matching language [30].

Similarly, other research has focused on expediting regular

expressions processing on large bodies of text [31], similar to

refactoring for performance. Our work is complementary to

these efforts, where our focus is on comprehension and theirs

is on performance.

Regarding applications, regular expressions have been used

for test case generation [32]–[35], and as specifications for

string constraint solvers [11], [36]. Flipping this around, recent

approaches have used mutation to generate test strings for

regular expressions themselves [37].

Exploring language feature usage by mining source code has

been studied extensively for Smalltalk [38], JavaScript [39],

Python regular expressions [17], and Java [40]–[43], and more

specifically, Java generics [42] and Java reflection [43].

IX. CONCLUSION

In an effort to find smells that impact regex understand-

ability, we created five types of equivalence classes and used

these models to investigate the most common representations

and most comprehensible representations per class. The high

agreement between the community standards and understand-

ability analyses suggests that one particular representation

can be preferred over others in most cases. Based on these

results, we recommend using hex to represent unprintable

characters in regexes instead of octal and using escape special

characters with slashes instead of wrapping them in brackets.

Further research is needed into more granular models that treat

common specific cases separately.
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