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 A B S T R A C T

The ability to generate multiple equivalent versions of the same code segment across different programming 
languages and within the same language is valuable for code translation, language migration, and code 
comprehension in education. However, current avenues for generating code clones – through manual creation 
or specialized software tools – often fail to consistently generate a variety of behaviorally equivalent code 
clones. Large Language Models (LLMs) offer a promising solution by leveraging their extensive training on 
diverse codebases to automatically generate code. Unlike traditional methods, LLMs can produce code across 
a wide variety of programming languages with minimal user effort. Using LLMs for code clone generation 
could significantly reduce the time and resources needed to create code clones while enhancing their syntactic 
diversity.

In this quantitative empirical study, we investigate the dependability of LLMs as potential generators of 
code clones. We gathered equivalent code solutions (i.e., behavioral clones) in C++, Java, and Python from 
thirty-six programming problems from the well-known technical interview practice platform, LeetCode. We 
query OpenAI’s GPT-3.5, GPT-4, and CodeLlama to generate code clones of the LeetCode solutions. We measure 
the behavioral equivalence of the LLM-generated clones using a behavioral similarity clustering technique 
inspired by the code clone detection tool, Simion-based Language Agnostic Code Clones (SLACC). This study 
reveals that, despite LLMs demonstrating the potential for code generation, their capacity to consistently 
generate syntactically diverse but behaviorally equivalent code clones is limited. At lower temperature settings, 
LLMs are more successful in producing behaviorally consistent, syntactically similar code clones within the 
same language. However, for cross-language cloning tasks and at higher temperature settings and programming 
difficulties, LLMs introduce greater syntactic diversity and lead to higher rates of compilation and runtime 
errors, resulting in a decline in behavioral consistency. These findings indicate a need for further quality 
assurance measures for the use of LLMs for code clone generation. All the data and scripts associated with this 
paper can be found https://zenodo.org/records/14968618.
1. Introduction

The capability to generate accurate code clones holds significant 
value in software engineering, impacting several areas including the 
development of educational material for software engineering stu-
dents (Patitsas et al., 2013), the creation of robust datasets for semantic 
code clone detection (Zakeri-Nasrabadi et al., 2023), language migra-
tion (Mathew et al., 2020), and software maintenance activities (Aver-
sano et al., 2007; Thummalapenta et al., 2010). Current methods 
for generating behaviorally equivalent code clones typically involve 
manual efforts or the use of specialized software tools (Avetisyan 
et al., 2015; Wei and Li, 2017; Saini et al., 2018). Although manually 
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generating code clones can be beneficial, this approach often demands 
significant investment in time and resources.

Large Language Models (LLMs) have shown promising code gener-
ation capabilities (Xu et al., 2022; Fried et al., 2023; Nijkamp et al., 
2023). However, while previous research has predominantly focused on 
code generation, the area of code clone generation has remained largely 
unexplored. Unlike code generation, code clone generation requires 
the input of a prompt that includes an existing code snippet that the 
LLM is expected to clone, rather than a prompt that is a broad textual 
description outlining programming tasks. Also, unlike code generation, 
code clone generation requires that the resulting code segment is 
behaviorally equivalent to the code segment used in the prompt. This 
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paper investigates the reliability and effectiveness of LLMs’ to produce 
code clones. If successful, LLMs could amplify current research and 
software engineering tasks that depends on clone generation. However, 
if a user asks an LLM for a clone and unexpectedly receives non-clones, 
this could increase their workload, necessitating additional time for 
verifying and refining the LLM-generated code. This paper explores the 
reliability and effectiveness of LLMs in code clone generation through 
the following two research questions:

RQ1 Within-language Code Clone Generation: Given a brief natural 
language prompt and a code snippet, can a Large Language 
Model produce consistent code clones of the given code snip-
pet based on runtime behavior within the same programming 
language?

RQ2 Cross-Language Code Clone Generation: Given a brief nat-
ural language prompt and a code snippet, can a Large Lan-
guage Model produce consistent code clones of the given code 
snippet based on runtime behavior across multiple programming 
languages?

One approach to evaluating the code clone generation capabilities 
of an LLM involves the use of code clone detection tools. While re-
cent advancements have introduced machine-learning techniques for 
detecting cross-language code clones, they require reliable datasets 
that are scarce in this field (Zakeri-Nasrabadi et al., 2023). Simion-
based Language Agnostic Code Clones (SLACC) is an exception; it does 
not rely on training datasets to discover code clones. Instead, SLACC 
employs a dynamic analysis code clone detection framework based on 
runtime behavior (Mathew et al., 2020). This approach leverages the 
theory-predicted promises of dynamic program analysis, but inherits 
some practical limitations caused by the implementation of program 
analysis tools. SLACC analyzes the functional equivalence of snippets 
by using similar input and output relationships ‘‘simions’’ (Deissenboeck 
et al., 2012) to identify clones, thereby addressing the challenge of dif-
fering underlying representations in various programming languages. 
It has shown efficacy in detecting statically typed Java code clones 
with 87.3% precision and dynamically typed Python clones with 94.1% 
precision (Mathew et al., 2020). The strength of SLACC lies in its 
transparent process of directly analyzing runtime behavior to detect 
code clones, but the trade-off is the potential for error inherent in 
dynamic analysis, compared to the more precise but less versatile static 
analysis tools. In this study, a SLACC-inspired approach is used to 
evaluate the code clone generation abilities of LLMs.

Our contributions are as follows:

• Evaluation of LLMs for Code Clone Generation: The study pro-
vides a comprehensive evaluation of the ability of LLMs, specif-
ically GPT-3.5, GPT-4, and CodeLlama to generate behaviorally 
equivalent code clones within and across multiple programming 
languages. This assessment highlights their limitations in consis-
tently producing syntactically diverse yet behaviorally consistent 
clones.

• Insights into Temperature Settings and Behavioral Equiva-
lence: This study explores how different temperature settings 
affect the diversity and accuracy of generated code clones. It pro-
vides empirical evidence that reveals lower temperature settings 
result in more behaviorally equivalent clones, whereas higher 
temperatures increase the diversity of generated code clones at 
the cost of accuracy.

The rest of the paper is organized as follows: Section 2 motivates 
our study, highlighting the practical importance and challenges in LLM-
based code clone generation. Section 3 reviews related work, situating 
our research within the broader context of code clone detection and 
LLM capabilities. Section 4 describes our methodology, the specifics 
of the LLMs used, and our approach to code clone detection with our 
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SLACC-inspired approach. Section 5 details the results of our study, 
examining the reliability and effectiveness of LLMs to generate code 
clones within and across different programming languages and temper-
ature settings. Section 6 provides a comprehensive discussion of these 
results, performing additional analyses to further understand the types 
of code clones the models generated. Section 7 examines the threats to 
the validity of our study, both internal and external. Finally, Section 8 
outlines future work directions, and the paper concludes with Section 9.

2. Motivating example

Consider Oliver, a computer science professor, who was determined 
to enhance their introductory programming course. After discover-
ing research studies suggesting that teaching programming through 
comparing multiple solutions is more effective than the traditional 
approach of showing one solution at a time (Patitsas et al., 2013; Rittle-
Johnson et al., 2020; Margulieux et al., 2021), Oliver decided to use 
LLMs to help integrate this finding into their course. Oliver hoped that 
by leveraging LLMs, they could provide students with a diverse range 
of solutions for their recently completed homework assignment.

However, Oliver faced an unexpected hurdle. Some of the solutions 
generated by the LLM did not pass the homework test suite. This re-
vealed a critical limitation in the current available LLMs: their inability 
to consistently produce code clones that are both syntactically diverse 
and behaviorally consistent. The outcome was that Oliver had to spend 
additional time and effort tweaking the solutions until they passed the 
test cases.

Our research aims to overcome Oliver’s challenge by first quantify-
ing the impact of the issue – that LLMs fail to produce syntactically 
diverse and behaviorally consistent clones – with the future goal of 
enhancing an LLM’s capacity to generate accurate and dependable code 
clones.

This advancement would not only benefit innovative teaching meth-
ods like Oliver’s but also have broader implications in the field of 
software engineering. By improving the generation of code clones, 
LLMs have the potential to create large amounts of reliable code clones, 
leading to the development of code clone detection datasets that are 
free from the human biases commonly found in existing datasets (Roy 
and Cordy, 2018). Furthermore, in a cross-language context, being able 
to generate code clones in other languages would assist with code 
translation, language migration, and transpilation (Mayer et al., 2017).

3. Related work

Definition of code clone. A code clone refers to a group of code 
snippets that ‘‘exhibit similarity according to a certain measure of simi-
larity’’ (Zakeri-Nasrabadi et al., 2023; Baxter et al., 1998). Researchers 
have proposed two taxonomies to categorize how code clones exhibit 
similarity: type similarity and threshold similarity (Baxter et al., 1998).

Type similarity . The type similarity taxonomy identifies four types of 
code clones. Types I, II, and III usually refer to clones at the method 
level. Type I code clones are identical except for whitespace and 
comments. Type II code clones are syntactically equivalent but may 
differ in trivial components such as identifiers. Type III code clones 
can differ in control flow statements and may involve added, modified, 
or removed statements while maintaining functional equivalence. Type 
IV code clones, unique from the others, involve significantly syntacti-
cally dissimilar code pairs with functional equivalence across varying 
granularity scopes (Roy and Cordy, 2007).

This work focuses on the method level Type IV clones. This is 
because code clones that are significantly syntactically diverse but 
behaviorally equivalent are more useful for the targeted domains of 
code translation and clone generation for education.
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Fig. 1. High-level methodology.
Threshold similarity . similarity describes the extent of similarity be-
tween code snippets: a maximum threshold value would indicate an 
exact match and a minimum threshold value would indicate little to 
no similarity (Zakeri-Nasrabadi et al., 2023). M. Zakeri-Nasrabadi, et al. 
identify nine categories of techniques that employ threshold similarity 
for source code: text, token, tree, graph, metric, test, learning, image, 
and hybrid techniques. These similarity measures are used in a variety 
of applications, including plagiarism detection, code smell detection, 
and program repair. This work uses test similarity to identify Type IV 
code clones (Mathew et al., 2020).
Code clone detection techniques. Text, token, image, and tree code 
clone detection techniques generally have been shown to detect syntac-
tic code clones (Types I, II, III) – but not semantic code clones (Type IV) 
– because the techniques exclusively analyze the textual and syntactic 
features of code snippets (Zakeri-Nasrabadi et al., 2023).

Graph, metric, learning, and hybrid code clone detection tech-
niques have proven more effective at detecting semantic code clones 
(Type IV) (Zakeri-Nasrabadi et al., 2023). Graph code clone detection 
techniques commonly utilize program dependency graphs (PDGs) to 
identify code clones (Zakeri-Nasrabadi et al., 2023). However, de-
termining whether parts of PDGs are equivalent requires finding a 
subgraph isomorphism, a problem known to be NP-Complete (Ullmann, 
1976; Zakeri-Nasrabadi et al., 2023).

Test-based code clone detection techniques analyze the runtime 
behavior of snippets in order to assess similarity (Zakeri-Nasrabadi 
et al., 2023). Simion-based Language-Agnostic Code Clone detection 
technique (SLACC), the technique that inspired the methodology of 
this study, is a test-based technique. Utilizing the runtime behavior of 
code snippets, SLACC addresses the challenges associated with iden-
tifying code clones across multiple programming languages that lack 
a common underlying representation. The uniqueness of SLACC lies 
in its clustering process. SLACC first segments the code repository 
into smaller executable functions. These functions are then executed 
using a custom input generator inspired by grey-box testing and multi-
modal distribution techniques. Once the functions are executed, the 
resulting input and output relationships are utilized for clustering code 
snippets (Mathew et al., 2020).

HitoshiIO is another test-based clone detection technique that dis-
tinguishes functionally similar source code methods by analyzing their 
runtime behavior in the Java Virtual Machine (Su et al., 2016a). 
HitoshiIO uses existing workloads via codebase test cases to identify 
inputs and their corresponding outputs and measure the functions’ 
input and output similarity (Su et al., 2016a). SLACC employs a similar 
input and output ‘‘simions’’ process to determine code clones (Mathew 
et al., 2020). In comparison to HitoshiIO, SLACC does not rely upon 
the existing inputs or workloads, but employs an input generation 
process to probe the input state space inspired by EQMiner, a separate 
test-based clone detection technique (Jiang and Su, 2009).

Detecting clones with data-driven, machine learning techniques has 
been used to detect Type IV code clones (Zakeri-Nasrabadi et al., 2023). 
However, machine learning approaches are data-hungry and require 
substantial amounts of reliable training data (Roy and Cordy, 2018). 
M. Zakeri-Nasrabadi, et al. identified three types of datasets used to 
train and assess code clone detection techniques: datasets with human 
oracles, datasets with machine oracles, and hybrid datasets (Zakeri-
Nasrabadi et al., 2023). Manually validating these datasets is time-
consuming and costly (Roy and Cordy, 2018). Moreover, the reliability 
of clone datasets is dubious due to the introduction of human bias 
during either the creation of the clones or validation of the clones 
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within these datasets (Roy and Cordy, 2018). In comparison, SLACC 
does not require a dataset to train on and still achieves high recall, 
precision, and F1 scores.

Learning techniques that LLMs have demonstrated high precision 
and recall in detecting code clones (Zakeri-Nasrabadi et al., 2023). 
While LLMs might perform well in identifying code clones, their deci-
sion-making processes are often opaque, making their results less trust-
worthy (Zhao et al., 2023). In contrast, test-based techniques offer 
a clear and transparent methodology that uses runtime behavior of 
code snippets to assess similarity, providing a level of reliability and 
transparency not available with LLMs (Mathew et al., 2020).

Hybrid code clone detection techniques are techniques that combine 
one or more of the previously mentioned techniques to detect code sim-
ilarity (Zakeri-Nasrabadi et al., 2023). Often, token and text code clone 
detection techniques are efficient, and graph and tree techniques are 
effective (Zakeri-Nasrabadi et al., 2023). Combining these techniques 
intelligently produces robust code clone detection techniques (Zakeri-
Nasrabadi et al., 2023). One example of a tool that employs a hybrid 
code clone detection technique is the tool COSAL (Mathew and Stolee, 
2021). COSAL uses SLACC as well as token and tree similarity tech-
niques to perform code search (Mathew and Stolee, 2021). COSAL, 
given a code query, gathers the top-N search results for each similarity 
measure — token, tree, and test (Mathew and Stolee, 2021). Then, 
the results are sorted and ranked by a genetic algorithm NGSA-II 
(Non-dominated Sorting Genetic Algorithm II) (Mathew and Stolee, 
2021; Deb et al., 2002). Researchers found that the non-dominated 
ranking of these similarity measurements was more effective than a 
single measurement or other weighted measures at returning relevant 
snippets (Mathew and Stolee, 2021). COSAL was not used because the 
overall goal of this paper is to characterize the code clone generation 
capabilities of the LLM. COSAL did not cluster code clones based on 
similarity measurements, which is vital to analyzing LLMs code clone 
generation capabilities.
LLMs for code generation. The potential of machine learning models, 
initially developed for natural language processing, to address software 
engineering tasks was recognized in 2016, when researchers identified 
striking similarities between source code and human language (Hindle 
et al., 2016). This insight has since catalyzed the development and 
widespread adoption of LLMs for code generation. Notable advances 
in this area include the introduction of specialized architectures and 
enhanced training methodologies, shown by CodeBERT (Feng et al., 
2020) and other seminal works (Rozière et al., 2023; Ahmad et al., 
2021).

However, the deployment of LLMs in code generation is not without 
challenges. Key issues remain, including the security of generated 
code (Yao et al., 2024) and the production of functionally incorrect 
code snippets (Jesse et al., 2023). These obstacles highlight the need 
for ongoing research to refine the capabilities and reliability of LLMs 
in practical software engineering applications (Lo, 2023).

4. Methodology

This work aims to address the research questions in Section 1. Our 
high-level methodology is shown in Fig.  1. Using a brief natural lan-
guage task command and LeetCode programming task solution written 
in Java (LeetCode Solution Prompt), we prompted an LLM to return 
semantically equivalent Java code. The same prompt was repeated in 
the same session to gather twenty snippets in the Java language (20 
Java Code Snippets). Afterward, a Dynamic Analysis of Runtime Behavior
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Table 1
Easy LeetCode problem descriptions. The LOC counts refer to the reference examples.
 Problem_ID Problem description (Input type): 

Output type
Lines of Code (LOC)

 C++ Java Python 
 adj_inc_subarr Determine if there exist two adjacent subarrays of 

length k in an array that are strictly increasing.
(int[], int): 
boolean

35 47 36  

 button_longest_push Return the index of the button with the longest press 
time.

(int[][]): int 53 31 26  

 count_subarr_3_cond Return the number of subarrays of length 3 where the 
sum of the first and third numbers equals half of the 
middle number.

(int[]): int 29 26 25  

 date_to_binary Convert a given Gregorian calendar date into its 
binary representation.

(String): 
String

36 17 18  

 digitville Find the two numbers that appear twice in an array 
of integers from 0 to 𝑛 − 1, where all other numbers 
appear exactly once.

(int[]): int[] 38 31 26  

 min_ele_after_replacement_w_digit_sum Replace each number in an array with the sum of its 
digits and return the minimum value after all 
replacements.

(int[]): int 32 29 19  

 min_ops_make_arr_K Minimize operations to make all elements in an array 
equal to 𝑘 by reducing larger values step by step. 
Return the count or −1 if impossible.

(int[], int): 
int

28 31 19  

 min_pos_sum_subarr Find the minimum sum of a subarray with length 
between 𝑙 and 𝑟 and a sum greater than 0. Return −1
if no such subarray exists.

(int[], int, 
int): int

39 29 31  

 original_typed_str_one Count the possible original strings Alice intended, 
given that one character may have been repeated at 
most once.

(String): int 25 21 18  

 smallest_divisible_digit_prod_one Find the smallest number ≥ n whose digit product is 
divisible by 𝑡.

(int, int): int 27 33 32  

 smallest_num_with_all_set_bits Find the smallest number ≥ n whose binary 
representation consists only of set bits.

(int): int 14 20 17  

 stone_removal_game Alice starts by removing 10 stones, with each turn 
decreasing by 1. The player who cannot move loses. 
Determine if Alice wins.

(int): bool 21 23 26  
was conducted of the 20 code snippets and the original code snippet 
to identify Runtime Behavioral Clusters. If one behavioral cluster is 
found among the 20 code snippets, that indicates all the code snippets 
generated by the LLM are behavioral clones of the reference code. If 
multiple clusters are found, this suggests that the LLM has produced 
code from the same prompt that exhibits varying behaviors, signify-
ing that LLM-generated code snippets are not all code clones of the 
reference code.

To address RQ1, the LeetCode Solution Prompt contained Java code 
reference examples and asked the LLM to generate Java code snippets. 
To address RQ2, the LeetCode Solution Prompt contained C++ or Python 
reference examples and asked the LLM to generate Java code snippets.

OpenAI’s GPT-3.5 (gpt-3.5-turbo) is studied due to its popularity 
within both the developer community and the broader public (Yepis, 
2023; Milmo and Agenc, 2023). GPT-3.5 is compared against the 
latest iteration, GPT-4, which demonstrated significantly better perfor-
mance across several academic benchmarks, including the HumanEval 
Python coding tasks dataset (OpenAI, 2023). The comparison should 
provide insight into the reliability LLMs for code clone generation as 
these models continue to evolve. Additionally, we evaluated CodeL-
lama (Rozière et al., 2023), focusing on the codeLlama-7b-Instruct-hf 
variant, an open-source model specifically optimized for tasks involving 
code generation and understanding. This range of models ensures a 
comprehensive evaluation of established and emerging approaches.

4.1. Task description

To assess the LLMs’ capacity to generate code clones, a list of 
thirty-six programming problems was compiled from the well-known 
platform LeetCode (2025). LeetCode offers programming problems in-
tended to aid developers in their preparation for technical interviews. 
4 
Existing research practices support the utilization of LeetCode pro-
gramming problems to evaluate the code generation capabilities of an 
LLM (OpenAI, 2023; Chen et al., 2023; Tian et al., 2023; Döderlein 
et al., 2023; Nguyen and Nadi, 2022).

We selected LeetCode problems across easy, medium, and hard 
difficulties to provide a well-rounded evaluation. This inclusion of 
varying complexities ensures the models are assessed on a diverse set 
of tasks.

To ensure that the LLMs had not been trained using the informa-
tion from the LeetCode programming solutions, we collected program-
ming solutions where the first public solution was posted between 
09-08-2024 and 01-09-2025. We chose this approach to prevent data 
contamination, which could inflate the LLMs’ performance by letting 
them generate solutions from seen data instead of truly generaliz-
ing (Coignion et al., 2024). From each problem, the first public solution 
submission in Python, C++, and Java was collected as the reference code
to use in the prompting phase of the methodology. Each reference code 
was checked against its associated LeetCode test suite to ensure that the 
solutions were correct in that all the LeetCode tests passed. Information 
about each LeetCode problem and their reference codes can be seen in 
Tables  1, 2, and 3. These table includes a unique problem ID, a brief 
description of the problem, and the corresponding input and output 
types. The lines of code (LOC) for each reference implementation in 
C++, Java, and Python were determined using CLOC (Danial, 2024), 
a command-line tool designed to analyze the size of software projects 
by counting the lines in source code files. More information about each 
LeetCode problem can be found in the code artifact associated with this 
paper: https://zenodo.org/records/14968618.

https://zenodo.org/records/14968618
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Table 2
Medium LeetCode problem descriptions. The LOC counts refer to the reference examples.
 Problem_ID Problem description (Input type): Output 

type
Lines of Code (LOC)

 C++ Java Python 
 adj_inc_subarr_detect Find the maximum k for which two adjacent subarrays of 

length k are strictly increasing.
(int[]): int 46 47 35  

 beautiful_splits Count the number of ways to split an array into three 
contiguous subarrays where the first is a prefix of the second 
or the second is a prefix of the third.

(int[]): int 51 76 40  

 grid_sections Check if two horizontal or vertical cuts can divide an n × n 
grid into three sections, each containing at least one 
rectangle without splitting any.

(int, int[][]): bool 73 41 43  

 max_area_point_constraints Find the largest axis-aligned rectangle using four points as 
corners, ensuring no other point lies inside or on the border. 
Return the area or −1 if none exist.

(int[][]): int 72 60 44  

 max_coins Find the maximum coins from k consecutive bags, given 
non-overlapping segments with fixed coin amounts.

(int[][], int): int 96 70 60  

 max_num_dist_aft_op Maximize the number of distinct elements in an array by 
adding an integer in {−k, k} to each element at most once.

(int[], int): int 39 33 29  

 max_tar_nodes For each node in the first tree, find the maximum nodes 
reachable within k edges when connected to any node in the 
second tree.

(int[][], int[][], 
int): int[]

112 85 39  

 mirror_score Find the total score by pairing each character in a string 
with its closest unmarked mirror, adding their index 
difference to the score.

(String): int 25 32 30  

 string_shift_dis Find the minimum total cost to transform string s into t by 
shifting each character forward or backward in the alphabet 
with given costs.

(String, String, int[], 
int[]): int

62 59 51  

 two_days Maximize initialCurrency by performing conversions using 
given exchange rates over two days.

(String, String[][], 
double[], String[][], 
double[]): double

92 87 55  

 XOR_paths Count paths in a grid, moving right or down, where the XOR 
of numbers equals k. Return modulo 109 +7.

(int[][], int): int 53 48 32  

 zero_array_transformation Find the maximum number of queries that can be removed 
while still converting the array to all zeros using the 
remaining queries. Return −1 if impossible.

(int[], int[][]): int 64 63 25  
4.2. Prompting

The following structured prompt was used to facilitate the genera-
tion of code clones:
‘‘Generate a Java semantic code clone of the code below: 
{reference code}’’
The reference code variable was replaced by various Leetcode pro-

gramming solution submissions in Java, C++, or Python. When the 
code was in Java, the task focused within-language cloning for RQ1. 
For code written in C++, the task involved cross-language code cloning 
from C++ to Java for RQ2. Similarly, for Python submissions, the task 
was to clone the code from Python to Java for RQ2.

To further explore RQ1 and assess the model’s ability to create 
syntactically diverse semantic within-language (Type IV) clones, the 
following structured prompt was used:
‘‘Generate a syntactically different semantic Java code clone of
the code below: {reference code}’’

This task is referred to as ‘‘Java to SD Java’’ throughout the rest of the 
paper.

OpenAI’s API (OpenAI, 2025) and HuggingFace Inference End-
point’s API was utilized to query the models. The only parameter that 
was adjusted throughout the study was the temperature parameter, 
which controls the randomness of the model’s output. Higher tem-
perature settings result in more varied and unpredictable responses. 
To explore how this parameter influences code diversity, we tested 
temperature settings of 0.01, 0.5, and 1. We avoided temperature 
settings higher than 1 because we observed a noticeable decline in 
5 
output quality at 1.5 and 2. We adjusted this parameter to understand 
the impact of temperature adjustments on generating diverse code 
clones across multiple queries with the same prompt.

4.3. Data

Each of the thirty-six LeetCode problems was promoted using four 
different prompts (two within-language and two cross-language), across 
three different temperatures (0.01, 0.5, 1), and repeated 20 times 
to create 20 code snippets per combination of LeetCode problem, 
input language (prompt), and temperature. In total, our study analyzes 
25,920 LLM-generated code clone candidates — 8640 samples per 
LeetCode difficulty level, per temperature, and per model, and 6480 
samples per task.

After collecting the LLM responses to the prompts, we used regular 
expressions and the javalang Python library (Thunes, 2020) – a tool 
that provides a lexer and parser for Java source code – to extract the 
Java code. If a main method was absent, we added one to make the 
code runnable. Otherwise, no syntactic corrections were applied to the 
LLM output.

4.4. Metrics

For each combination of LeetCode problem, temperature, and pro-
mpt, the 20 code snippets and the reference code were clustered accord-
ing to their behavior. We measure quality in two ways: the accuracy of 
an individual generated snippet, and the presence one cluster when the 
LLM generates a set of 20 code clones with no false positives.

Accuracy : If a code snippet generated by an LLM is accurate, this 
means it is clustered with the reference code used in the prompt. That 
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Table 3
Hard LeetCode problem descriptions. The LOC counts refer to the reference examples.
 Problem_ID Problem description (Input type): 

Output type
Lines of Code (LOC)

 C++ Java Python 
 count_LCM Count connected components where nodes connect if 

LCM ≤ threshold.
(int[], int): int 75 7 5 65  

 count_num_k_match_adj Count the number of arrays of size 𝑛 with values in {1, 
m} where exactly 𝑘 adjacent pairs are equal. Return the 
result modulo 109+7.

(int, int, int): int 47 50 36  

 if_palindrome For each node in a tree, perform a DFS traversal and 
check if the resulting string is a palindrome.

(int[], String): 
boolean[]

94 87 47  

 max_area_rect_point Find the largest axis-aligned rectangle with four given 
points as corners, ensuring no other point is inside or on 
its border.

(int[], int[]): int 128 94 54  

 max_freq_ele_performing_ops_two Maximize the frequency of any element in an array by 
modifying up to numOperations distinct elements within 
the range {−k, k}.

(int[], int, int): 
int

50 40 30  

 max_fruit Maximize fruits collected as three children move from 
different corners to the bottom-right of an n × n grid, 
emptying rooms they visit.

(int[][]): int 81 57 55  

 max_score_intervals Select up to 4 non-overlapping intervals with the 
maximum total weight. If multiple choices exist, return 
the lexicographically smallest set of indices.

(int[][]): int[] 93 140 31  

 max_subarr_rm Remove all occurrences of one integer from the array at 
most once and return the maximum possible subarray 
sum.

(int[]): int 87 87 76  

 max_sum_weights_after_edge_removal Remove edges from a tree to ensure no node connects to 
more than 𝑘 nodes while maximizing the sum of 
remaining edge weights.

(int[][], int): int 115 73 50  

 min_diff_adj_ele_diff Replace missing values with two chosen integers to 
minimize the maximum adjacent difference.

(int[]): int 93 72 97  

 small_id_substring Flip up to a given number of bits in a binary string to 
minimize the longest substring of identical characters.

(String, int): int 59 39 51  

 subsequence_unique_middle_mode Count subsequences of length 5 with a unique middle 
mode, returning the result modulo 109+7.

(int[]): int 148 225 64  
is, for a set of 200 snippets, if 120 are clustered with their specific 
reference code and 80 are in other clusters, this puts the accuracy at 
60%. In a cross-language context, an LLM-generated Java code snippet 
is a clone of a Python reference code if they are in the same behavioral 
cluster. That is to say that given the same input to both pieces of code, 
they produce the same output at least 99% of the time (see Section 4.5.3 
for details on the clustering technique).

A special case to consider is the presence of exceptions. During 
the input generation process, any inputs that cause runtime exceptions 
in any of the reference code snippets are excluded from the final 
input corpus. This ensures that all the generated inputs produce valid 
output for the reference codes to facilitate comparison. Therefore, when 
an LLM-generated code snippet produces an exception, it indicates 
a different behavior without having to compare the specifics of the 
exceptions between the LLM-generated snippet and the reference code.

One Cluster : In an ideal scenario, all 20 code snippets generated per 
LeetCode problem, model, prompt, temperature, and task would exhibit 
identical behavior, clustering into one behavioral cluster with the refer-
ence code. To determine how frequently the ideal scenario occurs, the 
success and failures change. If all 20 snippets cluster into one behavior 
cluster with the reference code, that is a success. Otherwise, if even 
one LLM-generated snippet is not in the same cluster as the reference 
code, that is seen as a failure. This tries to illuminate when the LLM is 
completely dependable for code clone generation.

4.5. Dynamic analysis

Dynamic analysis requires three phases: generating inputs, execut-
ing the code on the inputs, and clustering. From there, the accuracy 
metrics can be computed.
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4.5.1. Input generation
Dynamic analysis relies on a set of inputs against which each 

generated code snippet will be run. To create an input corpus for all 
code snippets, we used the Hypothesis library (MacIver, 2013) — 
a Python tool designed for generating edge case inputs for unit tests. 
The method signatures of the Java LeetCode solutions were used by
Hypothesis to generate the input corpus. Initially, between 512 and 
3000 inputs were produced for each LeetCode problem, covering Java, 
Python, and C++ solutions. The same input corpus was then applied 
across all solutions.

Next, each original LeetCode solution was executed against its 
corresponding input corpus, and any inputs that triggered errors or 
exceptions were excluded. This step was crucial to avoid comparing 
error messages between the original and generated snippets.

The refined input corpus included 256 inputs per LeetCode problem, 
ensuring that each input could generate valid outputs across all the 
Java, Python, and C++ reference codes.

4.5.2. Behavioral data collection
Following the creation of the input corpus for each generated LLM 

snippet, the Python subprocess module (Python, 2025) was utilized 
to execute the snippets using the input corpus to gather the input/out-
put relationships of each snippet. The Java snippets were executed 
using OpenJDK version 17.0.13, Python snippets with Python version 
3.10.12, and C++ snippets were compiled and run using C++20.

This study finds behavioral clusters for each set of 20 functions 
generated from the same prompt, model, and task, under the same 
temperature setting for each LeetCode problem. The clustering is based 
on the behavioral similarity of the input corpus that excluded inputs 
causing errors and exceptions. The reference code’s behavior was also 



A. Eagal et al. The Journal of Systems & Software 230 (2025) 112548 
Fig. 2. Within-language semantic correctness across levels, temperatures, and tasks for GPT-3.5.
included to serve as a benchmark for correctness, with the premise 
that the cluster containing the original solution represents the correct 
clustering.

4.5.3. Clustering
Consistent with the methodology of SLACC, the similarity between 

two functions was determined based on the proportion of identical 
input/output pairs, akin to the Jaccard Index (Mathew et al., 2020).

We defined a similarity threshold of 99% behavioral similarity 
across 256 inputs to signify behavioral equivalence. Previous work 
has shown that false positives plateau after 64 inputs (Mathew et al., 
2020) and support the use of 256 inputs for cross-language code clone 
detection. While this stringent criteria drastically reduces the risk of 
incorrectly classifying behaviorally different functions as identical, we 
avoided setting the threshold at 100% because our 256 inputs were 
edge case inputs. Previous work has demonstrated that functions pro-
ducing the same output for trivial input cases often differ significantly 
for more complex inputs, underscoring the necessity of a high but not 
absolute threshold (Deissenboeck et al., 2012).

A representative-based partitioning strategy, as described in prior 
research (Roy et al., 2009; Su et al., 2016b; Mathew et al., 2020), 
was used for clustering. The process began with the initialization of 
an empty Union-Find data structure, with each function initially acting 
as its own representative. Functions then were compared pairwise; if 
the behavioral similarity between two functions exceeds a predefined 
similarity threshold, they are unified under the same representative. 
Functions that did not meet this threshold remained as independent 
representatives.

As the process concluded, clusters were established based on their 
root representatives. To ensure the robustness of the clustering, ev-
ery function within a cluster was cross-validated against every other 
function in the same cluster to confirm that all met the similarity 
threshold.

5. Results

5.1. RQ1: Within-language clone generation

Figs.  2, 3, and 4 present Agresti-Coull confidence interval results of 
clustering the clone candidates with a 99% runtime behavior similarity 
threshold for each model. A snippet is deemed semantically correct if 
it clusters with the reference code; otherwise, it is considered a failure.

The results indicate that all models performed best when generating 
Java to Java clones of Easy reference codes at lower temperatures. 
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At temperatures of 0.01 and 0.5, each model achieved a median ex-
pected success rate of approximately 90%. However, while the GPT 
models maintained a high success rate even at the highest temperature, 
CodeLlama’s expected success rate dropped by 17% at temperature 
1. Notably, these trends remained consistent even when excluding 
compilation and runtime errors, suggesting that errors were not the 
primary factor influencing semantic dissimilarity.

A significant decline in semantic correctness is observed for Medium 
Java to Java clone candidates across all models compared to their 
Easy counterparts. GPT-3.5’s median expected success rate plummeted 
from 90% to 34% at temperature 0, 33% at 0.5, and 32% at 1. 
GPT-4 followed a similar trend, maintaining 34% at both 0 and 0.5 
before slightly decreasing to 31% at 1. CodeLlama exhibited a more 
pronounced drop, starting at 34% at temperature 0, decreasing to 32% 
at 0.5, and falling sharply to 24% at 1.

When exceptions and errors were excluded, the GPT models demon-
strated notable improvements in semantic correctness. For Java to Java 
cloning of Medium reference codes, GPT-3.5 and GPT-4 both improved 
to a median expected success rate of approximately 50% across all 
temperatures. In contrast, as the temperature increased CodeLlama 
showed less variation in performance. Overall, these findings suggest 
that a non-trivial portion of the semantic dissimilarity between Medium 
reference codes and their clone candidates stem from the GPT models 
producing buggy code.

The models exhibited higher semantic correctness when generating 
clones of Hard reference codes compared to Medium ones  —– a anoma-
lous result, particularly when compared to prior studies leveraging 
LeetCode as a benchmark, which consistently report greater model suc-
cess on Medium-level tasks relative to Hard-level tasks (OpenAI, 2023; 
Yeo et al., 2024; Coignion et al., 2024). GPT-3.5’s expected semantic 
correctness was higher by approximately 12% for Hard reference codes, 
while GPT-4 and CodeLlama showed a similar improvement of around 
8%. As with the Medium clone candidates, excluding exceptions and er-
rors led to a notable performance boost. GPT-3.5’s expected success rate 
increased by approximately 25% across all temperatures, with GPT-4 
and CodeLlama demonstrating similar gains. This further suggests that 
a substantial portion of semantic inaccuracies in Hard clone candidates 
can be attributed to errors in the generated code.

Part of this study was to investigate the ability of LLMs to generate 
syntactically diverse (Type IV) code clones. When prompted to produce 
these types of clones, both GPT-4 and CodeLlama were effective in 
producing at least semantically correct clones. GPT-4’s expected suc-
cess rate is approximately 91% across all temperatures. CodeLlama 
performed similarly, reaching 91% at temperature 0, 88% at 0.5, but 
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Fig. 3. Within-language semantic correctness across levels, temperatures, and tasks for GPT-4.

Fig. 4. Within-language semantic correctness across levels, temperatures, and tasks for CodeLlama.

Fig. 5. Cross-language semantic correctness across levels, temperatures, and tasks for GPT-3.5.
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Fig. 6. Cross-language semantic correctness across levels, temperatures, and tasks for GPT-4.
Fig. 7. Within-language semantic correctness across levels, temperatures, and tasks for CodeLlama.
declining significantly to 53% at temperature 1. GPT-3.5 performed 
the worst with a decreasing success rate as temperature increased, 
starting at 71% at temperature 0, decreasing to 67% at 0.5, and further 
dropping to 55% at temperature 1. Just as before, exceptions were 
not a large cause of semantic dissimilarity for cloning Easy LeetCode 
reference codes — except for GPT-3.5 at the lowest temperature which 
saw a 8% improvement in correctness when exceptions were filtered 
out.

Similar to within-language cloning for unspecified types, the ex-
pected success rate for semantic correctness dropped significantly when 
generating Type IV clones for Medium and Hard reference codes. The 
trend of the LLMs performing better at cloning Hard reference codes 
than Medium reference codes also persisted. Similarly, the substantial 
improvement in semantic correctness at higher temperatures, when 
excluding compilation and runtime errors, also continued when cloning 
Hard reference codes.

To get a fuller understanding of the dependability of LLMs for 
code clone generation, we need to assess how frequently the ideal 
scenario occurs. Specifically, we need to determine how often the LLMs 
produce behaviorally equivalent code clones for all 20 code snippets 
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generated using the same reference code, prompt, and temperature. Un-
der this scenario, significant variations in performance across different 
difficulty levels and temperature settings.

In general, the ideal scenario typically occurs when the models 
generate Java to Java clones of Easy reference codes. At lower tem-
perature settings, particularly at 0.01, the GPT models are able to 
produce single behavioral clusters, but this occurrence decreases as the 
temperature increases. This suggests that at low temperatures, LLMs 
exhibit strong determinism, producing nearly identical outputs across 
multiple generations. However, as the temperature increases to 0.5 
and 1.0, the code snippet at least has some changes increases and 
the reliability of the generated clones decreases. This can especially 
be seen in CodeLlama, where it never produces a perfect cluster for 
within-language clones at temperature 1.

For Type IV clones, the ability to balance syntactic diversity with 
behavioral consistency varies across models. GPT-4 maintains a higher 
accuracy across temperature settings, though behavioral inconsistencies 
emerge at higher programming difficulties. In contrast, CodeLlama 
exhibits substantial degradation at higher temperatures, exclusively 
generating outputs that do not all cluster with the reference code. 
This decline in semantic correctness suggests that while increased 
temperature encourages more diverse types of clones, it also introduces 
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Fig. 8. Compilation and runtime errors of GPT-3.5.
Fig. 9. Compilation and runtime errors of GPT-4.
modifications that compromise functional correctness. The challenge 
becomes more pronounced with Medium and Hard clone candidates, 
where the likelihood of all 20 generated clone candidates exhibiting 
identical behavior diminishes significantly.

These findings reveal a fundamental trade-off in LLM-based clone 
generation: lower temperatures promote deterministic, behaviorally 
consistent outputs but may limit syntactic diversity, whereas higher 
temperatures introduce variation at the cost of reliability. Among the 
evaluated models, GPT-4 demonstrates the highest stability for within-
language cloning of unspecified types, while CodeLlama exhibits the 
most variability.

Additionally, when investigating the dependability of LLMs for code 
clone generation, we must consider the types of errors that occur during 
10 
the process — both compilation and runtime errors. This information 
for each model can be seen in Figs.  8, 9, and 10. Interestingly, the mod-
els tend to have a low amount of compilation errors when producing 
within-language clones, meaning that the code outputted is well-formed 
and syntactically correct, but produces a significant amount of runtime 
errors when cloning Medium and Hard reference codes.

5.2. RQ2: Cross-language clone generation

Figs.  5, 6, and 7 show the Agresti-Coull confidence interval re-
sults for clustering the cross-language code clone candidates based on 
runtime behavior. Across all models, performance in cross-language 
cloning is consistently lower than within-language cloning, with a 
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Fig. 10. Compilation and runtime errors of CodeLlama.
steep decline in expected correctness at higher problem difficulties and 
higher temperatures.

For C++ to Java cloning, GPT-3.5 outperforms GPT-4, particu-
larly when cloning Easy reference codes. With these reference codes, 
GPT-3.5’s median expected success rate hovers around 70% across 
temperatures. In contrast, GPT-4 struggles with median expected suc-
cess rates below 55% on similar tasks. However, for both models, 
performance declines sharply at higher programming difficulty levels. 
Among the models tested, CodeLlama performs the worst, consistently 
showing low success rates across all difficulty levels and temperature 
settings.

The models performed the worst when generating clones from 
Python to Java. GPT-4 achieves the highest expected success rate when 
cloning Easy reference codes at lower temperatures. However, this rate 
declines sharply for Medium and Hard reference codes. GPT-3.5 follows 
a similar trend, with a steep performance drop at higher temperatures. 
CodeLlama performs the worst among the models; it never achieves an 
expected semantic correctness rate above 8% across all temperatures 
and difficulty levels. We hypothesize that the performance gap is due 
to fundamental syntactic differences between Python and Java. Unlike 
C++ and Java, which are both statically typed and share a C-style 
syntax, Python is dynamically typed and relies on indentation rather 
than brackets to define code blocks. This contrast in typing and block 
structure likely contributes to the decreased accuracy of LLMs when 
translating between Python and Java.

The ideal scenario – where all LLM-generated clone candidates 
gathered into the same behavior cluster as the reference code – was 
rare in cross-language clone generation. As shown in Figs.  8, 9, and 
10, medium and high reference code difficulty led to more compilation 
errors, a trend also observed in within-language cloning. Even when 
clones were compiled successfully, runtime errors remained prevalent, 
particularly for Medium reference codes.

6. Discussion

6.1. Levenshtein edit distance & accuracy

In the previous section, it was established that GPT-3.5, GPT-4, 
and CodeLlama frequently generated within-language code clones with 
high behavioral similarity. Although the primary research questions 
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of this study have been addressed, further exploration is needed to 
characterize the specific types of within-language LLM-generated code 
clones. We employed the Levenshtein Edit Distance algorithm  via the 
Python library Levenshtein (Bachl, 2024) to discern the amount of 
Type I within-language clones. Given adjustments in the preprocessing 
phase of our study, we defined Type I code clones as those having a 
Levenshtein distance of 10 or less relative to the reference code.

Table  4 shows the percent of Type I clones across within-language 
tasks, temperatures, and models. This table shows that GPT-4 produced 
no Type I clones, and that GPT-3.5 produced a limited number, mostly 
at lower temperatures. Codellama produced the highest number of 
Type I clones, again at lower temperatures. While this indicates strong 
replication capability, it is not ideal for within-language cloning where 
Type IV clones – structurally diverse but functionally equivalent clones 
– are more valuable. The prevalence of Type I suggests CodeLlama 
struggles with either Type IV cloning or prompt guidance.  Section 5.1 
showed that all the models struggled with within-language cloning of 
higher difficulty reference codes. Given this and the varying rates of 
Type I clone generation between the models, examining the corre-
lation between a clone’s Levenshtein Edit Distance and its semantic 
correctness could reveal how well LLMs produce accurate Type IV 
clones.

To examine the correlation between Levenshtein Edit Distance and 
the semantic accuracy of LLM-generated clones, we conducted a logistic 
regression analysis. The analysis revealed a statistically significant 
negative correlation between the Levenshtein Edit Distance and the 
accuracy of the LLM-generated solutions (𝑝-value < 0.0001). Specif-
ically, the regression coefficient for Levenshtein Edit Distance was 
−0.0009, suggesting that an increase in edit distance slightly decreases 
the likelihood of generating a correct solution.

6.2. AST edit distance & accuracy

While Levenshtein Edit Distance is used to identify Type I code 
clones by measuring textual similarity between code snippets and their 
reference code, Abstract Syntax Tree (AST) Edit Distance identifies 
Type II clones by assessing structural similarity in their underlying syn-
tax trees. We used the Python library javalang (Thunes, 2020) and
zss (Henderson, 2021) to calculate the AST Edit Distances between 
the LLM-generated code snippets and their reference code.
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Table 4
Percent of Type I clones across within-language tasks, temperatures, and models. 

Model Task Temperature Easy (%) Medium (%) Hard (%)
GPT-3.5 Java to Java 0.01 13 18 30

0.5 15 13 17
1 9 4 7

Java to SD Java 0.01 0 0 17
0.5 0 1 2
1 0 0 0

GPT-4 Java to Java 0.01 0 0 0
0.5 0 0 0
1 0 0 0

Java to SD Java 0.01 0 0 0
0.5 0 0 0
1 0 0 0

CodeLlama Java to Java 0.01 58 80 65
0.5 57 62 44
1 32 27 20

Java to SD Java 0.01 70 82 66
0.5 59 67 48
1 18 23 15
Table 5
Percent of Type II clones across within-language tasks and temperatures.

Model Task Temperature Easy (%) Medium (%) Hard (%)
GPT-3.5 Java to Java 0.01 100 96 98

0.5 98 91 96
1 84 84 90

Java to SD Java 0.01 90 100 99
0.5 86 96 88
1 83 81 77

GPT-4 Java to Java 0.01 92 100 85
0.5 95 99 87
1 92 79 79

Java to SD Java 0.01 98 99 88
0.5 93 96 88
1 81 78 74

CodeLlama Java to Java 0.01 91 97 97
0.5 95 87 85
1 82 68 59

Java to SD Java 0.01 100 100 100
0.5 98 96 89
1 68 62 59
Table  5 shows the percent of Type I clones across within-language 
tasks, temperatures, and models. This table shows that most clone 
candidates were Type II clones at lower temperatures, with the lowest 
percentages consistently at Temperature 1. GPT-3.5 and GPT-4 main-
tained at least 90% Type II clones at temperatures 0.01 and 0.5 but 
saw a decline at Temperature 1. CodeLlama followed a similar trend, 
with a significant drop at Temperature 1, particularly for Java to SD 
Java. The decline from 0.5 to 1 across all models highlights the impact 
of temperature on syntactically diverse code clone generation.

As with the Levenshtein distance, it is important to investigate the 
relationship between AST distance and accuracy. Our logistic regression 
analysis reveals a significant negative correlation between AST distance 
and accuracy (𝛽 = −0.6609, 𝑝 < 0.001), indicating that a greater AST dis-
tance reduces accuracy. Despite a low pseudo 𝑅2 (0.01938), the model 
significantly improves over the null (𝑝 = 3.044×10−74), confirming AST 
distance as a key factor. This aligns with the observed accuracy drop 
at higher temperatures, reinforcing that increased syntactic variation 
challenges LLMs. Future work should explore ways to balance diversity 
and accuracy in code clone generation (see Table  5).

6.3. Alternatives to LLMs for code clone generation

For within-language code clone generation, a direct copy-and-paste 
approach is the most accessible method for producing Type I clones. 
However, Type II and III clones require specialized tools. For example, 
Recaf (GitHub, 2025a) and Java Deobfuscator (GitHub, 2023) can mod-
ify Java code, but both have limitations: Recaf (GitHub, 2025a) requires 
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manual intervention, making it impractical for large-scale automa-
tion, while Java Deobfuscator (GitHub, 2023) is limited to reversing 
obfuscated code and lacks a general-purpose refactoring approach.

For Java Type IV clones, ReFaster (Wasserman, 2013) enables struc-
tured refactoring through predefined transformation rules while pre-
serving functional equivalence. While effective for targeted modifi-
cations, its major drawback is the need for explicit rule definitions, 
limiting its adaptability compared to LLMs, which can generate diverse 
syntactic variations dynamically.

Generating functionally equivalent clones between Python and Java 
or C++ and Java requires tools that can either transpile, translate, or 
infer equivalences between the two languages. Several transpilers have 
been developed to create these clones. P2J (Chris Humphreys, 2013) 
translates Python to Java but lacks support for advanced constructs 
like lambdas, metaclasses, and dynamic typing. Jython (GitHub, 2024) 
allows Python to run on the JVM but does not generate indepen-
dent Java source code and requires manual updates when languages 
change. For C++ to Java cloning, Tangible Software’s C++ to Java 
Converter (Inc., 2025) preserves object-oriented structure but struggles 
with STL templates and pointer manipulation.

While these transpilers provide rule-based mappings between lan-
guages, their effectiveness is limited. Unlike LLMs, which leverage 
probabilistic reasoning to generate functionally equivalent clones, tran-
spilers require explicit rules and lack adaptability to novel code struc-
tures. Additionally, transpilers typically produce deterministic output, 
whereas LLMs can generate multiple structurally diverse implementa-
tions of functionally equivalent code. However, as shown in Section 5.2, 
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LLMs seem to be prone to errors and inconsistencies for cross-language 
clone generation, necessitating post-processing and verification to en-
sure correctness.

6.4. Practical implications

The practical implications of this study include software engineering 
tasks that make use of code clones, revealing both the potential and 
challenges of using LLMs to create code clones.

LLMs offer the ability to create multiple versions of a code segment, 
providing students with diverse solutions to the same problem. For 
instance, educators in software engineering could make use of LLMs 
to create comparative comprehension educational materials, enhanc-
ing student learning through the showcasing of an array of solutions 
to one problem (Patitsas et al., 2013). Our study reveals that using 
LLMs at lower temperatures can result in the generation of more 
precise within-language code clones. However, this is associated with 
a decrease in syntactic diversity, an aspect highly desirable in both 
educational settings and the formation of robust code clone detection 
datasets (Zakeri-Nasrabadi et al., 2023). In contrast, LLM-generated 
clones at higher temperatures show increased syntactic diversity but 
are considerably more error-prone. The findings suggest a potential so-
lution: the application of program repair techniques on LLM-generated 
clones could be used to reduce the errors while preserving their syntac-
tic diversity. This type of solution along with others could make LLMs 
useful for wide range of software engineering tasks that involve code 
clone generation.

However, while our study primarily focuses on the behavioral simi-
larity of code clones generated by LLMs, there are practical challenges 
that come from using LLMs for code clone generation. The automated 
generation of code clones raises concerns about the propagation of 
security vulnerabilities. If an LLM generates code clones with subtle 
security flaws, developers may inadvertently introduce vulnerabilities 
into their codebases. In fact, a study from 2021 found that when GitHub 
Copilot (GitHub, 2025) was used to infill code for 1869 programs in 89 
scenarios, 40% of the code chunks generated were vulnerable (Pearce 
et al., 2021). Later in 2023, the same research institution conducted 
a study comparing code from 58 students – some with LLM access 
and some without – who were tasked with implementing 12 functions 
for basic operations on a linked list representing a ‘shopping list’ in 
C (Sandoval et al., 2023). Surprisingly, the study found that the group 
using GitHub Copilot was 6%–10% more productive than the control 
group, with no more than a 10% increase in bug rates when compared 
to the control group. While these findings suggest that security concerns 
with LLM assistants may be less severe than initially thought, the 
authors emphasized the need for larger sample sizes and more diverse 
user groups. In 2024, an in-lab study assigned 30 experienced software 
developers to three groups: one using a poisoned code completion tool, 
another using a poisoned code generation tool, and a control group 
with no tool. Participants completed three programming tasks followed 
by an exit interview. The study found that developers using code 
generation tools, similar to those examined in this study, were more 
likely to introduce insecure code compared to the other groups (Oh 
et al., 2024). These findings highlight the need for further research into 
LLM-generated insecure clones and the complexities associated with 
this form of code generation.

Furthermore, ethical considerations arise when LLMs are used for 
automated code clone generation. In the context of computer science 
education, a student could use an LLM to transform a prior assignment 
solution into a Type IV clone. Because these clones differ syntactically 
but remain functionally equivalent, traditional plagiarism detectors 
may fail to flag them. This raises academic integrity concerns, as stu-
dents could exploit LLMs to evade detection. While there is prior work 
on detecting ChatGPT-generated code submissions in CS1 courses (Hoq 
et al., 2024), this specific form of plagiarism remains unexplored.
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Overall, LLM-facilitated code clone generation has practical appli-
cations in areas such as language migration (Mathew et al., 2020) and 
software maintenance tasks (Aversano et al., 2007; Thummalapenta 
et al., 2010), where cross-language code generation may be particu-
larly beneficial. However, our study highlights significant challenges, 
including inconsistencies in behavioral similarity and high rates of 
runtime and compilation errors in LLM-generated clones, signaling 
the need for solutions. Additionally, LLM-generated code clones raise 
security and ethical concerns, such as the potential propagation of 
vulnerabilities and risks of misuse, including plagiarism. Addressing 
these issues is essential to ensuring the reliability, security, and ethical 
use of LLM-generated code clones in software development.

7. Threats to validity

7.1. Threats to internal validity

The study has several threats to its internal validity. First, the 
study may be influenced by selection bias due to the specific choice of 
LeetCode problems, code clone generation tasks, and languages used. 
Different LeetCode problems, programming languages, and code clone 
generation tasks might lead to variations in the results. We chose to in-
clude the full range of LeetCode difficulty levels, our code cloning tasks, 
and our programming languages due to their broad representation of 
distinct programming paradigms and widespread use among devel-
opers. While these choices introduce some limitations, our technical 
processes could be adapted to study additional datasets, code cloning 
tasks, and programming languages in future work to further generalize 
our findings. Second, the preprocessing portion of the methodology 
implemented in the study to gather the input/output relationships 
efficiently, such as removing superfluous English explanations from 
the LLMs’ output and creating Java classes from the LLMs’ output 
could also introduce biases affecting the experiment’s internal validity. 
Third, across the LLMs at varying degrees of temperature, code clone 
generation tasks, and Leetcode problem, a fixed sample size of twenty 
was used. While this was deemed practical for preliminary analysis, an 
LLM can potentially generate a broader array of code snippets, which 
might not be accounted for in this limited sample size. Lastly, this study 
employed minimal prompt engineering. This is due to two reasons: the 
study aimed to probe the baseline code clone generation abilities of the 
models and to minimize the effects that could arise from using different 
wording with prompts across models to generate the code clone data. 
In addition, the prompts for generating semantically equivalent but 
syntactically diverse within-language clones were minimally modified 
from those used in other code cloning tasks to evaluate the model’s 
ability to generate Type-IV clones. Employing this consistent minimal 
prompting approach across all models may underestimate their full 
potential; however, it provides a foundational analysis of their code 
clone generation capabilities.

7.2. Threats to external validity

The external validity of this study is subject to several threats that 
could limit the generalizability of the findings. First, the controlled 
experiments with LeetCode solutions in this study might not reflect 
the diverse and complex scenarios encountered in the broad spectrum 
of real-world software projects. We used LeetCode problems to study 
the code clone generation abilities of LLMs because these types of 
problems have served as a benchmark for evaluating the code gen-
eration previously (OpenAI, 2023; Bubeck et al., 2023; Huang et al., 
2024), they have well-defined correctness criteria, and they generally 
reflect algorithmic and data structure concepts encountered in software 
development. We have structured our technical processes such that this 
experiment could extend to other datasets in future work. Second, the 
behaviors observed in this study might not scale to larger or more 
complex software projects. While we did not include such examples in 
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this study. Our technical process with modification could be extended 
for these types of datasets. Third, the study focuses on the GPT-3.5, 
GPT-4, and CodeLlama models. Hence, the observed limitations and 
inconsistencies in code clone generation may not be representative of 
other LLMs or future iterations of these models.

8. Future work

Overall, this study suggests several directions for future work, some 
of which are motivated by the limitations and validity threats identified 
in the evaluation. A particularly promising direction is the evaluation of 
code clone generation using SLACC (or similar tools) across a broader 
range of LLMs, with an emphasis on recently-developed models that 
exhibit strong code generation capabilities. This includes specialized 
models such as StarCoder (Li et al., 2023), GraphCodeBERT (Guo 
et al., 2021), and Qwen2-Coder-Instruct (Yang et al., 2024), as well 
as general-purpose models like the Claude 3 family (Anthropic, 2025), 
which has demonstrated superior performance to GPT-3.5 and GPT-4 
on code generation benchmarks such as MBPP and HumanEval (An-
thropic, 2025). Evaluating these models may offer a more comprehen-
sive understanding of the capabilities and limitations of LLMs, while 
also offering additional context for the code clone generation results 
presented in this paper.

Additionally, as mentioned in Section 7, our technical process can 
be adapted to study LLMs’ ability to perform code clone generation of 
code clone snippets for larger, more complex software projects, other 
languages, and other datasets. Our results also indicate the LLMs par-
ticularly struggle with cross-language tasks. Future work could explore 
prompt engineering techniques and fine-tuning on curated datasets to 
improve performance.

Lastly, in light of the issues identified with the LLMs investigated 
in this study, it may be worth implementing the potential solutions to 
improve the code clone generation abilities of large language models 
such as incorporating runtime behavior and syntactic error detection 
tools into their training and validation processes.

9. Conclusion

This study examined the dependability of Large Language Models 
in generating behaviorally equivalent code clones within and across 
programming languages. Specifically, we assessed the clone-generation 
capabilities of GPT-3.5, GPT-4, and CodeLlama across different temper-
ature settings by testing them on a diverse set of LeetCode problems. 
Our findings indicate that while LLMs can successfully generate within-
language clones at lower temperatures, their reliability diminishes at 
higher temperatures and programming difficulties.

Furthermore, cross-language clone generation presents a greater 
challenge, with significantly higher rates of compilation and runtime 
errors, particularly when translating from Python to Java. Even when 
successful, the generated clones exhibit lower semantic correctness 
compared to their within-language counterparts. Our results suggest 
that while LLMs can produce syntactically diverse clones, they struggle 
with preserving behavioral consistency across languages.

These results highlight both the promise and limitations of LLMs 
for automated code clone generation. While LLMs can facilitate rapid 
generation of functionally equivalent code snippets, their inconsistency 
in maintaining correctness – especially for complex and cross-language 
tasks – suggests that they are not yet a fully reliable solution for 
automated clone generation without human oversight or supplemen-
tary verification techniques. Future work should explore methods for 
improving clone accuracy, such as integrating program repair tools, 
refining prompt engineering techniques, or leveraging fine-tuned mod-
els specifically trained for clone generation tasks. Future work should 
also consider studying a broader range of LLMs, especially newer and 
specialized LLMs with strong code generation capabilities, to further 
generalize our findings.
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