
The Journal of Systems and Software 230 (2025) 112548

A
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Analyzing the dependability of Large Language Models for code clone

generationI

Azeeza Eagal ∗, Kathryn T. Stolee, John-Paul Ore
Department of Computer Science, North Carolina State University, 890 Oval Drive, Engineering Building II, Raleigh, 27606, NC, USA

A R T I C L E I N F O

Keywords:
Machine learning for software engineering
Software quality assurance
Software measurement and analytics

 A B S T R A C T

The ability to generate multiple equivalent versions of the same code segment across different programming
languages and within the same language is valuable for code translation, language migration, and code
comprehension in education. However, current avenues for generating code clones – through manual creation
or specialized software tools – often fail to consistently generate a variety of behaviorally equivalent code
clones. Large Language Models (LLMs) offer a promising solution by leveraging their extensive training on
diverse codebases to automatically generate code. Unlike traditional methods, LLMs can produce code across
a wide variety of programming languages with minimal user effort. Using LLMs for code clone generation
could significantly reduce the time and resources needed to create code clones while enhancing their syntactic
diversity.

In this quantitative empirical study, we investigate the dependability of LLMs as potential generators of
code clones. We gathered equivalent code solutions (i.e., behavioral clones) in C++, Java, and Python from
thirty-six programming problems from the well-known technical interview practice platform, LeetCode. We
query OpenAI’s GPT-3.5, GPT-4, and CodeLlama to generate code clones of the LeetCode solutions. We measure
the behavioral equivalence of the LLM-generated clones using a behavioral similarity clustering technique
inspired by the code clone detection tool, Simion-based Language Agnostic Code Clones (SLACC). This study
reveals that, despite LLMs demonstrating the potential for code generation, their capacity to consistently
generate syntactically diverse but behaviorally equivalent code clones is limited. At lower temperature settings,
LLMs are more successful in producing behaviorally consistent, syntactically similar code clones within the
same language. However, for cross-language cloning tasks and at higher temperature settings and programming
difficulties, LLMs introduce greater syntactic diversity and lead to higher rates of compilation and runtime
errors, resulting in a decline in behavioral consistency. These findings indicate a need for further quality
assurance measures for the use of LLMs for code clone generation. All the data and scripts associated with this
paper can be found https://zenodo.org/records/14968618.
1. Introduction

The capability to generate accurate code clones holds significant
value in software engineering, impacting several areas including the
development of educational material for software engineering stu-
dents (Patitsas et al., 2013), the creation of robust datasets for semantic
code clone detection (Zakeri-Nasrabadi et al., 2023), language migra-
tion (Mathew et al., 2020), and software maintenance activities (Aver-
sano et al., 2007; Thummalapenta et al., 2010). Current methods
for generating behaviorally equivalent code clones typically involve
manual efforts or the use of specialized software tools (Avetisyan
et al., 2015; Wei and Li, 2017; Saini et al., 2018). Although manually

I Editor: Raffaela Mirandola.
∗ Corresponding author.
E-mail addresses: aeagal@ncsu.edu (A. Eagal), ktstolee@ncsu.edu (K.T. Stolee), jwore@ncsu.edu (J.-P. Ore).

generating code clones can be beneficial, this approach often demands
significant investment in time and resources.

Large Language Models (LLMs) have shown promising code gener-
ation capabilities (Xu et al., 2022; Fried et al., 2023; Nijkamp et al.,
2023). However, while previous research has predominantly focused on
code generation, the area of code clone generation has remained largely
unexplored. Unlike code generation, code clone generation requires
the input of a prompt that includes an existing code snippet that the
LLM is expected to clone, rather than a prompt that is a broad textual
description outlining programming tasks. Also, unlike code generation,
code clone generation requires that the resulting code segment is
behaviorally equivalent to the code segment used in the prompt. This
https://doi.org/10.1016/j.jss.2025.112548
Received 20 June 2024; Received in revised form 18 April 2025; Accepted 22 June
vailable online 4 July 2025
164-1212/© 2025 The Authors. Published by Elsevier Inc. This is an open access ar
 2025

ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
https://orcid.org/0009-0002-3203-788X
https://zenodo.org/records/14968618
mailto:aeagal@ncsu.edu
mailto:ktstolee@ncsu.edu
mailto:jwore@ncsu.edu
https://doi.org/10.1016/j.jss.2025.112548
https://doi.org/10.1016/j.jss.2025.112548
http://creativecommons.org/licenses/by/4.0/

A. Eagal et al. The Journal of Systems & Software 230 (2025) 112548
paper investigates the reliability and effectiveness of LLMs’ to produce
code clones. If successful, LLMs could amplify current research and
software engineering tasks that depends on clone generation. However,
if a user asks an LLM for a clone and unexpectedly receives non-clones,
this could increase their workload, necessitating additional time for
verifying and refining the LLM-generated code. This paper explores the
reliability and effectiveness of LLMs in code clone generation through
the following two research questions:

RQ1 Within-language Code Clone Generation: Given a brief natural
language prompt and a code snippet, can a Large Language
Model produce consistent code clones of the given code snip-
pet based on runtime behavior within the same programming
language?

RQ2 Cross-Language Code Clone Generation: Given a brief nat-
ural language prompt and a code snippet, can a Large Lan-
guage Model produce consistent code clones of the given code
snippet based on runtime behavior across multiple programming
languages?

One approach to evaluating the code clone generation capabilities
of an LLM involves the use of code clone detection tools. While re-
cent advancements have introduced machine-learning techniques for
detecting cross-language code clones, they require reliable datasets
that are scarce in this field (Zakeri-Nasrabadi et al., 2023). Simion-
based Language Agnostic Code Clones (SLACC) is an exception; it does
not rely on training datasets to discover code clones. Instead, SLACC
employs a dynamic analysis code clone detection framework based on
runtime behavior (Mathew et al., 2020). This approach leverages the
theory-predicted promises of dynamic program analysis, but inherits
some practical limitations caused by the implementation of program
analysis tools. SLACC analyzes the functional equivalence of snippets
by using similar input and output relationships ‘‘simions’’ (Deissenboeck
et al., 2012) to identify clones, thereby addressing the challenge of dif-
fering underlying representations in various programming languages.
It has shown efficacy in detecting statically typed Java code clones
with 87.3% precision and dynamically typed Python clones with 94.1%
precision (Mathew et al., 2020). The strength of SLACC lies in its
transparent process of directly analyzing runtime behavior to detect
code clones, but the trade-off is the potential for error inherent in
dynamic analysis, compared to the more precise but less versatile static
analysis tools. In this study, a SLACC-inspired approach is used to
evaluate the code clone generation abilities of LLMs.

Our contributions are as follows:

• Evaluation of LLMs for Code Clone Generation: The study pro-
vides a comprehensive evaluation of the ability of LLMs, specif-
ically GPT-3.5, GPT-4, and CodeLlama to generate behaviorally
equivalent code clones within and across multiple programming
languages. This assessment highlights their limitations in consis-
tently producing syntactically diverse yet behaviorally consistent
clones.

• Insights into Temperature Settings and Behavioral Equiva-
lence: This study explores how different temperature settings
affect the diversity and accuracy of generated code clones. It pro-
vides empirical evidence that reveals lower temperature settings
result in more behaviorally equivalent clones, whereas higher
temperatures increase the diversity of generated code clones at
the cost of accuracy.

The rest of the paper is organized as follows: Section 2 motivates
our study, highlighting the practical importance and challenges in LLM-
based code clone generation. Section 3 reviews related work, situating
our research within the broader context of code clone detection and
LLM capabilities. Section 4 describes our methodology, the specifics
of the LLMs used, and our approach to code clone detection with our
2
SLACC-inspired approach. Section 5 details the results of our study,
examining the reliability and effectiveness of LLMs to generate code
clones within and across different programming languages and temper-
ature settings. Section 6 provides a comprehensive discussion of these
results, performing additional analyses to further understand the types
of code clones the models generated. Section 7 examines the threats to
the validity of our study, both internal and external. Finally, Section 8
outlines future work directions, and the paper concludes with Section 9.

2. Motivating example

Consider Oliver, a computer science professor, who was determined
to enhance their introductory programming course. After discover-
ing research studies suggesting that teaching programming through
comparing multiple solutions is more effective than the traditional
approach of showing one solution at a time (Patitsas et al., 2013; Rittle-
Johnson et al., 2020; Margulieux et al., 2021), Oliver decided to use
LLMs to help integrate this finding into their course. Oliver hoped that
by leveraging LLMs, they could provide students with a diverse range
of solutions for their recently completed homework assignment.

However, Oliver faced an unexpected hurdle. Some of the solutions
generated by the LLM did not pass the homework test suite. This re-
vealed a critical limitation in the current available LLMs: their inability
to consistently produce code clones that are both syntactically diverse
and behaviorally consistent. The outcome was that Oliver had to spend
additional time and effort tweaking the solutions until they passed the
test cases.

Our research aims to overcome Oliver’s challenge by first quantify-
ing the impact of the issue – that LLMs fail to produce syntactically
diverse and behaviorally consistent clones – with the future goal of
enhancing an LLM’s capacity to generate accurate and dependable code
clones.

This advancement would not only benefit innovative teaching meth-
ods like Oliver’s but also have broader implications in the field of
software engineering. By improving the generation of code clones,
LLMs have the potential to create large amounts of reliable code clones,
leading to the development of code clone detection datasets that are
free from the human biases commonly found in existing datasets (Roy
and Cordy, 2018). Furthermore, in a cross-language context, being able
to generate code clones in other languages would assist with code
translation, language migration, and transpilation (Mayer et al., 2017).

3. Related work

Definition of code clone. A code clone refers to a group of code
snippets that ‘‘exhibit similarity according to a certain measure of simi-
larity’’ (Zakeri-Nasrabadi et al., 2023; Baxter et al., 1998). Researchers
have proposed two taxonomies to categorize how code clones exhibit
similarity: type similarity and threshold similarity (Baxter et al., 1998).

Type similarity . The type similarity taxonomy identifies four types of
code clones. Types I, II, and III usually refer to clones at the method
level. Type I code clones are identical except for whitespace and
comments. Type II code clones are syntactically equivalent but may
differ in trivial components such as identifiers. Type III code clones
can differ in control flow statements and may involve added, modified,
or removed statements while maintaining functional equivalence. Type
IV code clones, unique from the others, involve significantly syntacti-
cally dissimilar code pairs with functional equivalence across varying
granularity scopes (Roy and Cordy, 2007).

This work focuses on the method level Type IV clones. This is
because code clones that are significantly syntactically diverse but
behaviorally equivalent are more useful for the targeted domains of
code translation and clone generation for education.

A. Eagal et al. The Journal of Systems & Software 230 (2025) 112548
Fig. 1. High-level methodology.
Threshold similarity . similarity describes the extent of similarity be-
tween code snippets: a maximum threshold value would indicate an
exact match and a minimum threshold value would indicate little to
no similarity (Zakeri-Nasrabadi et al., 2023). M. Zakeri-Nasrabadi, et al.
identify nine categories of techniques that employ threshold similarity
for source code: text, token, tree, graph, metric, test, learning, image,
and hybrid techniques. These similarity measures are used in a variety
of applications, including plagiarism detection, code smell detection,
and program repair. This work uses test similarity to identify Type IV
code clones (Mathew et al., 2020).
Code clone detection techniques. Text, token, image, and tree code
clone detection techniques generally have been shown to detect syntac-
tic code clones (Types I, II, III) – but not semantic code clones (Type IV)
– because the techniques exclusively analyze the textual and syntactic
features of code snippets (Zakeri-Nasrabadi et al., 2023).

Graph, metric, learning, and hybrid code clone detection tech-
niques have proven more effective at detecting semantic code clones
(Type IV) (Zakeri-Nasrabadi et al., 2023). Graph code clone detection
techniques commonly utilize program dependency graphs (PDGs) to
identify code clones (Zakeri-Nasrabadi et al., 2023). However, de-
termining whether parts of PDGs are equivalent requires finding a
subgraph isomorphism, a problem known to be NP-Complete (Ullmann,
1976; Zakeri-Nasrabadi et al., 2023).

Test-based code clone detection techniques analyze the runtime
behavior of snippets in order to assess similarity (Zakeri-Nasrabadi
et al., 2023). Simion-based Language-Agnostic Code Clone detection
technique (SLACC), the technique that inspired the methodology of
this study, is a test-based technique. Utilizing the runtime behavior of
code snippets, SLACC addresses the challenges associated with iden-
tifying code clones across multiple programming languages that lack
a common underlying representation. The uniqueness of SLACC lies
in its clustering process. SLACC first segments the code repository
into smaller executable functions. These functions are then executed
using a custom input generator inspired by grey-box testing and multi-
modal distribution techniques. Once the functions are executed, the
resulting input and output relationships are utilized for clustering code
snippets (Mathew et al., 2020).

HitoshiIO is another test-based clone detection technique that dis-
tinguishes functionally similar source code methods by analyzing their
runtime behavior in the Java Virtual Machine (Su et al., 2016a).
HitoshiIO uses existing workloads via codebase test cases to identify
inputs and their corresponding outputs and measure the functions’
input and output similarity (Su et al., 2016a). SLACC employs a similar
input and output ‘‘simions’’ process to determine code clones (Mathew
et al., 2020). In comparison to HitoshiIO, SLACC does not rely upon
the existing inputs or workloads, but employs an input generation
process to probe the input state space inspired by EQMiner, a separate
test-based clone detection technique (Jiang and Su, 2009).

Detecting clones with data-driven, machine learning techniques has
been used to detect Type IV code clones (Zakeri-Nasrabadi et al., 2023).
However, machine learning approaches are data-hungry and require
substantial amounts of reliable training data (Roy and Cordy, 2018).
M. Zakeri-Nasrabadi, et al. identified three types of datasets used to
train and assess code clone detection techniques: datasets with human
oracles, datasets with machine oracles, and hybrid datasets (Zakeri-
Nasrabadi et al., 2023). Manually validating these datasets is time-
consuming and costly (Roy and Cordy, 2018). Moreover, the reliability
of clone datasets is dubious due to the introduction of human bias
during either the creation of the clones or validation of the clones
3
within these datasets (Roy and Cordy, 2018). In comparison, SLACC
does not require a dataset to train on and still achieves high recall,
precision, and F1 scores.

Learning techniques that LLMs have demonstrated high precision
and recall in detecting code clones (Zakeri-Nasrabadi et al., 2023).
While LLMs might perform well in identifying code clones, their deci-
sion-making processes are often opaque, making their results less trust-
worthy (Zhao et al., 2023). In contrast, test-based techniques offer
a clear and transparent methodology that uses runtime behavior of
code snippets to assess similarity, providing a level of reliability and
transparency not available with LLMs (Mathew et al., 2020).

Hybrid code clone detection techniques are techniques that combine
one or more of the previously mentioned techniques to detect code sim-
ilarity (Zakeri-Nasrabadi et al., 2023). Often, token and text code clone
detection techniques are efficient, and graph and tree techniques are
effective (Zakeri-Nasrabadi et al., 2023). Combining these techniques
intelligently produces robust code clone detection techniques (Zakeri-
Nasrabadi et al., 2023). One example of a tool that employs a hybrid
code clone detection technique is the tool COSAL (Mathew and Stolee,
2021). COSAL uses SLACC as well as token and tree similarity tech-
niques to perform code search (Mathew and Stolee, 2021). COSAL,
given a code query, gathers the top-N search results for each similarity
measure — token, tree, and test (Mathew and Stolee, 2021). Then,
the results are sorted and ranked by a genetic algorithm NGSA-II
(Non-dominated Sorting Genetic Algorithm II) (Mathew and Stolee,
2021; Deb et al., 2002). Researchers found that the non-dominated
ranking of these similarity measurements was more effective than a
single measurement or other weighted measures at returning relevant
snippets (Mathew and Stolee, 2021). COSAL was not used because the
overall goal of this paper is to characterize the code clone generation
capabilities of the LLM. COSAL did not cluster code clones based on
similarity measurements, which is vital to analyzing LLMs code clone
generation capabilities.
LLMs for code generation. The potential of machine learning models,
initially developed for natural language processing, to address software
engineering tasks was recognized in 2016, when researchers identified
striking similarities between source code and human language (Hindle
et al., 2016). This insight has since catalyzed the development and
widespread adoption of LLMs for code generation. Notable advances
in this area include the introduction of specialized architectures and
enhanced training methodologies, shown by CodeBERT (Feng et al.,
2020) and other seminal works (Rozière et al., 2023; Ahmad et al.,
2021).

However, the deployment of LLMs in code generation is not without
challenges. Key issues remain, including the security of generated
code (Yao et al., 2024) and the production of functionally incorrect
code snippets (Jesse et al., 2023). These obstacles highlight the need
for ongoing research to refine the capabilities and reliability of LLMs
in practical software engineering applications (Lo, 2023).

4. Methodology

This work aims to address the research questions in Section 1. Our
high-level methodology is shown in Fig. 1. Using a brief natural lan-
guage task command and LeetCode programming task solution written
in Java (LeetCode Solution Prompt), we prompted an LLM to return
semantically equivalent Java code. The same prompt was repeated in
the same session to gather twenty snippets in the Java language (20
Java Code Snippets). Afterward, a Dynamic Analysis of Runtime Behavior

A. Eagal et al. The Journal of Systems & Software 230 (2025) 112548
Table 1
Easy LeetCode problem descriptions. The LOC counts refer to the reference examples.
 Problem_ID Problem description (Input type):

Output type
Lines of Code (LOC)

 C++ Java Python
 adj_inc_subarr Determine if there exist two adjacent subarrays of

length k in an array that are strictly increasing.
(int[], int):
boolean

35 47 36

 button_longest_push Return the index of the button with the longest press
time.

(int[][]): int 53 31 26

 count_subarr_3_cond Return the number of subarrays of length 3 where the
sum of the first and third numbers equals half of the
middle number.

(int[]): int 29 26 25

 date_to_binary Convert a given Gregorian calendar date into its
binary representation.

(String):
String

36 17 18

 digitville Find the two numbers that appear twice in an array
of integers from 0 to 𝑛 − 1, where all other numbers
appear exactly once.

(int[]): int[] 38 31 26

 min_ele_after_replacement_w_digit_sum Replace each number in an array with the sum of its
digits and return the minimum value after all
replacements.

(int[]): int 32 29 19

 min_ops_make_arr_K Minimize operations to make all elements in an array
equal to 𝑘 by reducing larger values step by step.
Return the count or −1 if impossible.

(int[], int):
int

28 31 19

 min_pos_sum_subarr Find the minimum sum of a subarray with length
between 𝑙 and 𝑟 and a sum greater than 0. Return −1
if no such subarray exists.

(int[], int,
int): int

39 29 31

 original_typed_str_one Count the possible original strings Alice intended,
given that one character may have been repeated at
most once.

(String): int 25 21 18

 smallest_divisible_digit_prod_one Find the smallest number ≥ n whose digit product is
divisible by 𝑡.

(int, int): int 27 33 32

 smallest_num_with_all_set_bits Find the smallest number ≥ n whose binary
representation consists only of set bits.

(int): int 14 20 17

 stone_removal_game Alice starts by removing 10 stones, with each turn
decreasing by 1. The player who cannot move loses.
Determine if Alice wins.

(int): bool 21 23 26
was conducted of the 20 code snippets and the original code snippet
to identify Runtime Behavioral Clusters. If one behavioral cluster is
found among the 20 code snippets, that indicates all the code snippets
generated by the LLM are behavioral clones of the reference code. If
multiple clusters are found, this suggests that the LLM has produced
code from the same prompt that exhibits varying behaviors, signify-
ing that LLM-generated code snippets are not all code clones of the
reference code.

To address RQ1, the LeetCode Solution Prompt contained Java code
reference examples and asked the LLM to generate Java code snippets.
To address RQ2, the LeetCode Solution Prompt contained C++ or Python
reference examples and asked the LLM to generate Java code snippets.

OpenAI’s GPT-3.5 (gpt-3.5-turbo) is studied due to its popularity
within both the developer community and the broader public (Yepis,
2023; Milmo and Agenc, 2023). GPT-3.5 is compared against the
latest iteration, GPT-4, which demonstrated significantly better perfor-
mance across several academic benchmarks, including the HumanEval
Python coding tasks dataset (OpenAI, 2023). The comparison should
provide insight into the reliability LLMs for code clone generation as
these models continue to evolve. Additionally, we evaluated CodeL-
lama (Rozière et al., 2023), focusing on the codeLlama-7b-Instruct-hf
variant, an open-source model specifically optimized for tasks involving
code generation and understanding. This range of models ensures a
comprehensive evaluation of established and emerging approaches.

4.1. Task description

To assess the LLMs’ capacity to generate code clones, a list of
thirty-six programming problems was compiled from the well-known
platform LeetCode (2025). LeetCode offers programming problems in-
tended to aid developers in their preparation for technical interviews.
4
Existing research practices support the utilization of LeetCode pro-
gramming problems to evaluate the code generation capabilities of an
LLM (OpenAI, 2023; Chen et al., 2023; Tian et al., 2023; Döderlein
et al., 2023; Nguyen and Nadi, 2022).

We selected LeetCode problems across easy, medium, and hard
difficulties to provide a well-rounded evaluation. This inclusion of
varying complexities ensures the models are assessed on a diverse set
of tasks.

To ensure that the LLMs had not been trained using the informa-
tion from the LeetCode programming solutions, we collected program-
ming solutions where the first public solution was posted between
09-08-2024 and 01-09-2025. We chose this approach to prevent data
contamination, which could inflate the LLMs’ performance by letting
them generate solutions from seen data instead of truly generaliz-
ing (Coignion et al., 2024). From each problem, the first public solution
submission in Python, C++, and Java was collected as the reference code
to use in the prompting phase of the methodology. Each reference code
was checked against its associated LeetCode test suite to ensure that the
solutions were correct in that all the LeetCode tests passed. Information
about each LeetCode problem and their reference codes can be seen in
Tables 1, 2, and 3. These table includes a unique problem ID, a brief
description of the problem, and the corresponding input and output
types. The lines of code (LOC) for each reference implementation in
C++, Java, and Python were determined using CLOC (Danial, 2024),
a command-line tool designed to analyze the size of software projects
by counting the lines in source code files. More information about each
LeetCode problem can be found in the code artifact associated with this
paper: https://zenodo.org/records/14968618.

https://zenodo.org/records/14968618

A. Eagal et al. The Journal of Systems & Software 230 (2025) 112548
Table 2
Medium LeetCode problem descriptions. The LOC counts refer to the reference examples.
 Problem_ID Problem description (Input type): Output

type
Lines of Code (LOC)

 C++ Java Python
 adj_inc_subarr_detect Find the maximum k for which two adjacent subarrays of

length k are strictly increasing.
(int[]): int 46 47 35

 beautiful_splits Count the number of ways to split an array into three
contiguous subarrays where the first is a prefix of the second
or the second is a prefix of the third.

(int[]): int 51 76 40

 grid_sections Check if two horizontal or vertical cuts can divide an n × n
grid into three sections, each containing at least one
rectangle without splitting any.

(int, int[][]): bool 73 41 43

 max_area_point_constraints Find the largest axis-aligned rectangle using four points as
corners, ensuring no other point lies inside or on the border.
Return the area or −1 if none exist.

(int[][]): int 72 60 44

 max_coins Find the maximum coins from k consecutive bags, given
non-overlapping segments with fixed coin amounts.

(int[][], int): int 96 70 60

 max_num_dist_aft_op Maximize the number of distinct elements in an array by
adding an integer in {−k, k} to each element at most once.

(int[], int): int 39 33 29

 max_tar_nodes For each node in the first tree, find the maximum nodes
reachable within k edges when connected to any node in the
second tree.

(int[][], int[][],
int): int[]

112 85 39

 mirror_score Find the total score by pairing each character in a string
with its closest unmarked mirror, adding their index
difference to the score.

(String): int 25 32 30

 string_shift_dis Find the minimum total cost to transform string s into t by
shifting each character forward or backward in the alphabet
with given costs.

(String, String, int[],
int[]): int

62 59 51

 two_days Maximize initialCurrency by performing conversions using
given exchange rates over two days.

(String, String[][],
double[], String[][],
double[]): double

92 87 55

 XOR_paths Count paths in a grid, moving right or down, where the XOR
of numbers equals k. Return modulo 109 +7.

(int[][], int): int 53 48 32

 zero_array_transformation Find the maximum number of queries that can be removed
while still converting the array to all zeros using the
remaining queries. Return −1 if impossible.

(int[], int[][]): int 64 63 25
4.2. Prompting

The following structured prompt was used to facilitate the genera-
tion of code clones:
‘‘Generate a Java semantic code clone of the code below:
{reference code}’’
The reference code variable was replaced by various Leetcode pro-

gramming solution submissions in Java, C++, or Python. When the
code was in Java, the task focused within-language cloning for RQ1.
For code written in C++, the task involved cross-language code cloning
from C++ to Java for RQ2. Similarly, for Python submissions, the task
was to clone the code from Python to Java for RQ2.

To further explore RQ1 and assess the model’s ability to create
syntactically diverse semantic within-language (Type IV) clones, the
following structured prompt was used:
‘‘Generate a syntactically different semantic Java code clone of
the code below: {reference code}’’

This task is referred to as ‘‘Java to SD Java’’ throughout the rest of the
paper.

OpenAI’s API (OpenAI, 2025) and HuggingFace Inference End-
point’s API was utilized to query the models. The only parameter that
was adjusted throughout the study was the temperature parameter,
which controls the randomness of the model’s output. Higher tem-
perature settings result in more varied and unpredictable responses.
To explore how this parameter influences code diversity, we tested
temperature settings of 0.01, 0.5, and 1. We avoided temperature
settings higher than 1 because we observed a noticeable decline in
5
output quality at 1.5 and 2. We adjusted this parameter to understand
the impact of temperature adjustments on generating diverse code
clones across multiple queries with the same prompt.

4.3. Data

Each of the thirty-six LeetCode problems was promoted using four
different prompts (two within-language and two cross-language), across
three different temperatures (0.01, 0.5, 1), and repeated 20 times
to create 20 code snippets per combination of LeetCode problem,
input language (prompt), and temperature. In total, our study analyzes
25,920 LLM-generated code clone candidates — 8640 samples per
LeetCode difficulty level, per temperature, and per model, and 6480
samples per task.

After collecting the LLM responses to the prompts, we used regular
expressions and the javalang Python library (Thunes, 2020) – a tool
that provides a lexer and parser for Java source code – to extract the
Java code. If a main method was absent, we added one to make the
code runnable. Otherwise, no syntactic corrections were applied to the
LLM output.

4.4. Metrics

For each combination of LeetCode problem, temperature, and pro-
mpt, the 20 code snippets and the reference code were clustered accord-
ing to their behavior. We measure quality in two ways: the accuracy of
an individual generated snippet, and the presence one cluster when the
LLM generates a set of 20 code clones with no false positives.

Accuracy : If a code snippet generated by an LLM is accurate, this
means it is clustered with the reference code used in the prompt. That

A. Eagal et al. The Journal of Systems & Software 230 (2025) 112548
Table 3
Hard LeetCode problem descriptions. The LOC counts refer to the reference examples.
 Problem_ID Problem description (Input type):

Output type
Lines of Code (LOC)

 C++ Java Python
 count_LCM Count connected components where nodes connect if

LCM ≤ threshold.
(int[], int): int 75 7 5 65

 count_num_k_match_adj Count the number of arrays of size 𝑛 with values in {1,
m} where exactly 𝑘 adjacent pairs are equal. Return the
result modulo 109+7.

(int, int, int): int 47 50 36

 if_palindrome For each node in a tree, perform a DFS traversal and
check if the resulting string is a palindrome.

(int[], String):
boolean[]

94 87 47

 max_area_rect_point Find the largest axis-aligned rectangle with four given
points as corners, ensuring no other point is inside or on
its border.

(int[], int[]): int 128 94 54

 max_freq_ele_performing_ops_two Maximize the frequency of any element in an array by
modifying up to numOperations distinct elements within
the range {−k, k}.

(int[], int, int):
int

50 40 30

 max_fruit Maximize fruits collected as three children move from
different corners to the bottom-right of an n × n grid,
emptying rooms they visit.

(int[][]): int 81 57 55

 max_score_intervals Select up to 4 non-overlapping intervals with the
maximum total weight. If multiple choices exist, return
the lexicographically smallest set of indices.

(int[][]): int[] 93 140 31

 max_subarr_rm Remove all occurrences of one integer from the array at
most once and return the maximum possible subarray
sum.

(int[]): int 87 87 76

 max_sum_weights_after_edge_removal Remove edges from a tree to ensure no node connects to
more than 𝑘 nodes while maximizing the sum of
remaining edge weights.

(int[][], int): int 115 73 50

 min_diff_adj_ele_diff Replace missing values with two chosen integers to
minimize the maximum adjacent difference.

(int[]): int 93 72 97

 small_id_substring Flip up to a given number of bits in a binary string to
minimize the longest substring of identical characters.

(String, int): int 59 39 51

 subsequence_unique_middle_mode Count subsequences of length 5 with a unique middle
mode, returning the result modulo 109+7.

(int[]): int 148 225 64
is, for a set of 200 snippets, if 120 are clustered with their specific
reference code and 80 are in other clusters, this puts the accuracy at
60%. In a cross-language context, an LLM-generated Java code snippet
is a clone of a Python reference code if they are in the same behavioral
cluster. That is to say that given the same input to both pieces of code,
they produce the same output at least 99% of the time (see Section 4.5.3
for details on the clustering technique).

A special case to consider is the presence of exceptions. During
the input generation process, any inputs that cause runtime exceptions
in any of the reference code snippets are excluded from the final
input corpus. This ensures that all the generated inputs produce valid
output for the reference codes to facilitate comparison. Therefore, when
an LLM-generated code snippet produces an exception, it indicates
a different behavior without having to compare the specifics of the
exceptions between the LLM-generated snippet and the reference code.

One Cluster : In an ideal scenario, all 20 code snippets generated per
LeetCode problem, model, prompt, temperature, and task would exhibit
identical behavior, clustering into one behavioral cluster with the refer-
ence code. To determine how frequently the ideal scenario occurs, the
success and failures change. If all 20 snippets cluster into one behavior
cluster with the reference code, that is a success. Otherwise, if even
one LLM-generated snippet is not in the same cluster as the reference
code, that is seen as a failure. This tries to illuminate when the LLM is
completely dependable for code clone generation.

4.5. Dynamic analysis

Dynamic analysis requires three phases: generating inputs, execut-
ing the code on the inputs, and clustering. From there, the accuracy
metrics can be computed.
6
4.5.1. Input generation
Dynamic analysis relies on a set of inputs against which each

generated code snippet will be run. To create an input corpus for all
code snippets, we used the Hypothesis library (MacIver, 2013) —
a Python tool designed for generating edge case inputs for unit tests.
The method signatures of the Java LeetCode solutions were used by
Hypothesis to generate the input corpus. Initially, between 512 and
3000 inputs were produced for each LeetCode problem, covering Java,
Python, and C++ solutions. The same input corpus was then applied
across all solutions.

Next, each original LeetCode solution was executed against its
corresponding input corpus, and any inputs that triggered errors or
exceptions were excluded. This step was crucial to avoid comparing
error messages between the original and generated snippets.

The refined input corpus included 256 inputs per LeetCode problem,
ensuring that each input could generate valid outputs across all the
Java, Python, and C++ reference codes.

4.5.2. Behavioral data collection
Following the creation of the input corpus for each generated LLM

snippet, the Python subprocess module (Python, 2025) was utilized
to execute the snippets using the input corpus to gather the input/out-
put relationships of each snippet. The Java snippets were executed
using OpenJDK version 17.0.13, Python snippets with Python version
3.10.12, and C++ snippets were compiled and run using C++20.

This study finds behavioral clusters for each set of 20 functions
generated from the same prompt, model, and task, under the same
temperature setting for each LeetCode problem. The clustering is based
on the behavioral similarity of the input corpus that excluded inputs
causing errors and exceptions. The reference code’s behavior was also

A. Eagal et al. The Journal of Systems & Software 230 (2025) 112548
Fig. 2. Within-language semantic correctness across levels, temperatures, and tasks for GPT-3.5.
included to serve as a benchmark for correctness, with the premise
that the cluster containing the original solution represents the correct
clustering.

4.5.3. Clustering
Consistent with the methodology of SLACC, the similarity between

two functions was determined based on the proportion of identical
input/output pairs, akin to the Jaccard Index (Mathew et al., 2020).

We defined a similarity threshold of 99% behavioral similarity
across 256 inputs to signify behavioral equivalence. Previous work
has shown that false positives plateau after 64 inputs (Mathew et al.,
2020) and support the use of 256 inputs for cross-language code clone
detection. While this stringent criteria drastically reduces the risk of
incorrectly classifying behaviorally different functions as identical, we
avoided setting the threshold at 100% because our 256 inputs were
edge case inputs. Previous work has demonstrated that functions pro-
ducing the same output for trivial input cases often differ significantly
for more complex inputs, underscoring the necessity of a high but not
absolute threshold (Deissenboeck et al., 2012).

A representative-based partitioning strategy, as described in prior
research (Roy et al., 2009; Su et al., 2016b; Mathew et al., 2020),
was used for clustering. The process began with the initialization of
an empty Union-Find data structure, with each function initially acting
as its own representative. Functions then were compared pairwise; if
the behavioral similarity between two functions exceeds a predefined
similarity threshold, they are unified under the same representative.
Functions that did not meet this threshold remained as independent
representatives.

As the process concluded, clusters were established based on their
root representatives. To ensure the robustness of the clustering, ev-
ery function within a cluster was cross-validated against every other
function in the same cluster to confirm that all met the similarity
threshold.

5. Results

5.1. RQ1: Within-language clone generation

Figs. 2, 3, and 4 present Agresti-Coull confidence interval results of
clustering the clone candidates with a 99% runtime behavior similarity
threshold for each model. A snippet is deemed semantically correct if
it clusters with the reference code; otherwise, it is considered a failure.

The results indicate that all models performed best when generating
Java to Java clones of Easy reference codes at lower temperatures.
7
At temperatures of 0.01 and 0.5, each model achieved a median ex-
pected success rate of approximately 90%. However, while the GPT
models maintained a high success rate even at the highest temperature,
CodeLlama’s expected success rate dropped by 17% at temperature
1. Notably, these trends remained consistent even when excluding
compilation and runtime errors, suggesting that errors were not the
primary factor influencing semantic dissimilarity.

A significant decline in semantic correctness is observed for Medium
Java to Java clone candidates across all models compared to their
Easy counterparts. GPT-3.5’s median expected success rate plummeted
from 90% to 34% at temperature 0, 33% at 0.5, and 32% at 1.
GPT-4 followed a similar trend, maintaining 34% at both 0 and 0.5
before slightly decreasing to 31% at 1. CodeLlama exhibited a more
pronounced drop, starting at 34% at temperature 0, decreasing to 32%
at 0.5, and falling sharply to 24% at 1.

When exceptions and errors were excluded, the GPT models demon-
strated notable improvements in semantic correctness. For Java to Java
cloning of Medium reference codes, GPT-3.5 and GPT-4 both improved
to a median expected success rate of approximately 50% across all
temperatures. In contrast, as the temperature increased CodeLlama
showed less variation in performance. Overall, these findings suggest
that a non-trivial portion of the semantic dissimilarity between Medium
reference codes and their clone candidates stem from the GPT models
producing buggy code.

The models exhibited higher semantic correctness when generating
clones of Hard reference codes compared to Medium ones —– a anoma-
lous result, particularly when compared to prior studies leveraging
LeetCode as a benchmark, which consistently report greater model suc-
cess on Medium-level tasks relative to Hard-level tasks (OpenAI, 2023;
Yeo et al., 2024; Coignion et al., 2024). GPT-3.5’s expected semantic
correctness was higher by approximately 12% for Hard reference codes,
while GPT-4 and CodeLlama showed a similar improvement of around
8%. As with the Medium clone candidates, excluding exceptions and er-
rors led to a notable performance boost. GPT-3.5’s expected success rate
increased by approximately 25% across all temperatures, with GPT-4
and CodeLlama demonstrating similar gains. This further suggests that
a substantial portion of semantic inaccuracies in Hard clone candidates
can be attributed to errors in the generated code.

Part of this study was to investigate the ability of LLMs to generate
syntactically diverse (Type IV) code clones. When prompted to produce
these types of clones, both GPT-4 and CodeLlama were effective in
producing at least semantically correct clones. GPT-4’s expected suc-
cess rate is approximately 91% across all temperatures. CodeLlama
performed similarly, reaching 91% at temperature 0, 88% at 0.5, but

A. Eagal et al.

Fig. 3. Within-language semantic correctness across levels, temperatures, and tasks for GPT-4.

Fig. 4. Within-language semantic correctness across levels, temperatures, and tasks for CodeLlama.

Fig. 5. Cross-language semantic correctness across levels, temperatures, and tasks for GPT-3.5.

The Journal of Systems & Software 230 (2025) 112548

8

A. Eagal et al. The Journal of Systems & Software 230 (2025) 112548
Fig. 6. Cross-language semantic correctness across levels, temperatures, and tasks for GPT-4.
Fig. 7. Within-language semantic correctness across levels, temperatures, and tasks for CodeLlama.
declining significantly to 53% at temperature 1. GPT-3.5 performed
the worst with a decreasing success rate as temperature increased,
starting at 71% at temperature 0, decreasing to 67% at 0.5, and further
dropping to 55% at temperature 1. Just as before, exceptions were
not a large cause of semantic dissimilarity for cloning Easy LeetCode
reference codes — except for GPT-3.5 at the lowest temperature which
saw a 8% improvement in correctness when exceptions were filtered
out.

Similar to within-language cloning for unspecified types, the ex-
pected success rate for semantic correctness dropped significantly when
generating Type IV clones for Medium and Hard reference codes. The
trend of the LLMs performing better at cloning Hard reference codes
than Medium reference codes also persisted. Similarly, the substantial
improvement in semantic correctness at higher temperatures, when
excluding compilation and runtime errors, also continued when cloning
Hard reference codes.

To get a fuller understanding of the dependability of LLMs for
code clone generation, we need to assess how frequently the ideal
scenario occurs. Specifically, we need to determine how often the LLMs
produce behaviorally equivalent code clones for all 20 code snippets
9
generated using the same reference code, prompt, and temperature. Un-
der this scenario, significant variations in performance across different
difficulty levels and temperature settings.

In general, the ideal scenario typically occurs when the models
generate Java to Java clones of Easy reference codes. At lower tem-
perature settings, particularly at 0.01, the GPT models are able to
produce single behavioral clusters, but this occurrence decreases as the
temperature increases. This suggests that at low temperatures, LLMs
exhibit strong determinism, producing nearly identical outputs across
multiple generations. However, as the temperature increases to 0.5
and 1.0, the code snippet at least has some changes increases and
the reliability of the generated clones decreases. This can especially
be seen in CodeLlama, where it never produces a perfect cluster for
within-language clones at temperature 1.

For Type IV clones, the ability to balance syntactic diversity with
behavioral consistency varies across models. GPT-4 maintains a higher
accuracy across temperature settings, though behavioral inconsistencies
emerge at higher programming difficulties. In contrast, CodeLlama
exhibits substantial degradation at higher temperatures, exclusively
generating outputs that do not all cluster with the reference code.
This decline in semantic correctness suggests that while increased
temperature encourages more diverse types of clones, it also introduces

A. Eagal et al. The Journal of Systems & Software 230 (2025) 112548
Fig. 8. Compilation and runtime errors of GPT-3.5.
Fig. 9. Compilation and runtime errors of GPT-4.
modifications that compromise functional correctness. The challenge
becomes more pronounced with Medium and Hard clone candidates,
where the likelihood of all 20 generated clone candidates exhibiting
identical behavior diminishes significantly.

These findings reveal a fundamental trade-off in LLM-based clone
generation: lower temperatures promote deterministic, behaviorally
consistent outputs but may limit syntactic diversity, whereas higher
temperatures introduce variation at the cost of reliability. Among the
evaluated models, GPT-4 demonstrates the highest stability for within-
language cloning of unspecified types, while CodeLlama exhibits the
most variability.

Additionally, when investigating the dependability of LLMs for code
clone generation, we must consider the types of errors that occur during
10
the process — both compilation and runtime errors. This information
for each model can be seen in Figs. 8, 9, and 10. Interestingly, the mod-
els tend to have a low amount of compilation errors when producing
within-language clones, meaning that the code outputted is well-formed
and syntactically correct, but produces a significant amount of runtime
errors when cloning Medium and Hard reference codes.

5.2. RQ2: Cross-language clone generation

Figs. 5, 6, and 7 show the Agresti-Coull confidence interval re-
sults for clustering the cross-language code clone candidates based on
runtime behavior. Across all models, performance in cross-language
cloning is consistently lower than within-language cloning, with a

A. Eagal et al. The Journal of Systems & Software 230 (2025) 112548
Fig. 10. Compilation and runtime errors of CodeLlama.
steep decline in expected correctness at higher problem difficulties and
higher temperatures.

For C++ to Java cloning, GPT-3.5 outperforms GPT-4, particu-
larly when cloning Easy reference codes. With these reference codes,
GPT-3.5’s median expected success rate hovers around 70% across
temperatures. In contrast, GPT-4 struggles with median expected suc-
cess rates below 55% on similar tasks. However, for both models,
performance declines sharply at higher programming difficulty levels.
Among the models tested, CodeLlama performs the worst, consistently
showing low success rates across all difficulty levels and temperature
settings.

The models performed the worst when generating clones from
Python to Java. GPT-4 achieves the highest expected success rate when
cloning Easy reference codes at lower temperatures. However, this rate
declines sharply for Medium and Hard reference codes. GPT-3.5 follows
a similar trend, with a steep performance drop at higher temperatures.
CodeLlama performs the worst among the models; it never achieves an
expected semantic correctness rate above 8% across all temperatures
and difficulty levels. We hypothesize that the performance gap is due
to fundamental syntactic differences between Python and Java. Unlike
C++ and Java, which are both statically typed and share a C-style
syntax, Python is dynamically typed and relies on indentation rather
than brackets to define code blocks. This contrast in typing and block
structure likely contributes to the decreased accuracy of LLMs when
translating between Python and Java.

The ideal scenario – where all LLM-generated clone candidates
gathered into the same behavior cluster as the reference code – was
rare in cross-language clone generation. As shown in Figs. 8, 9, and
10, medium and high reference code difficulty led to more compilation
errors, a trend also observed in within-language cloning. Even when
clones were compiled successfully, runtime errors remained prevalent,
particularly for Medium reference codes.

6. Discussion

6.1. Levenshtein edit distance & accuracy

In the previous section, it was established that GPT-3.5, GPT-4,
and CodeLlama frequently generated within-language code clones with
high behavioral similarity. Although the primary research questions
11
of this study have been addressed, further exploration is needed to
characterize the specific types of within-language LLM-generated code
clones. We employed the Levenshtein Edit Distance algorithm via the
Python library Levenshtein (Bachl, 2024) to discern the amount of
Type I within-language clones. Given adjustments in the preprocessing
phase of our study, we defined Type I code clones as those having a
Levenshtein distance of 10 or less relative to the reference code.

Table 4 shows the percent of Type I clones across within-language
tasks, temperatures, and models. This table shows that GPT-4 produced
no Type I clones, and that GPT-3.5 produced a limited number, mostly
at lower temperatures. Codellama produced the highest number of
Type I clones, again at lower temperatures. While this indicates strong
replication capability, it is not ideal for within-language cloning where
Type IV clones – structurally diverse but functionally equivalent clones
– are more valuable. The prevalence of Type I suggests CodeLlama
struggles with either Type IV cloning or prompt guidance. Section 5.1
showed that all the models struggled with within-language cloning of
higher difficulty reference codes. Given this and the varying rates of
Type I clone generation between the models, examining the corre-
lation between a clone’s Levenshtein Edit Distance and its semantic
correctness could reveal how well LLMs produce accurate Type IV
clones.

To examine the correlation between Levenshtein Edit Distance and
the semantic accuracy of LLM-generated clones, we conducted a logistic
regression analysis. The analysis revealed a statistically significant
negative correlation between the Levenshtein Edit Distance and the
accuracy of the LLM-generated solutions (𝑝-value < 0.0001). Specif-
ically, the regression coefficient for Levenshtein Edit Distance was
−0.0009, suggesting that an increase in edit distance slightly decreases
the likelihood of generating a correct solution.

6.2. AST edit distance & accuracy

While Levenshtein Edit Distance is used to identify Type I code
clones by measuring textual similarity between code snippets and their
reference code, Abstract Syntax Tree (AST) Edit Distance identifies
Type II clones by assessing structural similarity in their underlying syn-
tax trees. We used the Python library javalang (Thunes, 2020) and
zss (Henderson, 2021) to calculate the AST Edit Distances between
the LLM-generated code snippets and their reference code.

A. Eagal et al. The Journal of Systems & Software 230 (2025) 112548
Table 4
Percent of Type I clones across within-language tasks, temperatures, and models.

Model Task Temperature Easy (%) Medium (%) Hard (%)
GPT-3.5 Java to Java 0.01 13 18 30

0.5 15 13 17
1 9 4 7

Java to SD Java 0.01 0 0 17
0.5 0 1 2
1 0 0 0

GPT-4 Java to Java 0.01 0 0 0
0.5 0 0 0
1 0 0 0

Java to SD Java 0.01 0 0 0
0.5 0 0 0
1 0 0 0

CodeLlama Java to Java 0.01 58 80 65
0.5 57 62 44
1 32 27 20

Java to SD Java 0.01 70 82 66
0.5 59 67 48
1 18 23 15
Table 5
Percent of Type II clones across within-language tasks and temperatures.

Model Task Temperature Easy (%) Medium (%) Hard (%)
GPT-3.5 Java to Java 0.01 100 96 98

0.5 98 91 96
1 84 84 90

Java to SD Java 0.01 90 100 99
0.5 86 96 88
1 83 81 77

GPT-4 Java to Java 0.01 92 100 85
0.5 95 99 87
1 92 79 79

Java to SD Java 0.01 98 99 88
0.5 93 96 88
1 81 78 74

CodeLlama Java to Java 0.01 91 97 97
0.5 95 87 85
1 82 68 59

Java to SD Java 0.01 100 100 100
0.5 98 96 89
1 68 62 59
Table 5 shows the percent of Type I clones across within-language
tasks, temperatures, and models. This table shows that most clone
candidates were Type II clones at lower temperatures, with the lowest
percentages consistently at Temperature 1. GPT-3.5 and GPT-4 main-
tained at least 90% Type II clones at temperatures 0.01 and 0.5 but
saw a decline at Temperature 1. CodeLlama followed a similar trend,
with a significant drop at Temperature 1, particularly for Java to SD
Java. The decline from 0.5 to 1 across all models highlights the impact
of temperature on syntactically diverse code clone generation.

As with the Levenshtein distance, it is important to investigate the
relationship between AST distance and accuracy. Our logistic regression
analysis reveals a significant negative correlation between AST distance
and accuracy (𝛽 = −0.6609, 𝑝 < 0.001), indicating that a greater AST dis-
tance reduces accuracy. Despite a low pseudo 𝑅2 (0.01938), the model
significantly improves over the null (𝑝 = 3.044×10−74), confirming AST
distance as a key factor. This aligns with the observed accuracy drop
at higher temperatures, reinforcing that increased syntactic variation
challenges LLMs. Future work should explore ways to balance diversity
and accuracy in code clone generation (see Table 5).

6.3. Alternatives to LLMs for code clone generation

For within-language code clone generation, a direct copy-and-paste
approach is the most accessible method for producing Type I clones.
However, Type II and III clones require specialized tools. For example,
Recaf (GitHub, 2025a) and Java Deobfuscator (GitHub, 2023) can mod-
ify Java code, but both have limitations: Recaf (GitHub, 2025a) requires
12
manual intervention, making it impractical for large-scale automa-
tion, while Java Deobfuscator (GitHub, 2023) is limited to reversing
obfuscated code and lacks a general-purpose refactoring approach.

For Java Type IV clones, ReFaster (Wasserman, 2013) enables struc-
tured refactoring through predefined transformation rules while pre-
serving functional equivalence. While effective for targeted modifi-
cations, its major drawback is the need for explicit rule definitions,
limiting its adaptability compared to LLMs, which can generate diverse
syntactic variations dynamically.

Generating functionally equivalent clones between Python and Java
or C++ and Java requires tools that can either transpile, translate, or
infer equivalences between the two languages. Several transpilers have
been developed to create these clones. P2J (Chris Humphreys, 2013)
translates Python to Java but lacks support for advanced constructs
like lambdas, metaclasses, and dynamic typing. Jython (GitHub, 2024)
allows Python to run on the JVM but does not generate indepen-
dent Java source code and requires manual updates when languages
change. For C++ to Java cloning, Tangible Software’s C++ to Java
Converter (Inc., 2025) preserves object-oriented structure but struggles
with STL templates and pointer manipulation.

While these transpilers provide rule-based mappings between lan-
guages, their effectiveness is limited. Unlike LLMs, which leverage
probabilistic reasoning to generate functionally equivalent clones, tran-
spilers require explicit rules and lack adaptability to novel code struc-
tures. Additionally, transpilers typically produce deterministic output,
whereas LLMs can generate multiple structurally diverse implementa-
tions of functionally equivalent code. However, as shown in Section 5.2,

A. Eagal et al. The Journal of Systems & Software 230 (2025) 112548
LLMs seem to be prone to errors and inconsistencies for cross-language
clone generation, necessitating post-processing and verification to en-
sure correctness.

6.4. Practical implications

The practical implications of this study include software engineering
tasks that make use of code clones, revealing both the potential and
challenges of using LLMs to create code clones.

LLMs offer the ability to create multiple versions of a code segment,
providing students with diverse solutions to the same problem. For
instance, educators in software engineering could make use of LLMs
to create comparative comprehension educational materials, enhanc-
ing student learning through the showcasing of an array of solutions
to one problem (Patitsas et al., 2013). Our study reveals that using
LLMs at lower temperatures can result in the generation of more
precise within-language code clones. However, this is associated with
a decrease in syntactic diversity, an aspect highly desirable in both
educational settings and the formation of robust code clone detection
datasets (Zakeri-Nasrabadi et al., 2023). In contrast, LLM-generated
clones at higher temperatures show increased syntactic diversity but
are considerably more error-prone. The findings suggest a potential so-
lution: the application of program repair techniques on LLM-generated
clones could be used to reduce the errors while preserving their syntac-
tic diversity. This type of solution along with others could make LLMs
useful for wide range of software engineering tasks that involve code
clone generation.

However, while our study primarily focuses on the behavioral simi-
larity of code clones generated by LLMs, there are practical challenges
that come from using LLMs for code clone generation. The automated
generation of code clones raises concerns about the propagation of
security vulnerabilities. If an LLM generates code clones with subtle
security flaws, developers may inadvertently introduce vulnerabilities
into their codebases. In fact, a study from 2021 found that when GitHub
Copilot (GitHub, 2025) was used to infill code for 1869 programs in 89
scenarios, 40% of the code chunks generated were vulnerable (Pearce
et al., 2021). Later in 2023, the same research institution conducted
a study comparing code from 58 students – some with LLM access
and some without – who were tasked with implementing 12 functions
for basic operations on a linked list representing a ‘shopping list’ in
C (Sandoval et al., 2023). Surprisingly, the study found that the group
using GitHub Copilot was 6%–10% more productive than the control
group, with no more than a 10% increase in bug rates when compared
to the control group. While these findings suggest that security concerns
with LLM assistants may be less severe than initially thought, the
authors emphasized the need for larger sample sizes and more diverse
user groups. In 2024, an in-lab study assigned 30 experienced software
developers to three groups: one using a poisoned code completion tool,
another using a poisoned code generation tool, and a control group
with no tool. Participants completed three programming tasks followed
by an exit interview. The study found that developers using code
generation tools, similar to those examined in this study, were more
likely to introduce insecure code compared to the other groups (Oh
et al., 2024). These findings highlight the need for further research into
LLM-generated insecure clones and the complexities associated with
this form of code generation.

Furthermore, ethical considerations arise when LLMs are used for
automated code clone generation. In the context of computer science
education, a student could use an LLM to transform a prior assignment
solution into a Type IV clone. Because these clones differ syntactically
but remain functionally equivalent, traditional plagiarism detectors
may fail to flag them. This raises academic integrity concerns, as stu-
dents could exploit LLMs to evade detection. While there is prior work
on detecting ChatGPT-generated code submissions in CS1 courses (Hoq
et al., 2024), this specific form of plagiarism remains unexplored.
13
Overall, LLM-facilitated code clone generation has practical appli-
cations in areas such as language migration (Mathew et al., 2020) and
software maintenance tasks (Aversano et al., 2007; Thummalapenta
et al., 2010), where cross-language code generation may be particu-
larly beneficial. However, our study highlights significant challenges,
including inconsistencies in behavioral similarity and high rates of
runtime and compilation errors in LLM-generated clones, signaling
the need for solutions. Additionally, LLM-generated code clones raise
security and ethical concerns, such as the potential propagation of
vulnerabilities and risks of misuse, including plagiarism. Addressing
these issues is essential to ensuring the reliability, security, and ethical
use of LLM-generated code clones in software development.

7. Threats to validity

7.1. Threats to internal validity

The study has several threats to its internal validity. First, the
study may be influenced by selection bias due to the specific choice of
LeetCode problems, code clone generation tasks, and languages used.
Different LeetCode problems, programming languages, and code clone
generation tasks might lead to variations in the results. We chose to in-
clude the full range of LeetCode difficulty levels, our code cloning tasks,
and our programming languages due to their broad representation of
distinct programming paradigms and widespread use among devel-
opers. While these choices introduce some limitations, our technical
processes could be adapted to study additional datasets, code cloning
tasks, and programming languages in future work to further generalize
our findings. Second, the preprocessing portion of the methodology
implemented in the study to gather the input/output relationships
efficiently, such as removing superfluous English explanations from
the LLMs’ output and creating Java classes from the LLMs’ output
could also introduce biases affecting the experiment’s internal validity.
Third, across the LLMs at varying degrees of temperature, code clone
generation tasks, and Leetcode problem, a fixed sample size of twenty
was used. While this was deemed practical for preliminary analysis, an
LLM can potentially generate a broader array of code snippets, which
might not be accounted for in this limited sample size. Lastly, this study
employed minimal prompt engineering. This is due to two reasons: the
study aimed to probe the baseline code clone generation abilities of the
models and to minimize the effects that could arise from using different
wording with prompts across models to generate the code clone data.
In addition, the prompts for generating semantically equivalent but
syntactically diverse within-language clones were minimally modified
from those used in other code cloning tasks to evaluate the model’s
ability to generate Type-IV clones. Employing this consistent minimal
prompting approach across all models may underestimate their full
potential; however, it provides a foundational analysis of their code
clone generation capabilities.

7.2. Threats to external validity

The external validity of this study is subject to several threats that
could limit the generalizability of the findings. First, the controlled
experiments with LeetCode solutions in this study might not reflect
the diverse and complex scenarios encountered in the broad spectrum
of real-world software projects. We used LeetCode problems to study
the code clone generation abilities of LLMs because these types of
problems have served as a benchmark for evaluating the code gen-
eration previously (OpenAI, 2023; Bubeck et al., 2023; Huang et al.,
2024), they have well-defined correctness criteria, and they generally
reflect algorithmic and data structure concepts encountered in software
development. We have structured our technical processes such that this
experiment could extend to other datasets in future work. Second, the
behaviors observed in this study might not scale to larger or more
complex software projects. While we did not include such examples in

A. Eagal et al. The Journal of Systems & Software 230 (2025) 112548
this study. Our technical process with modification could be extended
for these types of datasets. Third, the study focuses on the GPT-3.5,
GPT-4, and CodeLlama models. Hence, the observed limitations and
inconsistencies in code clone generation may not be representative of
other LLMs or future iterations of these models.

8. Future work

Overall, this study suggests several directions for future work, some
of which are motivated by the limitations and validity threats identified
in the evaluation. A particularly promising direction is the evaluation of
code clone generation using SLACC (or similar tools) across a broader
range of LLMs, with an emphasis on recently-developed models that
exhibit strong code generation capabilities. This includes specialized
models such as StarCoder (Li et al., 2023), GraphCodeBERT (Guo
et al., 2021), and Qwen2-Coder-Instruct (Yang et al., 2024), as well
as general-purpose models like the Claude 3 family (Anthropic, 2025),
which has demonstrated superior performance to GPT-3.5 and GPT-4
on code generation benchmarks such as MBPP and HumanEval (An-
thropic, 2025). Evaluating these models may offer a more comprehen-
sive understanding of the capabilities and limitations of LLMs, while
also offering additional context for the code clone generation results
presented in this paper.

Additionally, as mentioned in Section 7, our technical process can
be adapted to study LLMs’ ability to perform code clone generation of
code clone snippets for larger, more complex software projects, other
languages, and other datasets. Our results also indicate the LLMs par-
ticularly struggle with cross-language tasks. Future work could explore
prompt engineering techniques and fine-tuning on curated datasets to
improve performance.

Lastly, in light of the issues identified with the LLMs investigated
in this study, it may be worth implementing the potential solutions to
improve the code clone generation abilities of large language models
such as incorporating runtime behavior and syntactic error detection
tools into their training and validation processes.

9. Conclusion

This study examined the dependability of Large Language Models
in generating behaviorally equivalent code clones within and across
programming languages. Specifically, we assessed the clone-generation
capabilities of GPT-3.5, GPT-4, and CodeLlama across different temper-
ature settings by testing them on a diverse set of LeetCode problems.
Our findings indicate that while LLMs can successfully generate within-
language clones at lower temperatures, their reliability diminishes at
higher temperatures and programming difficulties.

Furthermore, cross-language clone generation presents a greater
challenge, with significantly higher rates of compilation and runtime
errors, particularly when translating from Python to Java. Even when
successful, the generated clones exhibit lower semantic correctness
compared to their within-language counterparts. Our results suggest
that while LLMs can produce syntactically diverse clones, they struggle
with preserving behavioral consistency across languages.

These results highlight both the promise and limitations of LLMs
for automated code clone generation. While LLMs can facilitate rapid
generation of functionally equivalent code snippets, their inconsistency
in maintaining correctness – especially for complex and cross-language
tasks – suggests that they are not yet a fully reliable solution for
automated clone generation without human oversight or supplemen-
tary verification techniques. Future work should explore methods for
improving clone accuracy, such as integrating program repair tools,
refining prompt engineering techniques, or leveraging fine-tuned mod-
els specifically trained for clone generation tasks. Future work should
also consider studying a broader range of LLMs, especially newer and
specialized LLMs with strong code generation capabilities, to further
generalize our findings.
14
CRediT authorship contribution statement

Azeeza Eagal: Writing – review & editing, Writing – original
draft, Visualization, Validation, Software, Methodology, Investigation,
Formal analysis, Data curation, Conceptualization. Kathryn T. Stolee:
Writing – review & editing, Writing – original draft, Supervision,
Methodology, Funding acquisition. John-Paul Ore: Writing – review
& editing, Writing – original draft, Supervision, Investigation, Funding
acquisition, Conceptualization.

Declaration of Generative AI and AI-assisted technologies in the
writing process

During the preparation of this work the author(s) used OpenAI’s
ChatGPT to improve the readability and language of the paper. After
using tool/service, the author(s) reviewed and edited the content as
needed and take(s) full responsibility for the content of the publication.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Azeeza Eagal reports financial support was provided by National Sci-
ence Foundation. John-Paul Ore reports financial support was provided
by National Science Foundation. Kathryn Stolee reports financial sup-
port was provided by National Science Foundation. If there are other
authors, they declare that they have no known competing financial in-
terests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This research was supported in part by National Science Founda-
tion SHF #2006947. Generative AI tools significantly contributed to
both the software development process and the revision of this paper.
Specifically, we used GitHub Copilot for some aspects of this paper’s
software development component. During the preparation of this work
the author(s) used OpenAI’s ChatGPT to improve the readability and
language of the paper. After using tool/service, the author(s) reviewed
and edited the content as needed and take(s) full responsibility for
the content of the publication. We acknowledge these tools for their
role in facilitating our research and thank the respective teams and
organizations for their development and maintenance.

Data availability

I have shared my data and code on Zenodo.

References

Ahmad, W.U., Chakraborty, S., Ray, B., Chang, K., 2021. Unified pre-training for
program understanding and generation. CoRR https://arxiv.org/abs/2103.06333.

Anthropic, 2025. The claude 3 model family: Opus, sonnet, haiku. https://assets.
anthropic.com/m/61e7d27f8c8f5919/original/Claude-3-Model-Card.pdf. (Accessed
31 March 2025).

Aversano, L., Cerulo, L., Di Penta, M., 2007. How clones are maintained: An empirical
study. In: 11th European Conference on Software Maintenance and Reengineering.
CSMR’07, pp. 81–90. http://dx.doi.org/10.1109/CSMR.2007.26.

Avetisyan, A., Kurmangaleev, S., Sargsyan, S., Arutunian, M., Belevantsev, A., 2015.
LLVM-based code clone detection framework. In: 2015 Computer Science and In-
formation Technologies. CSIT, pp. 100–104. http://dx.doi.org/10.1109/CSITechnol.
2015.7358259.

Bachl, M., 2024. Levenshtein: A python c extension module for fast computation of
Levenshtein distance and string similarity. URL https://pypi.org/project/python-
Levenshtein/, Version 0.25.1.

Baxter, I., Yahin, A., Moura, L., Sant’Anna, M., Bier, L., 1998. Clone detection
using abstract syntax trees. In: Proceedings. International Conference on Software
Maintenance (Cat. No. 98CB36272). pp. 368–377. http://dx.doi.org/10.1109/ICSM.
1998.738528.

https://arxiv.org/abs/2103.06333
https://assets.anthropic.com/m/61e7d27f8c8f5919/original/Claude-3-Model-Card.pdf
https://assets.anthropic.com/m/61e7d27f8c8f5919/original/Claude-3-Model-Card.pdf
https://assets.anthropic.com/m/61e7d27f8c8f5919/original/Claude-3-Model-Card.pdf
http://dx.doi.org/10.1109/CSMR.2007.26
http://dx.doi.org/10.1109/CSITechnol.2015.7358259
http://dx.doi.org/10.1109/CSITechnol.2015.7358259
http://dx.doi.org/10.1109/CSITechnol.2015.7358259
https://pypi.org/project/python-Levenshtein/
https://pypi.org/project/python-Levenshtein/
https://pypi.org/project/python-Levenshtein/
http://dx.doi.org/10.1109/ICSM.1998.738528
http://dx.doi.org/10.1109/ICSM.1998.738528
http://dx.doi.org/10.1109/ICSM.1998.738528

A. Eagal et al. The Journal of Systems & Software 230 (2025) 112548
Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., Lee, P.,
Lee, Y.T., Li, Y., Lundberg, S., Nori, H., Palangi, H., Ribeiro, M.T., Zhang, Y.,
2023. Sparks of artificial general intelligence: Early experiments with GPT-4.
arXiv:2303.12712. URL https://arxiv.org/abs/2303.12712.

Chen, L., Zaharia, M., Zou, J., 2023. How is ChatGPT’s behavior changing over time?.
arXiv:2307.09009.

Chris Humphreys, J.W., 2013. GitHub - chrishumphreys/p2j: Python to java translator
— github.com. https://github.com/chrishumphreys/p2j. (Accessed 27 February
2025).

Coignion, T., Quinton, C., Rouvoy, R., 2024. A performance study of LLM-generated
code on leetcode. In: Proceedings of the 28th International Conference on Evalu-
ation and Assessment in Software Engineering. In: EASE 2024, ACM, pp. 79–89.
http://dx.doi.org/10.1145/3661167.3661221.

Danial, A., 2024. Cloc: 2.00. http://dx.doi.org/10.5281/zenodo.5760077.
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002. A fast and elitist multiobjective

genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6 (2), 182–197. http:
//dx.doi.org/10.1109/4235.996017.

Deissenboeck, F., Heinemann, L., Hummel, B., Wagner, S., 2012. Challenges of the
dynamic detection of functionally similar code fragments. In: Proceedings of the
2012 16th European Conference on Software Maintenance and Reengineering.
CSMR ’12, IEEE Computer Society, USA, pp. 299–308. http://dx.doi.org/10.1109/
CSMR.2012.38.

Döderlein, J.-B., Acher, M., Khelladi, D.E., Combemale, B., 2023. Piloting copilot and
codex: Hot temperature, cold prompts, or black magic?. arXiv:2210.14699. URL
https://arxiv.org/abs/2210.14699.

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B., Liu, T.,
Jiang, D., Zhou, M., 2020. CodeBERT: A pre-trained model for programming and
natural languages. arXiv:2002.08155.

Fried, D., Aghajanyan, A., Lin, J., Wang, S., Wallace, E., Shi, F., Zhong, R., tau Yih, W.,
Zettlemoyer, L., Lewis, M., 2023. InCoder: A generative model for code infilling
and synthesis. arXiv:2204.05999.

2023. GitHub - java-deobfuscator/deobfuscator: The real deal — github.com. https:
//github.com/java-deobfuscator/deobfuscator/graphs/contributors, https://github.
com/java-deobfuscator/deobfuscator. (Accessed 27 February 2025).

2024. GitHub - jython/jython: Python for the java platform — github.com. https://
github.com/jython/jython/graphs/contributors, https://github.com/jython/jython.
(Accessed 27 February 2025).

2025. GitHub copilot ⋅ your AI pair programmer — github.com. https://github.com/
features/copilot. (Accessed 05 February 2025).

2025a. GitHub - col-e/recaf: The modern java bytecode editor — github.com. https://
github.com/Col-E/Recaf/graphs/contributors, https://github.com/Col-E/Recaf. (Ac-
cessed 27 February 2025).

Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D., Liu, S., Zhou, L., Duan, N., Svyatkovskiy, A.,
Fu, S., Tufano, M., Deng, S.K., Clement, C., Drain, D., Sundaresan, N., Yin, J.,
Jiang, D., Zhou, M., 2021. GraphCodeBERT: Pre-training code representations with
data flow. arXiv:2009.08366.

Henderson, T., 2021. Zss: A python library for comparing and matching hierarchical
structures. URL https://pypi.org/project/zss/1.1.4/, Version 1.1.4.

Hindle, A., Barr, E.T., Gabel, M., Su, Z., Devanbu, P., 2016. On the naturalness of
software. Commun. ACM 59 (5), 122–131. http://dx.doi.org/10.1145/2902362.

Hoq, M., Shi, Y., Leinonen, J., Babalola, D., Lynch, C., Price, T., Akram, B., 2024.
Detecting ChatGPT-generated code submissions in a CS1 course using machine
learning models. In: Proceedings of the 55th ACM Technical Symposium on
Computer Science Education V. 1. In: SIGCSE 2024, Association for Computing
Machinery, New York, NY, USA, pp. 526–532. http://dx.doi.org/10.1145/3626252.
3630826.

Huang, D., Qing, Y., Shang, W., Cui, H., Zhang, J.M., 2024. EffiBench: Benchmarking
the efficiency of automatically generated code. arXiv:2402.02037. URL https://
arxiv.org/abs/2402.02037.

Inc., T.S.S., 2025. Source code converters — tangiblesoftwaresolutions.com. https:
//www.tangiblesoftwaresolutions.com/. (Accessed 27 February 2025).

Jesse, K., Ahmed, T., Devanbu, P.T., Morgan, E., 2023. Large language models and
simple, stupid bugs. In: 2023 IEEE/ACM 20th International Conference on Mining
Software Repositories. MSR, pp. 563–575. http://dx.doi.org/10.1109/MSR59073.
2023.00082.

Jiang, L., Su, Z., 2009. Automatic mining of functionally equivalent code fragments
via random testing. In: Proceedings of the Eighteenth International Symposium on
Software Testing and Analysis. ISSTA ’09, Association for Computing Machinery,
New York, NY, USA, pp. 81–92. http://dx.doi.org/10.1145/1572272.1572283.

LeetCode, 2025. Problems, URL https://leetcode.com/problemset/all/.
Li, R., Allal, L.B., Zi, Y., Muennighoff, N., Kocetkov, D., Mou, C., Marone, M., Akiki, C.,

Li, J., Chim, J., Liu, Q., Zheltonozhskii, E., Zhuo, T.Y., Wang, T., Dehaene, O.,
Davaadorj, M., Lamy-Poirier, J., Monteiro, J., Shliazhko, O., Gontier, N., Meade, N.,
Zebaze, A., Yee, M.-H., Umapathi, L.K., Zhu, J., Lipkin, B., Oblokulov, M., Wang, Z.,
Murthy, R., Stillerman, J., Patel, S.S., Abulkhanov, D., Zocca, M., Dey, M.,
Zhang, Z., Fahmy, N., Bhattacharyya, U., Yu, W., Singh, S., Luccioni, S., Villegas, P.,
Kunakov, M., Zhdanov, F., Romero, M., Lee, T., Timor, N., Ding, J., Schlesinger, C.,
Schoelkopf, H., Ebert, J., Dao, T., Mishra, M., Gu, A., Robinson, J., Anderson, C.J.,
Dolan-Gavitt, B., Contractor, D., Reddy, S., Fried, D., Bahdanau, D., Jernite, Y.,
Ferrandis, C.M., Hughes, S., Wolf, T., Guha, A., von Werra, L., de Vries, H., 2023.
StarCoder: may the source be with you!. arXiv:2305.06161.
15
Lo, D., 2023. Trustworthy and synergistic artificial intelligence for software engineering:
Vision and roadmaps. arXiv:2309.04142.

MacIver, D.R., 2013. Welcome to hypothesis!00b6. URL https://hypothesis.readthedocs.
io/en/latest/index.html#.

Margulieux, L., Denny, P., Cunningham, K., Deutsch, M., Shapiro, B.R., 2021. When
wrong is right: The instructional power of multiple conceptions. In: Proceedings of
the 17th ACM Conference on International Computing Education Research. In: ICER
2021, Association for Computing Machinery, New York, NY, USA, pp. 184–197.
http://dx.doi.org/10.1145/3446871.3469750.

Mathew, G., Parnin, C., Stolee, K.T., 2020. SLACC. In: Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering. ACM, http://dx.doi.org/
10.1145/3377811.3380407.

Mathew, G., Stolee, K.T., 2021. Cross-language code search using static and dynamic
analyses. In: Proceedings of the 29th ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Foundations of Software Engineering.
In: ESEC/FSE 2021, Association for Computing Machinery, New York, NY, USA,
pp. 205–217. http://dx.doi.org/10.1145/3468264.3468538.

Mayer, P., Kirsch, M., Le, M.A., 2017. On multi-language software development,
cross-language links and accompanying tools: a survey of professional software
developers. J. Softw. Eng. Res. Dev. 5, 1–33.

Milmo, D., Agenc, 2023. CHATGPT reaches 100 million users two months after
launch. URL https://www.theguardian.com/technology/2023/feb/02/chatgpt-100-
million-users-open-ai-fastest-growing-app.

Nguyen, N., Nadi, S., 2022. An empirical evaluation of GitHub copilot’s code sugges-
tions. In: Proceedings of the 19th International Conference on Mining Software
Repositories. MSR ’22, Association for Computing Machinery, New York, NY, USA,
pp. 1–5. http://dx.doi.org/10.1145/3524842.3528470.

Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H., Zhou, Y., Savarese, S., Xiong, C.,
2023. CodeGen: An open large language model for code with multi-turn program
synthesis. arXiv:2203.13474.

Oh, S., Lee, K., Park, S., Kim, D., Kim, H., 2024. Poisoned ChatGPT finds work for
idle hands: Exploring developers’ coding practices with insecure suggestions from
poisoned AI models. In: 2024 IEEE Symposium on Security and Privacy. SP, pp.
1141–1159. http://dx.doi.org/10.1109/SP54263.2024.00046.

OpenAI, 2023. GPT-4 technical report. arXiv:2303.08774.
2025. [Link]. URL https://platform.openai.com/docs/api-reference.
Patitsas, E., Craig, M., Easterbrook, S., 2013. Comparing and contrasting different

algorithms leads to increased student learning. In: Proceedings of the Ninth Annual
International ACM Conference on International Computing Education Research. pp.
145–152.

Pearce, H., Ahmad, B., Tan, B., Dolan-Gavitt, B., Karri, R., 2021. Asleep at the
keyboard? Assessing the security of GitHub copilot’s code contributions. arXiv:
2108.09293. URL https://arxiv.org/abs/2108.09293.

2025. ubprocess - Subprocess management, URL https://docs.python.org/3/library/
subprocess.html.

Rittle-Johnson, B., Star, J.R., Durkin, K., 2020. How can cognitive-science research
help improve education? The case of comparing multiple strategies to improve
mathematics learning and teaching. Curr. Dir. Psychol. Sci. 29 (6), 599–609.
http://dx.doi.org/10.1177/0963721420969365.

Roy, C.K., Cordy, J.R., 2007. A survey on software clone detection research. Queen’ s
Sch. Comput. TR 541 (115), 64–68.

Roy, C.K., Cordy, J.R., 2018. Benchmarks for software clone detection: A ten-year
retrospective. In: 2018 IEEE 25th International Conference on Software Analy-
sis, Evolution and Reengineering. SANER, pp. 26–37. http://dx.doi.org/10.1109/
SANER.2018.8330194.

Roy, C.K., Cordy, J.R., Koschke, R., 2009. Comparison and evaluation of code clone
detection techniques and tools: A qualitative approach. Sci. Comput. Program.
74 (7), 470–495. http://dx.doi.org/10.1016/j.scico.2009.02.007, URL https://www.
sciencedirect.com/science/article/pii/S0167642309000367.

Rozière, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I., Tan, X.E., Adi, Y., Liu, J.,
Remez, T., Rapin, J., Kozhevnikov, A., Evtimov, I., Bitton, J., Bhatt, M., Ferrer, C.C.,
Grattafiori, A., Xiong, W., Défossez, A., Copet, J., Azhar, F., Touvron, H., Martin, L.,
Usunier, N., Scialom, T., Synnaeve, G., 2023. Code llama: Open foundation models
for code. arXiv:2308.12950.

Saini, V., Farmahinifarahani, F., Lu, Y., Baldi, P., Lopes, C.V., 2018. Oreo: Detection of
clones in the twilight zone. In: Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. In: ESEC/FSE 2018, Association for Computing Machinery,
New York, NY, USA, pp. 354–365. http://dx.doi.org/10.1145/3236024.3236026.

Sandoval, G., Pearce, H., Nys, T., Karri, R., Garg, S., Dolan-Gavitt, B., 2023. Lost at c:
A user study on the security implications of large language model code assistants.
arXiv:2208.09727. URL https://arxiv.org/abs/2208.09727.

Su, F.-H., Bell, J., Kaiser, G., Sethumadhavan, S., 2016a. Identifying functionally
similar code in complex codebases. In: 2016 IEEE 24th International Conference
on Program Comprehension. ICPC, pp. 1–10. http://dx.doi.org/10.1109/ICPC.2016.
7503720.

http://arxiv.org/abs/2303.12712
https://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2307.09009
https://github.com/chrishumphreys/p2j
http://dx.doi.org/10.1145/3661167.3661221
http://dx.doi.org/10.5281/zenodo.5760077
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/CSMR.2012.38
http://dx.doi.org/10.1109/CSMR.2012.38
http://dx.doi.org/10.1109/CSMR.2012.38
http://arxiv.org/abs/2210.14699
https://arxiv.org/abs/2210.14699
http://arxiv.org/abs/2002.08155
http://arxiv.org/abs/2204.05999
https://github.com/java-deobfuscator/deobfuscator/graphs/contributors
https://github.com/java-deobfuscator/deobfuscator/graphs/contributors
https://github.com/java-deobfuscator/deobfuscator/graphs/contributors
https://github.com/java-deobfuscator/deobfuscator
https://github.com/java-deobfuscator/deobfuscator
https://github.com/java-deobfuscator/deobfuscator
https://github.com/jython/jython/graphs/contributors
https://github.com/jython/jython/graphs/contributors
https://github.com/jython/jython/graphs/contributors
https://github.com/jython/jython
https://github.com/features/copilot
https://github.com/features/copilot
https://github.com/features/copilot
https://github.com/Col-E/Recaf/graphs/contributors
https://github.com/Col-E/Recaf/graphs/contributors
https://github.com/Col-E/Recaf/graphs/contributors
https://github.com/Col-E/Recaf
http://arxiv.org/abs/2009.08366
https://pypi.org/project/zss/1.1.4/
http://dx.doi.org/10.1145/2902362
http://dx.doi.org/10.1145/3626252.3630826
http://dx.doi.org/10.1145/3626252.3630826
http://dx.doi.org/10.1145/3626252.3630826
http://arxiv.org/abs/2402.02037
https://arxiv.org/abs/2402.02037
https://arxiv.org/abs/2402.02037
https://arxiv.org/abs/2402.02037
https://www.tangiblesoftwaresolutions.com/
https://www.tangiblesoftwaresolutions.com/
https://www.tangiblesoftwaresolutions.com/
http://dx.doi.org/10.1109/MSR59073.2023.00082
http://dx.doi.org/10.1109/MSR59073.2023.00082
http://dx.doi.org/10.1109/MSR59073.2023.00082
http://dx.doi.org/10.1145/1572272.1572283
https://leetcode.com/problemset/all/
http://arxiv.org/abs/2305.06161
http://arxiv.org/abs/2309.04142
https://hypothesis.readthedocs.io/en/latest/index.html#
https://hypothesis.readthedocs.io/en/latest/index.html#
https://hypothesis.readthedocs.io/en/latest/index.html#
http://dx.doi.org/10.1145/3446871.3469750
http://dx.doi.org/10.1145/3377811.3380407
http://dx.doi.org/10.1145/3377811.3380407
http://dx.doi.org/10.1145/3377811.3380407
http://dx.doi.org/10.1145/3468264.3468538
http://refhub.elsevier.com/S0164-1212(25)00217-1/sb36
http://refhub.elsevier.com/S0164-1212(25)00217-1/sb36
http://refhub.elsevier.com/S0164-1212(25)00217-1/sb36
http://refhub.elsevier.com/S0164-1212(25)00217-1/sb36
http://refhub.elsevier.com/S0164-1212(25)00217-1/sb36
https://www.theguardian.com/technology/2023/feb/02/chatgpt-100-million-users-open-ai-fastest-growing-app
https://www.theguardian.com/technology/2023/feb/02/chatgpt-100-million-users-open-ai-fastest-growing-app
https://www.theguardian.com/technology/2023/feb/02/chatgpt-100-million-users-open-ai-fastest-growing-app
http://dx.doi.org/10.1145/3524842.3528470
http://arxiv.org/abs/2203.13474
http://dx.doi.org/10.1109/SP54263.2024.00046
http://arxiv.org/abs/2303.08774
https://platform.openai.com/docs/api-reference
http://refhub.elsevier.com/S0164-1212(25)00217-1/sb43
http://refhub.elsevier.com/S0164-1212(25)00217-1/sb43
http://refhub.elsevier.com/S0164-1212(25)00217-1/sb43
http://refhub.elsevier.com/S0164-1212(25)00217-1/sb43
http://refhub.elsevier.com/S0164-1212(25)00217-1/sb43
http://refhub.elsevier.com/S0164-1212(25)00217-1/sb43
http://refhub.elsevier.com/S0164-1212(25)00217-1/sb43
http://arxiv.org/abs/2108.09293
http://arxiv.org/abs/2108.09293
http://arxiv.org/abs/2108.09293
https://arxiv.org/abs/2108.09293
https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/subprocess.html
http://dx.doi.org/10.1177/0963721420969365
http://refhub.elsevier.com/S0164-1212(25)00217-1/sb47
http://refhub.elsevier.com/S0164-1212(25)00217-1/sb47
http://refhub.elsevier.com/S0164-1212(25)00217-1/sb47
http://dx.doi.org/10.1109/SANER.2018.8330194
http://dx.doi.org/10.1109/SANER.2018.8330194
http://dx.doi.org/10.1109/SANER.2018.8330194
http://dx.doi.org/10.1016/j.scico.2009.02.007
https://www.sciencedirect.com/science/article/pii/S0167642309000367
https://www.sciencedirect.com/science/article/pii/S0167642309000367
https://www.sciencedirect.com/science/article/pii/S0167642309000367
http://arxiv.org/abs/2308.12950
http://dx.doi.org/10.1145/3236024.3236026
http://arxiv.org/abs/2208.09727
https://arxiv.org/abs/2208.09727
http://dx.doi.org/10.1109/ICPC.2016.7503720
http://dx.doi.org/10.1109/ICPC.2016.7503720
http://dx.doi.org/10.1109/ICPC.2016.7503720

A. Eagal et al. The Journal of Systems & Software 230 (2025) 112548
Su, F., Bell, J., Kaiser, G.E., Sethumadhavan, S., 2016b. Identifying functionally similar
code in complex codebases. In: 24th IEEE International Conference on Program
Comprehension, ICPC 2016, Austin, TX, USA, May 16-17, 2016. IEEE Computer
Society, pp. 1–10. http://dx.doi.org/10.1109/ICPC.2016.7503720.

Thummalapenta, S., Cerulo, L., Aversano, L., Di Penta, M., 2010. An empirical study
on the maintenance of source code clones. Empir. Softw. Eng. 15, 1–34, URL
https://api.semanticscholar.org/CorpusID:2279999.

Thunes, C., 2020. Javalang. URL https://pypi.org/project/javalang/.
Tian, H., Lu, W., Li, T.O., Tang, X., Cheung, S.-C., Klein, J., Bissyandé, T.F., 2023. Is

ChatGPT the ultimate programming assistant – how far is it?. arXiv:2304.11938.
Ullmann, J.R., 1976. An algorithm for subgraph isomorphism. J. ACM 23 (1), 31–42.
Wasserman, L., 2013. Scalable, example-based refactorings with refaster. In: Proceed-

ings of the 2013 ACM Workshop on Workshop on Refactoring Tools. WRT ’13,
Association for Computing Machinery, New York, NY, USA, pp. 25–28. http:
//dx.doi.org/10.1145/2541348.2541355.

Wei, H., Li, M., 2017. Supervised deep features for software functional clone detection
by exploiting lexical and syntactical information in source code. In: Proceedings of
the Twenty-Sixth International Joint Conference on Artificial Intelligence. IJCAI-17,
pp. 3034–3040. http://dx.doi.org/10.24963/ijcai.2017/423.

Xu, F.F., Alon, U., Neubig, G., Hellendoorn, V.J., 2022. A systematic evaluation of large
language models of code. arXiv:2202.13169.

Yang, A., Yang, B., Hui, B., Zheng, B., Yu, B., Zhou, C., Li, C., Li, C., Liu, D., Huang, F.,
Dong, G., Wei, H., Lin, H., Tang, J., Wang, J., Yang, J., Tu, J., Zhang, J., Ma, J.,
Xu, J., Zhou, J., Bai, J., He, J., Lin, J., Dang, K., Lu, K., Chen, K., Yang, K., Li, M.,
Xue, M., Ni, N., Zhang, P., Wang, P., Peng, R., Men, R., Gao, R., Lin, R., Wang, S.,
Bai, S., Tan, S., Zhu, T., Li, T., Liu, T., Ge, W., Deng, X., Zhou, X., Ren, X., Zhang, X.,
Wei, X., Ren, X., Fan, Y., Yao, Y., Zhang, Y., Wan, Y., Chu, Y., Liu, Y., Cui, Z.,
Zhang, Z., Fan, Z., 2024. Qwen2 technical report. arXiv preprint arXiv:2407.10671.

Yao, Y., Duan, J., Xu, K., Cai, Y., Sun, Z., Zhang, Y., 2024. A survey on large
language model (LLM) security and privacy: The good, the bad, and the ugly. High-
Confid. Comput. 4 (2), 100211. http://dx.doi.org/10.1016/j.hcc.2024.100211, URL
https://www.sciencedirect.com/science/article/pii/S266729522400014X.
16
Yeo, S., Ma, Y.-S., Kim, S.C., Jun, H., Kim, T., 2024. Framework for evaluating
code generation ability of large language models. ETRI J. 46 (1), 106–117.
http://dx.doi.org/10.4218/etrij.2023-0357, arXiv:https://onlinelibrary.wiley.com/
doi/pdf/10.4218/etrij.2023-0357. URL https://onlinelibrary.wiley.com/doi/abs/10.
4218/etrij.2023-0357.

Yepis, E., 2023. Hype or not? AI2019s benefits for developers explored in the
2023 developer survey. URL https://stackoverflow.blog/2023/06/14/hype-or-not-
developers-have-something-to-say-about-ai/.

Zakeri-Nasrabadi, M., Parsa, S., Ramezani, M., Roy, C., Ekhtiarzadeh, M., 2023. A
systematic literature review on source code similarity measurement and clone
detection: Techniques, applications, and challenges. J. Syst. Softw. 204, 111796.
http://dx.doi.org/10.1016/j.jss.2023.111796, URL https://www.sciencedirect.com/
science/article/pii/S0164121223001917.

Zhao, H., Chen, H., Yang, F., Liu, N., Deng, H., Cai, H., Wang, S., Yin, D., Du, M.,
2023. Explainability for large language models: A survey. arXiv:2309.01029.

Azeeza Eagal received her Masters of Science in Computer Science from North Carolina
State University and her Bachelor of Science in Computer Science and her Bachelor of
Arts in Classics from Truman State University. She is currently pursuing a Ph.D. in
Computer Science at North Carolina State University. Her research focuses on AI for
Software Engineering.

Kathryn (Katie) Stolee, Ph.D., is an Associate Professor with tenure in the Department
of Computer Science at North Carolina State University. Her research in software
engineering combines program analysis (e.g., refactoring, semantic code search, code-
to-code search) with human factors (e.g., comprehension, reuse, information seeking
behavior) to help developers improve their code quality and understanding.

John-Paul Ore is an Assistant Professor in the Department of Computer Science at NC
State University. John-Paul’s research interests are broadly in the areas of software
engineering, robotics, program analysis, and system testing using high-resolution
physical simulators. His research combines field robotics and software engineering (SE).

http://dx.doi.org/10.1109/ICPC.2016.7503720
https://api.semanticscholar.org/CorpusID:2279999
https://pypi.org/project/javalang/
http://arxiv.org/abs/2304.11938
http://refhub.elsevier.com/S0164-1212(25)00217-1/sb58
http://dx.doi.org/10.1145/2541348.2541355
http://dx.doi.org/10.1145/2541348.2541355
http://dx.doi.org/10.1145/2541348.2541355
http://dx.doi.org/10.24963/ijcai.2017/423
http://arxiv.org/abs/2202.13169
http://arxiv.org/abs/2407.10671
http://dx.doi.org/10.1016/j.hcc.2024.100211
https://www.sciencedirect.com/science/article/pii/S266729522400014X
http://dx.doi.org/10.4218/etrij.2023-0357
https://onlinelibrary.wiley.com/doi/pdf/10.4218/etrij.2023-0357
https://onlinelibrary.wiley.com/doi/pdf/10.4218/etrij.2023-0357
https://onlinelibrary.wiley.com/doi/pdf/10.4218/etrij.2023-0357
https://onlinelibrary.wiley.com/doi/abs/10.4218/etrij.2023-0357
https://onlinelibrary.wiley.com/doi/abs/10.4218/etrij.2023-0357
https://onlinelibrary.wiley.com/doi/abs/10.4218/etrij.2023-0357
https://stackoverflow.blog/2023/06/14/hype-or-not-developers-have-something-to-say-about-ai/
https://stackoverflow.blog/2023/06/14/hype-or-not-developers-have-something-to-say-about-ai/
https://stackoverflow.blog/2023/06/14/hype-or-not-developers-have-something-to-say-about-ai/
http://dx.doi.org/10.1016/j.jss.2023.111796
https://www.sciencedirect.com/science/article/pii/S0164121223001917
https://www.sciencedirect.com/science/article/pii/S0164121223001917
https://www.sciencedirect.com/science/article/pii/S0164121223001917
http://arxiv.org/abs/2309.01029

	Analyzing the dependability of Large Language Models for code clone generation
	Introduction
	Motivating Example
	Related Work
	Methodology
	Task Description
	Prompting
	Data
	Metrics
	Dynamic Analysis
	Input Generation
	Behavioral Data Collection
	Clustering

	Results
	RQ1: Within-Language Clone Generation
	RQ2: Cross-Language Clone Generation

	Discussion
	Levenshtein Edit Distance & Accuracy
	AST Edit Distance & Accuracy
	Alternatives to LLMs for Code Clone Generation
	Practical Implications

	Threats to Validity
	Threats to Internal Validity
	Threats to External Validity

	Future Work
	Conclusion
	CRediT authorship contribution statement
	Declaration of Generative AI and AI-assisted technologies in the writing process
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

