
26

Solving the Search for Source Code

KATHRYN T. STOLEE, Iowa State University
SEBASTIAN ELBAUM and DANIEL DOBOS, University of Nebraska-Lincoln

Programmers frequently search for source code to reuse using keyword searches. The search effectiveness
in facilitating reuse, however, depends on the programmer’s ability to specify a query that captures how the
desired code may have been implemented. Further, the results often include many irrelevant matches that
must be filtered manually. More semantic search approaches could address these limitations, yet existing
approaches are either not flexible enough to find approximate matches or require the programmer to define
complex specifications as queries.

We propose a novel approach to semantic code search that addresses several of these limitations and
is designed for queries that can be described using a concrete input/output example. In this approach,
programmers write lightweight specifications as inputs and expected output examples. Unlike existing
approaches to semantic search, we use an SMT solver to identify programs or program fragments in a
repository, which have been automatically transformed into constraints using symbolic analysis, that match
the programmer-provided specification.

We instantiated and evaluated this approach in subsets of three languages, the Java String library,
Yahoo! Pipes mashup language, and SQL select statements, exploring its generality, utility, and trade-offs.
The results indicate that this approach is effective at finding relevant code, can be used on its own or to filter
results from keyword searches to increase search precision, and is adaptable to find approximate matches
and then guide modifications to match the user specifications when exact matches do not already exist. These
gains in precision and flexibility come at the cost of performance, for which underlying factors and mitigation
strategies are identified.

Categories and Subject Descriptors: D.2.4 [Software]: Software-Engineering—Software/Program
verification

General Terms: Verification, Languages, Experimentation

Additional Key Words and Phrases: Semantic code search, symbolic analysis, SMT solvers, lightweight
specification

ACM Reference Format:
Kathryn T. Stolee, Sebastian Elbaum, and Daniel Dobos. 2014. Solving the search for source code. ACM
Trans. Softw. Eng. Methodol. 23, 3, Article 26 (May 2014), 45 pages.
DOI: http://dx.doi.org/10.1145/2581377

1. INTRODUCTION

Today, searching for code is a regular activity for most programmers. Consider a novice
Java programmer who is trying to find a snippet of code that extracts an alias (i.e.,
username) from an email address. The programmer turns to the online search engine
Google, the most common approach in practice [Sim et al. 2011, survey in Section 2],
using a search query with the following keywords: extract alias from email address in
Java. As expected, the query returns millions of results. None of the top ten results

This work is supported in part by NSF SHF-1218265, NSF GRFP under CFDA-47.076, UNL-UCARE Pro-
gram, a Google Faculty Research Award, and AFOSR no. 9550-10-1-0406.
Authors’ addresses: K. T. Stolee (corresponding author), Iowa State University, Ames, IA; email: kstolee@
iastate.edu; S. Elbaum and D. Dobos, University of Nebraska-Lincoln, Lincoln, NE.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.
c© 2014 ACM 1049-331X/2014/05-ART26 $15.00

DOI: http://dx.doi.org/10.1145/2581377

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

26:2 K. T. Stolee et al.

(P@10, a typical IR measure to assess the precision of search engine results [Craswell
and Hawkings 2004]) even provides a method for decomposing an email address into
parts, which is the first step towards extracting the alias. Now, if the programmer is
knowledgable enough about the domain to refine the query with the term substring,
then the top ten results include two relevant solutions.

Despite the simplicity of the programming task, this illustrates a common situation
for programmers. Following a search for code to reuse, programmers must sift through
many irrelevant results, especially when the desired behavior cannot be tied to source-
code syntax or documentation. As repositories of source code grow in size and diversity,
and as programmers continue to turn to search during development [Sawadsky et al.
2013], finding relevant code becomes increasingly important.

We have designed an approach to code search that addresses many of the shortcom-
ings of existing search techniques, most notably by allowing programmers to describe
what they want their code to do rather than how it is implemented. When no exact
solutions exist, close-enough solutions can be found, which informally means solutions
may require minor modification to fit the target context. The general idea is that pro-
grammers provide examples of the behavior of their desired code as inputs and outputs
and an SMT solver identifies available source code from a repository, which has been
encoded as constraints, that matches the specifications and can be reused. For exam-
ple, when searching for source code that extracts the alias from an email address, the
input could be the string “susie@mail.com” and the output the string “susie”. While
this form of query changes the search model from the common keyword query, it lets
the programmer specify the desired behavior without the need to know how to achieve
a certain outcome, just what that outcome is. The results of the search are source-code
snippets that behave as specified. The proposed change, then, is from a syntactic query
to a semantic query.

This example-based specification model is inspired by two lines of work, program-
ming by example (or, programming by demonstration) and program synthesis. Some
programming-by-example approaches aim to generate programs for tasks that are
demonstrated by example [Cypher et al. 1993], such as providing a string before and
after a transformation. Yet, the programs that can be generated through these ap-
proaches are limited and must follow well-defined templates or sequences. For exam-
ple, in the TELS text-editing-by-example system [Witten and Mo 1993], programs are
generated by recording and generalizing editing actions on strings in a text editor.
For generalizations that involve string constants, they use a rigid hierarchy based on
common subsequences. Other properties of strings, such as length- or case-insensitive
equality, are not included in the hierarchy and thus would not be part of a generated
program. In our work, we find existing code that performs a relevant transformation
which promotes reuse. The intuition is that someone else has likely created a solution
so there is no need for creating a new one from scratch. Our approach also does not
depend on templates so it can return a larger variety of results, where the variety
depends on the richness of the repository.

The other related line of work, program synthesis, aims to generate programs that
match a provided input/output example, and program generation is guided by a con-
straint solver. Similar to programming by demonstration, this approach also relies on
predefined functions and templates to guide the solver in finding a solution. The solver
will try every possible combination of functions and templates to achieve the desired
behavior, which can be time consuming even for small programs (e.g., in a toy problem,
insertion and deletion on graphs can take several minutes to resolve [Singh and Solar-
Lezama 2011]). Our approach is not restricted to predefined functions and templates,
allowing us to return code that may be too complex for a code synthesizer to generate
efficiently (we discuss more related work in Section 6).

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

Solving the Search for Source Code 26:3

Just like any other search engine, our approach indexes a repository of information
offline, independently of the users’ queries. Our indexing is unique in that it requires
a transformer that uses symbolic analysis [Clarke 1976; Clarke and Richardson 1985;
King 1976] to map a program’s semantics onto constraints that summarize the program
behavior. For example, the indexing process would map the two-line Java snippet

s1 . int upper = input . indexOf (‘@’) ;
s2 . String output = input . substring (0 , upper) ;

into the following constraints (roughly).

c1 . (assert (input . charAt (upper) = ‘@’) ∨ (upper = −1)))
c2 . (assert (f o r (0 ≤ i < upper) input . charAt (i) �= ‘@’))
c3 . (assert (f o r (0 ≤ i < upper) output . charAt (i) = input . charAt (i)))

Constraints c1 and c2 represent the first line of source code, s1. The first constraint, c1,
defines upper as the location of “@” in input or −1, and c2 asserts upper is the first index of
“@” in input, per the semantics of the indexOf method in java.lang.String.1 Constraint
c3 represents the second line of source code, s2. It asserts that the output matches
input within bounds of 0 and upper, per the semantics of the substring method in
java.lang.String. This is the basic process by which our approach indexes programs:
mapping program semantics to constraints by evaluating each program statement.
The constraints are generated automatically, a process we describe in Section 4.2. The
constraints are never shown to the programmer, but rather are consumed by the solver
during the search process to identify viable matches.

With a user-defined input/output query and an encoded repository of programs, the
search can now find results. The first step in this phase is to transform the input/output
into additional constraints. For the previous example, we get the following.

c4 . (assert (input = “susie@mail.com”))
c5 . (assert (output = “susie”))

The second step consists of pairing the input/output constraints with each of the pro-
grams indexed in the repository (described in Section 4.2), and using an SMT solver to
identify which pairs are satisfiable and hence constitute a match. For our email alias
example, an SMT solver would return sat for the conjunction of the snippet encoded
through constraints (c1 ∧ c2 ∧ c3) and the input/output encoded through constraints
(c4 ∧ c5), indicating that the code indeed matches the specification. Contrastingly,
if the specified output was instead “mail.com” (the programmer meant to identify the
email domain instead of the alias), the SMT solver would return unsat when paired with
the previous code snippet, indicating that the code does not match the specification.

The previous example illustrates the essence and novelty of the approach, but it
does not address some critical issues such as the broader applicability of the approach
to other domains, handling richer specification models required by diverse domains,
and refining the set of potential matches. In this work, we begin to explore these
issues.2 We instantiate and assess various aspects of the approach in three domains:
the Java String library, Yahoo! Pipes mashup programs, and SQL select statements
(Section 4.2). These domains were selected in part to illustrate the generality of the
approach by utilizing three diverse forms of input/output specification (Section 3) and
in part because of their relatively simple and common underlying semantics and the

1According to the API, the value of upper must be −1 only in the event that ‘@’ is not a character of input.
Some additional constraints, not shown here for brevity, are required to prevent upper from defaulting to
−1, which would make this system of constraints trivially satisfiable.
2Our previous work in this area presented a brief and preliminary instantiation of our approach on the
Yahoo! Pipes mashup language [Stolee and Elbaum 2012b].

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

26:4 K. T. Stolee et al.

availability of repositories that could be searched for evaluation (Section 5). To refine
the search results, we describe how the approach supports incremental strengthening of
the specifications (queries) to prune the result set of coincidental matches and evaluate
these concepts in the Java domain. Weakening the program encodings can enrich the
results set with approximate matches that can be modified to match the specification,
a process guided by the satisfiable model produced by the solver (Section 4), which
we explore in the Yahoo! Pipes domain. We also explore how our Java search results
compare to syntactic search results and illustrate how our technique can improve the
results from a syntactic search engine, how changes in search parameters, specifically
solving time and abstraction of the program encodings, affect the search results in
Yahoo! Pipes, and how changes in the size and complexity of the search queries impact
the search performance in SQL. The contributions of this work are:

(1) characterization of how developers use search to find code based on a survey of 99
participants;

(2) evidence of programmers using examples to explain their problem using an analysis
of 300 questions posted to stackoverflow;

(3) definition of a novel approach to semantic code search that uses an SMT solver
to identify matches given input/output examples and given programs encoded as
constraints using symbolic analysis;

(4) instantiation of the approach in three domains: Java String library, Yahoo! Pipes,
and SQL, illustrating the applicability of this approach;

(5) preliminary and broad evaluation of the approach:
(a) comparison of search result relevance between a keyword-based approach and

our approach in Java from the perspectives of 19 programmers;
(b) proof-of-concept for combining syntactic and semantic search approaches to

reduce the effort of evaluating search results;
(c) exploration of the impact of solver time, specification size, and abstraction on

precision and recall in Yahoo! Pipes; and
(d) evaluation of the impact of specification size and complexity on solver time in

SQL.

The rest of the article is organized as follows. Section 2 motivates this work using a
survey of programmer search habits, and motivates the use of input/output queries by
analyzing questions asked on an online help forum. Section 3 illustrates how we have
instantiated the approach in each of the three targeted domains. Section 4 formalizes
the approach definition and describes the domain-specific implementation details re-
quired for each instantiation of our approach. Our research questions, study, results,
and threats to validity are presented in Section 5, followed by related work in Section 6
and the conclusion in Section 7.

2. MOTIVATION

Developers’ contexts, workflows, tools, and languages vary widely. In this work we
conjecture that code search is used across that variation and the input/output query
model is a practical one. In this section, we motivate the need for further research in
code search using a survey of 99 programmers about their code search habits. Next,
we provide evidence for the utility of an input/output query model by exploring the
frequency of input/output examples within questions asked in an online help forum.

2.1. Developer Survey on Code Search Habits

Previous work has studied the question of how and why programmers search for source
code [Sim et al. 2011], with a survey that focused on graduate student behavior. Sim
et al. showed that programmers most commonly search for code to reuse or to use as

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

Solving the Search for Source Code 26:5

Table I. Programming and Search Frequency

Activity Daily Weekly Monthly
Programming 42 49 8
Code Search 25 52 22

a reference example and that Google is the most common, and often effective, tool for
finding source code. To confirm the findings and understand more about how and why
developers search for code and the tools used in code search, we conducted a survey
with similar goals.

Our survey contained ten questions with the goal of addressing the following research
questions:3

RQ1. How and why do programmers search for source code?
RQ1(a). How frequently do programmers search for code?
RQ1(b). Why do programmers search for source code?
RQ1(c). Which tools do programmers use to search for code?

2.1.1. Participants. We targeted two populations with this survey: students in two un-
dergraduate classes at the University of Nebraska-Lincoln and workers on Mechanical
Turk. Mechanical Turk [2010] is a service hosted by Amazon that allows people to
reach and compensate others to complete tasks that require human input, such as
tagging images or answering survey questions. It hosts the tasks, manages payment,
and makes the tasks accessible to a large and existing workforce. With the Mechan-
ical Turk population, we delivered the survey with four programming questions that
required potential participants to analyze the behavior of simple Java methods. Cor-
rect responses were required for two or more questions in order for respondents to
participate, as a means to control for quality.

In total, we received valid responses from 99 participants.4 Of those, 42 came from
junior/senior undergraduate classes at UNL while the remaining 57 came from Me-
chanical Turk. In a question about programming experience, 17 had less than two
years of experience, 53 had between two and five years of experience, and 29 had more
than five years of programming experience.

2.1.2. Search Frequency. To address RQ1(a), we asked how frequently the participants
write source code and how frequently they search for code. Table I summarizes our
findings. Among all participants, 42 reported they program daily and 49 program on
a weekly basis. Among the participants who program daily, over half (25 of 42) also
search for code daily. As a summary, among those participants who program daily or
weekly, 85% search for code at least weekly. This finding is consistent with a recent
(and independent) survey that looked at the search habits of 36 graduate students [Sim
et al. 2011]. It was reported that 50% of the participants search for code “frequently”
while 39% do it “occasionally.”

2.1.3. Why Programmers Search for Code. To address RQ1(b), we asked participants what
they did with the source code they were looking for. Once useful code is found, Table II
summarizes what the participants did with it (using a multiselect question). Half of
the participants reported that they would copy/paste and modify found code. Nearly
three-fourths would use it to get ideas for implementation, and 11% would copy/paste

3Full survey details are available [Stolee 2013].
4Three participants were removed from the pool on account of inconsistent responses. These participants
claimed to program weekly but search for source code daily, and this seemed suspicious. Ten participants
from Mechanical Turk self-reported to have no programming experience, so those results were excluded as
well.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

26:6 K. T. Stolee et al.

Table II. Uses of Matched Code

Code Use Count Percent
Copy/paste as is 11 11%
Copy/paste and modify 52 52%
Get ideas for implementation 71 71%
Link to found code 9 9%
Other 4 4%

as-is. This is consistent with the previous findings that reuse and implementation
examples are the most common purposes for a code search [Sim et al. 2011].

2.1.4. Tools Used in Code Search Activities. To address RQ1(c), we asked participants
about the tools they use for code search and the types of information they use for their
search queries. In a free response answer about where the participants search for code,
69% mentioned using the Web, the Internet, or specifically Google. Nearly one-quarter
(23%) mentioned searching stackoverflow specifically, a free question-and-answer site
for programming- and technology-related questions. Only 17% mentioned using a code-
specific search engine like Koders or Planet Source Code. Despite the availability of
code-specific search engines, information search engines are the most common tools
used for code search, echoing the findings in a previous survey [Sim et al. 2011].

Finding relevant source code, however, is not always easy with the current tools. The
participants reported that they must explore an average of 3.5 snippets of code before
something useful is found. A previous study found that approximately 3 out of the first
10 matches were useful, which aligns with our finding [Sim et al. 2011]. It is important
to mention that neither survey accounted for the process of query reformulation, which
involves restating a query after viewing irrelevant search results, is quite common in
searching [Huang and Efthimiadis 2009], and adds to the overhead. Evaluating the
cost of a syntactic search for finding source code to reuse is still an open question.

2.2. Input/Output Examples in the Wild

For the Yahoo! Pipes and SQL languages, our previous work has shown that program-
mers are able to compose input/output queries with 92% accuracy and in less than two
minutes [Stolee and Elbaum 2013]. Yet how amenable programmers would be to this
new query model has not yet been explored. In this section, we motivate the use of the
input/output query model by investigating the extent to which programmers already
compose examples in online help forums. We observe that Java, Yahoo! Pipes, and SQL
programmers often turn to peer communities when they are looking for help. One pop-
ular community is stackoverflow, so this is the forum we use to identify input/output
examples in the wild.

2.2.1. Sampling. We collected questions related to Yahoo! Pipes using the tag
[yahoo-pipes], questions related to SQL using the tags [mysql] and [select], and
questions related to Java using the [java] and [string] tags. The second tag in SQL
was used to restrict the questions to those dealing with select statements, as that is
the scope of our SQL implementation. The second tag in Java is meant to restrict the
question to those dealing with strings, as this has been the primary focus of our imple-
mentation (Section 4.2.1). In Yahoo! Pipes, 248 questions were returned on March 27,
2013, in SQL, over 1,500 questions were returned on February 19, 2012, and in Java
7,420 questions were returned on June 17, 2013. In each domain, we sorted the results
according to popularity (i.e., votes) and retained the top 100.

2.2.2. Analysis. An initial analysis was performed in the SQL domain to observe com-
mon question themes. This involved two passes over the questions. The first pass was

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

Solving the Search for Source Code 26:7

Table III. Question Type Categories in Stackoverflow

SQL YPipes Java
Question Type # Examples # Examples # Examples
How do I do X with {SQL, YP, Java}? 74 53 (72%) 58 40 (69%) 43 29 (67%)
Can I do X with/without Y ? 8 4 (50%) 18 14 (78%) 9 4 (44%)
What’s wrong with . . . , or Why does . . . work? 7 2 (29%) 9 8 (89%) 15 14 (93%)
How does Y work? 6 1 (17%) 4 1 (25%) 19 8 (42%)
What is an alternative to {SQL, YP, Java} for X? 0 0 (0%) 10 0 (0%) 0 0 (0%)
Best way to do X? 0 0 (0%) 0 0 (0%) 5 4 (80%)
Y versus Z? 4 1 (25%) 0 0 (0%) 9 4 (44%)
unrelated 1 0 (0%) 1 0 (0%) 0 0 (0%)

Reported are the number of questions for each category as well as the number and percentage of those
questions that contain descriptive or input/output examples.

for content analysis to collect common question themes and the second pass categorized
the questions. This same process was repeated for the Yahoo! Pipes domain, and then
on Java. When a question fit two or more categories, we selected the category that most
closely fit based on the accepted or highest-voted answer from the community. Eight
categories emerged from this analysis. The next step was to check if the questions also
had examples to illustrate their context, and if these examples were in the form of an
input and output.

2.2.3. Results. In each domain, there were a handful of dominant question types,
shown in Table III. In a question containing X, it represents a specific task, such as
remove a field from an RSS item in Yahoo! Pipes, combine two tables in SQL, or capi-
talize the first letter in a string in Java. Y refers to a language construct, such as the
Regex module in Yahoo! Pipes, the Inner Join construct in SQL, or the hashCode()
function in Java. For each question, we provide the frequency of occurrence in each
language (column #), as well as the number of those questions with which a descriptive
or input/output example was provided (column Examples shows a count and the per-
centage). As an example, How does Y work? questions describe six questions from SQL,
four questions from Yahoo! Pipes, and 19 questions from Java; one question in each
of Yahoo! Pipes and SQL provided an example to more clearly illustrate the question
being asked (representing 17% and 25% of the questions, respectively). In Java, exam-
ples were more common with eight of those questions providing examples, representing
42%.

The dominant type of question for all languages is “How do I do X?” This represents
74 questions in SQL, 58 questions in Yahoo! Pipes, and 43 questions in Java. A sample
of this type in Java is as follows.

“How does one convert a String to an int in Java? I have a string which
contains only numbers (1–4 numbers to be specific), and I want to return the
number which it represents.
For example, given the string “1234” the result should be the number 1234.”5

This question is asking for how to do a type conversion in Java. Generally, syntactic
search mechanisms are not well equipped to answer this type of question as the devel-
oper does not know what query or query components may be used to solve the problem;
the developer asking this type of question knows only the behavior that is desired.

We also observed that these questions usually come with examples that help devel-
opers better specify the required behavior. Of the 74 “How do I do X?” questions in SQL,

5http://stackoverflow.com/questions/5585779/how-to-convert-string-to-int-in-java.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

26:8 K. T. Stolee et al.

53 contained examples. Further, 36 examples were actual snippets of tables that serve
as inputs and records that they expect as outputs. Of the 58 questions in Yahoo! Pipes
of this type, 40 contained examples and 8 of those had inputs and outputs. In Java,
29 of the 43 questions contained examples, and 13 of those were inputs and outputs.
In some questions, the outputs were difficult to specify. One Java question asks how
to convert a string to a Date() object.6 While the input is easy to specify, the output is
not, and thus this was not counted as an input/output example. To work around that
difficulty, some questions used test cases to illustrate input/output examples in a more
standard format.7

From this analysis, we see evidence that programmers already think in terms of
examples when trying to accomplish tasks using the SQL and Java, and to a lesser
extent, the Yahoo! Pipes language. Another interesting observation is that “How does Y
work?” questions are not asked often by programmers to their community, particularly
for SQL and Yahoo! Pipes. This may indicate that this type of question is well handled
by existing resources like existing documentation, tutorials, or other syntactic search
engine findings.

2.3. Summary

We have presented the results of a survey that asked 99 participants about their
programming experience and search habits. We observed that code search is common,
Google is the most frequently used tool, and the overhead, which comes from examining
and determining whether or not a match is useful, is nontrivial. However, these results
are based on self-reported answers and may not be representative of actual behavior.
Observing search habits in practice would allow us to validate these results.

Next, since state-of-the-practice code search requires the use of a keyword query
and our approach uses an input/output query model, we also explored the frequency of
input/output specifications in the wild, observing that examples are commonly used in
questions asked on stackoverflow.

The next section provides some illustrative examples of our input/output search
approach in the three targeted languages, Java, Yahoo! Pipes, and SQL.

3. ILLUSTRATIVE EXAMPLES

We started exploring this approach to semantic search in the context of end-user pro-
gramming languages, specifically a Web mashup language called Yahoo! Pipes which
performs operations on lists of RSS items. To generalize the approach to a more com-
mon language with similar semantics, we targeted SQL select statements that perform
similar filtering operations (in order to reuse the transformation infrastructure we had
developed), but over tables of data, which added a dimension of complexity to the imple-
mentation. Supporting the Yahoo! Pipes language fragment also requires operations on
strings, specifically identifying equality and substring relationships. To build on that
support and explore our search approach in a broader context, we have targeted Java
program snippets that contain calls to the java.lang.String library.

In this section, we illustrate the benefits and unique features of our approach to
search through a series of examples. These examples are intended to represent situ-
ations in which the input/output example-based search may be useful. Additionally,
for each domain, we briefly describe how search is currently performed and how our
approach is instantiated.

6http://stackoverflow.com/questions/4216745/java-string-to-date-conversion.
7http://stackoverflow.com/questions/2559759/how-do-i-convert-camelcase-into-human-readable-names-in-
java.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

Solving the Search for Source Code 26:9

3.1. String Manipulations in Java

The alias extraction example in Section 1 illustrates a state-of-the-practice search for
code to reuse which returns many irrelevant results that must be evaluated man-
ually. Similar situations are likely quite common, given that most programmers we
surveyed frequently utilize syntactic search to find code to reuse or to obtain examples
(Section 2.1).

Our search approach requires a query consisting of example input and expected out-
put pairs, such as “susie@mail.com” as input and “susie” as output. In the context of
the Java String library, those inputs and outputs could be one of several datatypes;
integers, characters, strings, and booleans are supported by our current implementa-
tion. Here, we provide four examples in the Java domain to illustrate key aspects of our
search. First, we show how to bind input/output specifications to snippets of code; sec-
ond, we show how refinement on the specification can impact search results; third, we
show how to handle more complex code examples; fourth, we illustrate how ambiguity
in code snippets is handled.

Example 1. Consider a programmer who wants to find the length of a file extension
(including the dot). For the desired code snippet, the query’s input is the file name, let’s
assume as a string, and the query’s output is the length of the extension as an integer. A
concrete query to illustrate this behavior could be the input “foo.txt” with an expected
output of 4. To provide a data point on performance (more extensively assessed in
Section 5), our search with that concrete query identifies 83 potential matches from a
repository with hundreds of encoded programs. The following snippet is a match that
involves four API calls.
int begin = s . lastIndexOf (“.”) ;
int end = s . length () ;
String ext = s . substring (begin , end) ;
int len = ext . length () ;

Here, the input is bound to the only undefined variable in the code snippet, s (inferred
to be of type string). The output is bound to the LHS of the final assignment statement,
len, which is the only unused variable. These bindings are calculated by the approach
by computing and exploring the def-use pairs [Nielson et al. 2004].

There may be many potential bindings of an input/output specification to an arbitrary
code snippet, with some bindings being better than others. For instance, if there are
multiple undefined variables in a snippet and multiple elements in the input, some
bindings may lead to a satisfiable results whereas others may not; we discuss this later
in Section 4.2.

Example 2. For the previous example, the input/output specification yielded 83 po-
tential matches. In Section 1, we presented a specification that could be used as a query
to find code that extracts an alias from an email address. The input, “susie@mail.com”,
and the output, “susie”, form the specification. With this input/output pair encoded as
constraints, our search returned 51 matches. In these searches, the specifications are
relatively weak so many results may be irrelevant. For the alias extraction example,
consider the following independent results, r1 and r2.
r1 . String scheme = uri . substring (0 , 5) ;
r2 . username = to . substring (0 , to . indexOf (‘@ ’)) ;

The first result, r1, is found by binding the output to scheme and the input to uri. The
second result is found by binding the output to username and the input to to. Deciding
which results are actually relevant, rather than coincidental, may not be straight-
forward. To help with this process, the developer can provide additional input/out-
put pairs to prune coincidental matches. For example, adding the input/output pair,

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

26:10 K. T. Stolee et al.

input2 = “alex@univ.edu” and output2 = “alex”, will remove r1 from the result set (i.e.,
it only matches the first input/output because the string “susie” has five characters),
leaving r2 as a result.

Example 3. This approach is also effective at retrieving larger snippets of code. Con-
sider a programmer who wants to obtain the subdomain from a domain name, for
example, by providing an input of “http://subdomain.example.com” and output “subdo-
main”8. The following code snippet will match the specification.
int lastIndex = domain . lastIndexOf (‘ ‘ . ’ ’) ;
String noext = domain . substring (0 , lastIndex) ;

lastIndex = noext . lastIndexOf (‘ ‘ . ’ ’) ;
String subdomain = noext . substring (0 , lastIndex) ;

int f i r s t Index = subdomain . lastIndexOf (‘ ‘ / ’ ’ , lastIndex) ;
f i r s t Index = f i r s t Index + 1;

return subdomain . substring (f irstIndex , lastIndex) ;

For this code, the variable domain is used but never defined, making it the input.
The return statement forms the output values, as would be the case if this snippet was
encapsulated in a method. Encoding will follow the same process as with the other
examples, mapping the code to constraints. Unlike the previous examples, this code
involves more complexity from the definition and use of several String and integer
variables, and illustrates how the approach can work with larger, more complex code.
Constructs that modify the control flow, such as loops and predicates, are not part of
the current implementation (Section 4.2.1), but are increasingly being supported by
symbolic analysis engines. We discuss this related work in Section 6.

Example 4. In some snippets, there may be additional variables that are used, but
are not defined and also not bound to the input. Consider the following snippet that
matches for the input/output used in Example 1.
int index = names . length () − names . indexOf (f lag) ;

After binding the input to names and the output to index, this code is not executable
because we know nothing about the value of flag, so state-of-the-art semantic search
engines that utilize test cases to identify matching code (e.g., Lazzarini Lemos et al.
[2007], Podgurski and Pierce [1993], and Reiss [2009]) would fail. In our approach,
the uninitialized variables in the snippet remain uninitialized in the encoding, and we
make no assumptions about the values they hold (though we must use type inference
to reveal that flag is either a character or a string, and we assume the more expressive
case of string). This snippet is identified as a match because the satisfiable model
produced by the solver reveals that the specification matches this snippet when flag

is set to “.txt” (the solver could have identified “.”, “.t”, or“.tx” as possible values, but it
only needs to find one to complete the model). By encoding the behavior of the snippets
as constraints, we can identify incomplete code as a match and leverage the solver
to guide its instantiation. Applying that guidance yields the following modified and
complete code.
int index = names . length () − names . indexOf (“.txt”) ;

Clearly, this code would not be considered a match for other input/output examples
in which the file extension is not “.txt”. A working solution could be found by adding
additional input/output examples and forcing flag to equal “.”.

8http://stackoverflow.com/questions/1189128.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

Solving the Search for Source Code 26:11

Fig. 1. Example record/item from an RSS feed.

Fig. 2. Two example pipes, possible solutions to input/output example in Figure 4.

We refer to uninstantiated variables, like flag, as symbolic and variables that hold
values, like the string “.txt”, as concrete.

3.2. Yahoo! Pipes Mashups

Often, existing search capabilities of domain-specific languages are even more limited
than those for more mainstream languages. Yahoo! Pipes is a mashup language with
over 90,000 users [Jones and Churchill 2009], and a public repository of over 100,000
artifacts [Pipes 2012]. These programs combine, filter, sort, annotate, and manipulate
RSS feeds. To write a Pipes program, programmers use the Pipes Editor, dragging and
dropping predefined modules and connecting them with wires to define the data- and
control flow. Example pipes are shown in Figure 2(a) and Figure 2(b). A pipe can have
multiple sources (e.g., a Fetch Feed module) that access external data sources (e.g.,
URLs), and exactly one sink, the Pipe Output module shown at the bottom.

Each Fetch Feed module provides a list of RSS items to the pipe. Each item is a
map data structure with key-value pairs. An example item, also called a record, from
an RSS feed is shown in Figure 1. The keys are Title, Description, Link, and Date.
The first three keys map to values of type string, and the last key maps to an integer
(i.e., the date is converted to an integer). Mashup programs perform operations on
the lists of RSS items. The operations are defined by the modules that connect the
source(s) and the sink. In Figure 2(a), the pipe performs a head operation on the list
(the Truncate module), and then a tail operation (the Tail module). In Figure 2(b), the
pipe concatenates two data sources with a Union module and then retains items in the
RSS feeds that contain the word “tennis”.

In the state-of-the-practice, programmers can search for pipes by URLs accessed,
tags, keyword, or program components. To illustrate the challenges programmers face
with current search support, we performed five searches by URL (see Table VII in
Section 5). The number of matches can be in the thousands, which is not surprising
as many mashups include common URLs. The precision among the top ten results
(P@10 [Craswell and Hawkings 2004]), determined by the behavior of the pipe, is

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

26:12 K. T. Stolee et al.

Fig. 3. Mapping the pipe in Figure 2(b) onto constraints.

0.06. Using other built-in search capabilities does not fare much better. Searching by
components retrieves even more results and requires the programmer to know the pipe
implementation details. The effectiveness of searching with tags is highly dependent
on the community’s ability and decision to systematically categorize their artifacts.

The external data sources accessed by the Fetch Feed modules are the inputs to
the pipe. In our approach instantiated in the Pipes domain, the programmer provides
the URLs for RSS feed(s) as input, just as he/she would to build a pipe from scratch.
Like the Pipes Editor environment, our framework fetches the RSS feed; this produces
the input list. The programmer modifies this list by reordering, removing, or modifying
items to form the output list. An example of this process is shown in Figure 4. The
programmer provides the URL, such as the Input in Figure 4, and our framework
retrieves the RSS feed, which has n items. The programmer selects item(s) as the
desired output.

In this domain, entire programs are encoded as constraints. The URL information
is abstracted away so the pipe can be solved for any URL provided as input; this
abstraction is imperative to find pipes that behave as desired, given an example input
and output.

The encoding process is briefly illustrated in Figure 3 for the pipe in Figure 2(b). Each
module is mapped to a set of constraints, and each connector (called wires) defines the
relationships between the modules. The module constraints are expressed in terms of
the input to and output from the module (e.g., in(Filter) refers to the list that enters

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

Solving the Search for Source Code 26:13

Fig. 4. Yahoo! Pipes input/output example.

the Filter module, and out(Filter) refers to the list that exits the Filter module).
Constraints c1 and c3 assign input variables to each of the Fetch Feed (succinctly, Fetch)
modules. Constraints c2 and c4 ensure that the output from the Fetch modules is the
same as the input. Constraints c5 and c6 connect the output from the Fetch modules
to the Union module as inputs. The Union module concatenates its input lists, which
are described by constraints c7a, c7b, and c8. The first, c7a, ensures that all the items
at the front of the output list, out(Union), come from the first input list, in(Union1),
and the second constraint, c7b, ensures that the next items are from in(Union2). This
is called inclusion. The next constraint, c8, ensures that all items in the output list
from the module exist in one of the two input lists, and in this way no extra items are
appended to the end, enforcing exclusion. The output from the Union module goes to the
Filter module per c9. Representing the Filter module requires three constraints that
enforce inclusion, exclusion, and order properties. The first, c10, ensures that all items
in in(Filter) that contain “tennis” in the description also exist in the out(Filter) list.
The exclusion constraint, c11, ensures that all records in the output are also from the
input (i.e., out(Filter) ⊆ in(Filter)). The final constraint, c12, ensures that if two
records exist in the output list, their ordering is the same as in the input list. In this
way, the module is order preserving. Constraint c13 ensures that the output from the
Filter module goes to the input of the Output module, and c14 ensures that the output
of the pipe, out(Output), is the same as in(Output).

Example 5. Say a programmer wants to collect news about tennis from a Web site,
and created the specification shown in Figure 4 (the selected item for the output list
contains “tennis” in the description). Searching a repository of programs (Section 5)
reveals two possible matches, both shown in Figure 2. The first solution performs head
and tail operations on the list to extract the third item, whereas the second solution
joins two RSS feeds and permits items that have “tennis” in the description. While both
match the specification, the first is likely a coincidental match and could be pruned by
adding another input/output example, as demonstrated in Example 2.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

26:14 K. T. Stolee et al.

Much like in Example 4 where the variable flag was symbolic, since the specification
only had one input URL, the pipe solution in Figure 2(b) has an uninitialized input,
U RL2. In this domain, instead of leaving the RSS feed symbolic, we assume unbound
fetch modules have empty input lists. That is, U RL2 is set to an empty list. This is
done because the RSS feeds are external resources and, if left symbolic, the solver may
identify a program as a match but require an RSS feed that does not exist.

Example 6. When a matching program cannot be found, we can apply abstractions to
the encodings to find code that does not exist as such, but is a close-enough match that
can be instantiated to meet the user specifications. For example, say a programmer
wants to filter an RSS feed based on “volleyball” rather than “tennis”. The inclusion
constraint for the Filter module in Figure 2(b), c10, contains as part of the implication,
contains(field(r “descr”), “tennis”)). At a concrete abstraction level, the string
“tennis” is encoded as-is, which would not satisfy a specification that requires “vol-
leyball”. However, with a weaker encoding consisting of constraint contains(field(r
“descr”), s)) for some string s, an SMT solver could determine that for s = “volleyball”,
this program is a match.

This form of abstraction allows the search to identify programs that are approximate
matches for the desired behavior, and can be modified systematically to satisfy the
input/output specifications, similar to Example 4 where flag was instantiated. We
implement and evaluate two abstraction levels within the pipes domain (Section 5).

3.3. SQL Select Statements

SQL select statements support data retrieval, operating on their own or being em-
bedded into other languages. Given the simplicity of the SQL syntax and its popular-
ity, even well-conceived syntactic searches for examples will return many irrelevant
results.

When instantiating our approach for SQL, the input and output take the form of
database table(s). The indexed SQL select statements are encoded as constraints that
are the programs for which programmers search. Given example tables as input and
output, the SMT solver determines, for each encoded SQL select statement, if it matches
the specification.

Example 7. Consider the programmer who asked the question on stackoverflow, “I
have table with records ‘user’ and ‘balance’. How to show 10 usernames with highest
balance?. . . . How to show but only when they have more than 1.000.000$?”9 The pro-
grammer knew the desired behavior and described it through a concrete input example
table.
id | username | balance | status
-----+-----------+-------------+--------
145 | rekin76 | 469370.44 | 0
56 | avcio | 466921.90 | 0

705 | shantee | 149160.09 | 0
5725 | ter | 93004.45 | 0
3414 | rut1999 | 80944.80 | 0
... | ... | ... | ...

Based on the accepted answer from stackoverflow, we created an output table.
username

rekin76
avcio
shantee

9http://stackoverflow.com/questions/11599636.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

Solving the Search for Source Code 26:15

With this input/output specification in the form of tables, our approach identifies as a
match the recommendation of three positively voted responses in stackoverflow.

SELECT username FROM table WHERE balance >= 1000000 ORDER BY balance DESC
LIMIT 10;

An interesting aspect of this domain is that the input/output specifications can be
large since they may come from live databases. It becomes important to understand
the impact of large specifications on solver time. As we explore in Section 5.4, it is not
just the size of specification that matters but also the complexity of behavior exhibited
in the specification.

Example 8. Consider a programmer who wants to extract salary information for em-
ployees from a database. The programmer has two database tables, one called employee
with fields [id, name, address], and another called payrollwith fields [id, account,
salary]. His/her desired output table contains [name, salary] for each employee id,
which requires combining the two input tables as is done in the following query.

SELECT name, salary FROM employee , payrol l WHERE employee . id = payrol l . id
ORDER BY salary ;

This query requires an implicit join on the id field for the two input tables in order to
create the output table. Our approach supports the case when multiple inputs form a
single output. Such a query is possible in any of the supported domains (e.g., multiple
strings in Java, multiple URLs in Yahoo! Pipes, or multiple tables in SQL), and is
common in database queries that require merging multiple tables.

3.4. Summary

At this point, we have discussed several interesting aspects of our approach to semantic
code search in three domains, illustrating the generality of the approach, showing how
it can overcome many of the limitations of state-of-the-practice syntactic searches,
and addressing challenging issues associated with state-of-the-art semantic searches.
Specifically, our search approach is semantic rather than syntactic, returning results
that match a behavioral example rather than a set of keywords. Our approach is not
limited to complete programs, but can also work with incomplete code. We have also
shown how a programmer can identify relevant code when there are many coincidental
matches by adding additional input/output examples and how our search can use
abstraction to identify and instantiate matching code that did not previously exist.

4. APPROACH

We present the general definitions of each piece of our approach, followed by details
on our instantiation of the approach in each of the three supported domains: Java
String library, Yahoo! Pipes programs, and SQL select statements. We also discuss the
performance and effectiveness of the approach.

4.1. Components

Our general approach is illustrated in Figure 5 and Figure 6. The offline process of
building the repository is depicted in Figure 5 and the online search process is de-
picted in Figure 6. The gray boxes indicate the key components and technical chal-
lenges: defining input/output specifications (Figure 6), encoding programs (Figure 5)
and specifications (Figure 6) as constraints, abstracting program encodings when too
few matches are found (Figure 6), and refining specifications when too many matches
are found (Figure 6). The crawling and program encoding processes happen offline,
whereas the query specification, query encoding, and solving for relevant code happen
online.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

26:16 K. T. Stolee et al.

Fig. 5. Building and encoding the repository (offline).

Fig. 6. Search process (online).

4.1.1. Specifying Behavior. Instead of keyword queries, our approach takes behavioral
specifications that characterize an example of the code behavior (Input/Output Spec-
ifications in Figure 6). These are lightweight specifications (LS), in that they are in-
complete and weak. As illustrated in Section 3, the inputs and outputs take different
forms depending on the domain. To more completely specify the desired behavior, mul-
tiple input/output pairs can be defined: LS = {(i1, o1), . . . , (ik, ok)}, for k pairs, as was
illustrated with Example 2 in Section 3.1. The size of k defines, in part, the strength of
the specifications and hence the number of potential matches.

The last step of this process is the automated encoding of LS into constraints, CLS,
for the solver to consume when the search starts (recall the transformed specifications,
c4 and c5, from Section 1).

4.1.2. Encoding. In our approach, encoding and solving are analogous to crawling and
indexing performed by search engines [Langville and Meyer 2006]. Offline, a reposi-
tory (Code Repository in Figure 5) is crawled to collect programs. These programs are
parsed and encoded as constraints using symbolic analysis [Clarke 1976; Clarke and
Richardson 1985; King 1976]; the constraints are stored in a constraint repository.

More formally, given a collected set of programs RepP = {P1, P2, . . . Pn}, our encod-
ing engine first uses a grammar to parse the programs. Since our approach is meant
to support many languages, a different grammar is required for each language (see
Section 4.2). For each parsed program P, we identify its input and output, which are
encoded symbolically so the program can be matched against any arbitrary LS with
matching types. We then use a symbolic analysis on P to create a symbolic summary of
the behavior of the code, represented in conjunctive normal form as CP = c1 ∧ c2 ∧ · · · ∧
cm. Encoding occurs at a given abstraction level, as discussed with Example 6 in

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

Solving the Search for Source Code 26:17

Section 3.2 and described in Section 4.1.5. In the end, the encoding process maps
every program to a set of constraints such that RepPenc = {CP1 , CP2 , . . . , CPn}.

Critical to the efficiency of the approach is the granularity of the encoding. The finest
granularity corresponds to encoding the whole program behavior in CPi . At the coarsest
granularity the encoding would capture none of the program behavior so CPi = true.
These extremes correspond to the least and the greatest number of matches and the
worst and the best search speeds, respectively, but there is a spectrum of choices in
between. In Section 4.2, we explore encoding at the component level (Yahoo! Pipes),
query level (SQL), and library level (Java).

4.1.3. Solving. The constraint repository, RepPenc, is used by the solver in conjunction
with the encoded specifications, CLS, to determine matches (SMT Solver in Figure 6).
Given CLS, for each CP ∈ RepPenc such that the types on the inputs and outputs match
the types in CP , the approach invokes Solve(CP ∧ CLS). The potential return values
are sat, unsat, or unknown. Solve returns sat when a satisfiable model is found or unsat
when no model is possible. When the solver is stopped before it reaches a conclusion or
it cannot handle a set of constraints, unknown might be returned. The search results,
or SatP, consist of all programs that return sat.

In practice, to invoke the SMT solver for a given specification and encoded program,
some additional information is needed, which we call search parameters. The first
parameter is the abstraction level of the encoded programs, which is set using the
Abstraction Selector, shown in Figure 6. We begin by trying to solve for the strictest
(most concrete) level, but this may be relaxed as the search process iterates in the
presence of tight or complex constraints. The second parameter is the solver time,
which defines how long the solver is allowed to run on a particular constraint system.
In some cases, as shown in Section 5.4, it can take several minutes for the solver to
return sat or unsat, so setting a short maximum solver time can lead to an efficient
search, though it can miss some matches and impact recall.

4.1.4. Strengthening and Weakening the Specifications. If the specifications or the encoded
program constraints are too weak, many matches may be returned (too many in
Figure 6). Refinement is a process that helps to address these situations by tuning
the Lightweight Specifications (LS′). A programmer may strengthen the specifications
by providing additional (i, o) that further demonstrate the desired behavior, similar to
query reformulation [Fischer et al. 1991; Haiduc et al. 2013]. The programmer can also
replace an input/output pair with one that captures a more distinguishable aspect of
the desired behavior.

Conversely, a programmer may weaken the specifications when a match is not found
or when the search takes too long to provide a response. An example of this last case
occurs when the tables provided as input for SQL have hundreds of rows causing the
solving time to take minutes; in this case it may useful, if possible, to select the subset
of the table that still captures the key desired behavior. We explore the impact of input
size on precision in Yahoo! Pipes in Section 5.3 and on search efficiency for SQL in
Section 5.4.

4.1.5. Abstraction on Program Encodings. If the program encodings are too strong, the
solver may not yield any results (too few in Figure 6). Abstraction is a process that uses
weakened program encodings to find solutions that are close enough when no exact
solutions exist, as was illustrated by Example 6 in Section 3.2. These approximate so-
lutions can be instantiated to match the user’s specifications by resetting the abstracted
variables’ values. Selecting weaker encodings for the search process is controlled by
the feedback loop to the Abstraction Selector in Figure 6.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

26:18 K. T. Stolee et al.

Fig. 7. Java supported grammar.

To weaken the encodings, we exploit the fact that most languages contain constraints
over multiple datatypes (e.g., strings, characters, integers, booleans) for which the vari-
able values can be relaxed and encoded as symbolic. Encoding weakening is performed
by systematically making the constraints on a particular datatype symbolic, similar
to the pre/postcondition lattices in previous work on specification matching [Penix
and Alexander 1999; Zaremski and Wing 1997]. Weakening : CP → C ′

P means that
(Solve(CP ∧ CLS) = unsat) ∧ (Solve(C ′

P ∧ CLS) = sat) for some relaxation of CP that
yields C ′

P . We explore the impact of various abstraction levels on search time in Yahoo!
Pipes in Section 5.3.

4.2. Implementation

For each of the three supported languages, we present the grammar that is used
in the encoding process and domain-specific details about the symbolic analysis re-
quired for each implementation.10 Our encoding engine transforms programs into
SMT-LIB2 [2012] format. Solving is performed by Z3 v.4.1 [De Moura and Bjørner
2008].

4.2.1. String Manipulations in Java. Our implementation supports the subset of the Java
language shown in Figure 7. Following the ANTLR syntax, all terminals are identified
using single quotes. Angle-brackets are used to denote nonterminals. Some nontermi-
nals are not defined here, specifically <stringLiteral>, <charLiteral>, <integer>, and
<booleanLiteral>, as these follow the standard definitions in the Java grammar. From
java.lang.String, we support the following library calls: charAt, concat, contains,
endsWith, equals, indexOf, lastIndexOf, length, startsWith, and substring. To
efficiently support these operations, we consider bounded strings where the bound is
configurable (in line with recent work on solving string constraints [Bjørner et al. 2009;
Kiezun et al. 2009]).

10The programs we currently support contain only a single program path, so full symbolic execution is
unnecessary for the work presented here; see Section 6 for a more thorough discussion on this.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

Solving the Search for Source Code 26:19

Fig. 8. Yahoo! Pipes supported grammar.

Two types of statements are supported in this grammar, assignment and return
statements. For assignment statements, the LHS constitutes the program output. For
both assignment and return statements, the receiving object on the expression of the
RHS is the input. For snippets that contain multiple statements, as with Example 1
in Section 3.1, the statements are in-lined to form a single assignment statement. To
illustrate, the snippet in Example 1 becomes the following.

int len = s . substring (s . lastIndexOf (“.”) , s . length ()) . length () ;

After a search, the results are returned to the programmer ordered according to
the density of concrete variables in the program, as these are more likely to fit the
programmer’s query as-is and without modification.

4.2.2. Yahoo! Pipes Mashups. We support the subset of the Yahoo! Pipes grammar
shown in Figure 8. As Yahoo! Pipes is a visual language, we transform each pro-
gram into a parallel-serial graph [Stolee et al. 2012] for recognition by the gram-
mar. To illustrate, the program in Figure 2(a) would be represented as output tail
truncate fetch, and the program in Figure 2(b) would be represented as output
filter union (fetch) (fetch). Our encoding supports the following modules: fetch,
filter, output, sort, split, tail, truncate, and union, representing six of the
top 10 most commonly used constructs. Encoding this language fragment requires
evaluating substring and equality relations over strings, and enumeration over all el-
ements in a list; as with Java, we consider bounded strings and additionally bound the
lists. In the Yahoo! Pipes language, specific modules are associated with inputs (e.g.,
Fetch modules) and the output (the Output module), so binding the input/output to pro-
grams is straightforward. To reduce encoding effort (and consequently the search time),
we refactor all pipes to obtain a more uniform representation, remove the duplicates,
and then proceed with the encoding. These refactorings focus on decreasing the size
of the pipes and standardizing them according to the community standards, and the
programs were refactored using a tool developed as part of our previous work [Stolee
and Elbaum 2011]. This is not a necessary step for the encoding process though it may
have led to performance gains. since the sizes of the programs (and thus the number
of constraints) are smaller. Measuring such gains is left for future work.

4.2.3. SQL Select Statements. We can encode SQL select statements according to the
grammar in Figure 9. Our encoding supports SQL queries with the distinct function
and with limit, order by, and where clauses, covering three of the seven most common

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

26:20 K. T. Stolee et al.

Fig. 9. SQL supported grammar.

MySQL select clauses.11 Joins are also supported, but are implicit and can occur when
the user specifies multiple input tables, as illustrated in Section 3.3, Example 8.

For SQL select statements, the program inputs are tables and the output is a table.
We consider bounded table sizes in terms of the number of rows, similar to the bounded
string and list sizes in the other domains. During encoding, the table names and
column names used in the select statements are assigned symbolic names. For example,
consider the following SQL query.

SELECT deduction , person FROM discounts ORDER BY deduction ;

The table discounts is assigned a symbolic name, sym tbl1, and the columns
deduction and person are also assigned symbolic names, sym col1 and sym col2.
This produces the following, more general select statement.

SELECT sym col1 , sym col2 FROM sym tbl1 ORDER BY sym col1 ;

During the search, the table name(s) and column name(s) from the input table(s)
are bound to symbolic names in each encoded select statement. For example, given an
input table Payroll with fields [name, salary], these would be bound to the symbolic
names as follows.

c1 . (assert (sym tbl1 = Payrol l))
c2 . (assert ((sym col1 = name ∧ sym col2 = salary) ∨ (sym col1 = salary ∧

sym col2 = name)))

Constraint c1 binds the input table name, Payroll, to the symbolic table name. Con-
straint c2 binds the input column names to the symbolic column names. There are two
possible bindings for the columns, which requires a disjunction. The output table in
the specification binds to the result of the select statement. This allows the SQL query
to be an eligible result for any arbitrary input/output example, similar to how URLs
are abstracted away from Yahoo! Pipes programs.

11The other four clauses are group by, having, procedure, and into, per the reference: http://dev.mysql.
com/doc/refman/5.0/en/select.html.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

Solving the Search for Source Code 26:21

Fig. 10. Transformation Rules for java.lang.String.endsWith(t).

Table IV. Basic Operations for Current Implementation

Term Java Strings Yahoo! Pipes SQL Select

Accessor
charAt: S x I
→ C value: Row x Col
→ I
indexOf : S x S x I
→ I field: R x S
→ I | S getCol: T x S
→ Col
lastindexOf : S x S x I
→ I recordOf: L x I
→ R index: T x R
→ I

Join concat: S x S
→ S union: L x L
→ L join: T x T x Col
→ T

Filtering substring: S x I x I
→ S
truncate: L x I
→ L limit: T x I
→ T
tail: L x I
→ L where: T x Col x Op
→ T
filter: L x S x Op
→ L distinct: T x Col
→ T

Copy split: L
→ L x L

Permute sort: L x S
→ L order by: T x Col
→ T

Size length: S
→ I height: T
→ I
size: L
→ I

Operators (Op)

<, ≤, >, ≥: I x I
→ B equals: I x I
→ B equals: B x B
→ B
contains: S x S
→ B

equals: C x C
→ B equals: T x T
→ B
equals: S x S
→ B

startsWith: S x S
→ B
equals: L x L
→ B containsRow: T x Row
→ B

endsWith: S x S
→ B
equals: R x R
→ B

containsCol: T x Col
→ B
hasRec: L x R
→ B

C = Character, I = Integer, B = Boolean, S = String, R = Record (map with names as strings), L = List,
T = Table, Col = Column (in Table), Row = Row (in Table).
Functions in italics indicate actual names of language constructs.

4.2.4. Language Mapping. The effort to map a programming language to constraints in-
volves several steps. These include determining which parts of the language grammar
are worth supporting, mapping those grammar elements of interest to constraints, and
defining the input/output model for the domain. For example, in the Java implemen-
tation, we chose to focus on the java.lang.String library, which is among the most
common Java libraries. One method in this library that we support, s.endsWith(t), is
mapped to constraints by analyzing the API semantics and representing these seman-
tics in first-order-logic, as shown in Figure 10. If, in fact, s ends with t, then these
constraints will be satisfied. The converse is also true. The input/output model is de-
fined as variables and their values with the types supported by the grammar; for our
Java implementation, these are booleans, characters, integers, and Strings.

One thing to note is that many of the data structures and libraries are commonly
found across many programming languages, so some of the effort can be harnessed
for multiple language implementations. For example, string manipulation, list/array
manipulation, and arithmetic operations are quite common across many programming
languages. Table IV provides a classification of the operations supported by the cur-
rent implementation. Using these basic datatypes, there are seven basic operations to
capture the core semantics of the programs we analyze. These operations are listed in
the Term column of Table IV, followed by a mapping to the supported language subsets.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

26:22 K. T. Stolee et al.

For example, filtering is supported in all three languages, by the substring function in
Java (returning only a subset of a string), the filter module in Yahoo! Pipes, and the
where clause in SQL select statements. The charAt accessor function is part of the Java
language, but is also used by Yahoo! Pipes. The operator functions all return booleans
based on some criteria, such as two booleans being equal (supported in all languages),
two strings being equal (supported in Java and Yahoo! Pipes), or determining if one
string startsWith another (supported in Java). The concat method in Java joins strings,
like the union module in Yahoo! Pipes, joins lists and the implicit join in SQL joins
tables. The sort module in Yahoo! Pipes reorders list elements like the order by clause
does in SQL.

Building support for a language can be incremental, as we have done it. Less
support means fewer matches in the search, but growth can be incremental according
to a community’s needs. In our current implementation, we support three primitive
types (characters (C), integers (I), booleans (B)), and one composite type (list (L)).
These basic types are sufficient to represent all the constructs we support across the
three domains. For example, a string (S) is a shorthand given as a list of characters,
a Yahoo! Pipes record (R) is a map of strings to objects with names modeled as
strings, SQL tables (T) are lists of lists, and a column (Col) is a named list where the
name is modeled as a string. As mentioned in Section 3.1, constructs that modify the
control flow, such as loops and predicates, are not part of the current implementation
(Section 4.2.1). Symbolic execution [Clarke 1976; Clarke and Richardson 1985; King
1976] seems promising for handling such constructs as a means of identifying distinct
paths through a program for encoding; this is left for future work.

4.3. Effectiveness and Performance

Several factors can influence search efficiency and effectiveness in terms of precision
and recall. In our approach, the primary factors include the solver speed and supported
theories, query complexity, repository size and complexity, and the developer’s context.
We explore each in turn.

4.3.1. Solver Speed and Sophistication. The performance of our approach is bound in part
by the performance of SMT solvers and supported theories. A slow solver will result
in slow performance, directly impacting usability. Our current implementation uses
the Z3 SMT solver [De Moura and Bjørner 2008] and the UFNIA: Nonlinear integer
arithmetic with uninterpreted sort and function symbols theory in the encoding of
all programs, which requires strings to be represented as composite datatypes with
two properties, value and length. Recent research has adapted the Z3 SMT solver to
support part of the theory of strings, treating strings as primitives [Zheng et al. 2013],
which may increase solver performance in the presence of string constraints.

Although we performed the search serially in our studies, we have designed this
search approach to be highly parallelizable, where several solver invocations could
happen in parallel. Further performance improvements may be possible by caching
and reusing duplicate constraints [Visser et al. 2012]. We could also improve perfor-
mance by setting a maximum solver time, forcing the solver to return unknown in
some cases. Treating the unknown programs as results sacrifices precision as there
may be some false positives; ignoring those programs sacrifices recall as there may be
some missed matches. We evaluate our approach performance in a Yahoo! Pipes pro-
gram with complex specifications in Section 5.3 and in SQL with large specifications
in Section 5.4.

4.3.2. Query Complexity. Our approach supports multiple input/output pairs in a spec-
ification, as illustrated in Section 3.1 and defined in Section 4.1.1. The size of the
query input or the query output, such as the length of a string or the number of

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

Solving the Search for Source Code 26:23

input/output pairs, all impact efficiency. As with any search approach, the quality of
the query impacts the quality of the results. Redundant queries can lead to slow perfor-
mance since each input/output pair needs to be checked. A good query will use examples
that are succinct but illustrate the behavior of the desired code, potentially including
edge cases. Three of the queries in the Java evaluation contain multiple input/output
pairs. We briefly explore the impact of the number of input/output pairs on the number
and quality of search results in Section 5.1.2.

The performance of the approach can be controlled to some extent at the cost of
precision by bounding the sizes of the encoded data structures representing variables
in the programs or the input/output pairs. For example, the lengths of strings in Java
and Yahoo! Pipes, lengths of lists in Yahoo! Pipes, and number of rows in tables in
SQL have a configurable maximum bound. In Section 5.3.3 with Figure 11, we explore
the impact of various specification sizes on the search precision in the Yahoo! Pipes
domain; in Section 5.4.3, we explore the impact of specifications sizes on the search
performance in SQL.

4.3.3. Repository Size, Complexity, and Abstraction. The content of the repository has a
profound impact on the efficiency and effectiveness of any search approach. A small
repository may not have diverse-enough code to meet the needs of a user query, while
a large repository may lead to long search times and relevant code may not be found
efficiently. For encoded programs, those with higher complexity may take longer for
the solver to process whereas programs with lower complexity may be too trivial and
not worth searching for. Programs encoded at the most concrete abstraction level may
be too specific, but more abstract programs may require too many modifications to
be useful. These factors will each require thorough experimentation to measure the
sensitivity of the approach to changes in each dimension.

Presently, our encoding supports strings, lists, tables, booleans, characters, and inte-
gers, so the approach implementation is limited in this way. Previous work on symbolic
execution indicates that, as long as the data structures can be modeled, then their
symbolic analysis is feasible, although more costly. The main challenge we foresee is
with objects that live on the heap. Other challenges include handling of predicates (as
mentioned in Example 3 in Section 3.1) and loops.

4.3.4. Developer Context. This search approach is particularly useful and effective when
the programmer has a concrete idea of what they want the code to do and can illustrate
this with an example. Such a situation may manifest during general development
activities, but may be particularly common during test-driven development where the
programmer creates stubs and test cases for their desired code. Using the test cases
as input/output examples, the code search would identify potential code candidates
to fill in the stubs. In this way, the search would operate behind the scenes and the
developer could continue designing and developing code as the search finds candidate
source code.

As with the preceding scenario, depending on how the approach is used, performance
issues may not be a problem. Specifically, the matched results will behave as specified,
which is not the case for most matched results returned by state-of-the-practice syn-
tactic searches. Thus, programmers may be inclined to trade speed for quality. For
example, novice programmers may know what their desired code should do but not
how to code it. A more experienced programmer who is new to a language may run into
the same situation while learning new syntax and libraries. In these cases, it may be
useful to provide an example of the desired behavior and see how, in the new language,
such behavior can be achieved.

While these situations provide scenarios when slower search performance may be
tolerated, studying this tolerance is left for future work.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

26:24 K. T. Stolee et al.

4.4. Summary

In this section, we have defined and provided the implementations details for our code
search approach in subsets of three languages, namely, Java, Yahoo! Pipes, and SQL,
providing the grammars and describing the language coverage. We have also identified
challenges and opportunities for this approach as the research moves forward. Next,
we evaluate each language by manipulating several of the factors and exploring the
impact on effectiveness and performance.

5. EVALUATION

The study is designed to provide a preliminary assessment of the approach across mul-
tiple dimensions while highlighting some key aspects in the three supported domains:
Java, Yahoo! Pipes, and SQL. It is not exhaustive, but rather is designed to explore
the potential of this approach to serve the diverse needs of programmers across many
domains and outline potential areas of future exploration. Comparing our search to
state-of-the-art and state-of-the-practice searches is difficult since the query models
are heterogeneous across approaches (e.g., keyword, formal specification, input/output
example, etc.) and the content of the repositories may vary significantly. We took a
mixed approach to mitigate these challenges, using the opportunities provided by each
domain to explore various aspects of the approach more fully. Thus, the evaluations
are different for each domain.

To evaluate our approach in Java, we begin by comparing our approach to the state-of-
the-practice code searches by searching a local repository using our search and a Google-
powered keyword-based search engine pointed to a local repository. The relevance of
the search results was judged by programmers in an empirical study. This evaluation
is designed to address our first research question:

RQ1. How do our search results compare to those found using a keyword-based
approach, from the perspective of the programmer?

While RQ1 aims to compare our approach to syntactic searches, we hypothesized that
these search approaches are complimentary and can be used together. The goal of RQ2
is to explore the benefits of combining the two search approaches in Java; we evaluate
how Google and our approach can work together by evaluating our second research
question:

RQ2. How much can existing search approaches be improved by augmenting results
with our search approach?

As discussed in Section 3.2, programmers can search the Yahoo! Pipes repository by
URL, which is also the input used by our search approach. However, our search includes
another piece of information, the output. In order to obtain specifications to evaluate
our approach in this domain, we identify representative pipes from which we extract
input/output queries. We first explore the shortcomings of existing search techniques to
identify the potential for gains. Second, we use our approach to search a local repository
for relevant pipes and explore the impact of tweaking the search parameters on the
effectiveness of the search. This evaluation aims to address our third research question:

RQ3. What is the impact of tweaking search parameters, specifically abstraction,
specification size, and solver time, on the search effectiveness?

The Yahoo! Pipes domain is better suited than Java to evaluate RQ3 for two reasons.
First, in our current Java evaluation, the specifications and snippets are small, so the
solver times are fast. In Yahoo! Pipes, the specifications can get quite large and solving
can take minutes, leaving much opportunity for improvement through specification

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

Solving the Search for Source Code 26:25

manipulation (e.g., considering partial specifications, trading precision for efficiency).
Second, the Java code snippets we encode are taken out of context, so many variables
are already symbolic. The Yahoo! Pipes programs, on the other hand, are encoded in
their entirety, which leaves more opportunity to gain from abstraction.

Scalability is a concern as the size of a specification can have a big impact on the
search time. Increasing the bounds for the specification sizes (i.e., strings, lists, tables)
can give an idea of how our approach scales with respect to specification size. We
manipulate the size and content of specifications in SQL to better understand the
impact of specification size and complexity on search time. This evaluation aims to
address our fourth research question:

RQ4. What is the impact of query complexity on search time?

For each research question, we describe how the repositories were built, the metrics
we use, and the results. All of the study artifacts are available online.12 For the studies
related to RQ3 and RQ4, our data were collected under Linux on a 2.4 GHz Opteron
250s with 16GB of RAM. For RQ1 and RQ2, our data were collected under OS X on a
2.4 GHz Intel Core 2 Duo with 4GB of RAM.

5.1. RQ1: Comparing Our Search to Syntactic Searches – Java

RQ1 aims to compare a keyword-based search approach against our approach in Java.
We use a local repository that we created and control as a common baseline to compare
the results obtained by our search against the results obtained by a Google-powered
syntactic search engine pointed at the same local repository. Performing a similar
comparison of our approach to a general Google search is impractical, since it would
require us to index the same scope of programs and Web pages that Google has indexed
and our encodings are limited. Instead, we opt to compare the results of a syntactic
approach with our approach using a common baseline repository.

5.1.1. Metrics. To compare the results across the search techniques on the local repos-
itory, we use the number of results and P@10, which represents the precision, or rele-
vance, of the top 10 results. To calculate relevance, we performed an empirical study
where each of the top 10 results was shown to programmers who determined whether
or not the code was relevant to the problem. The average relevance among the top 10
search results forms the P@10 metric.

5.1.2. Artifacts. Comparing the search approaches requires the same query and the
same repository so the results can be compared. We could control the space of potential
matches by pointing both search approaches at the same repository. The following
describes how we formed the repository, gathered queries, and obtained search results
for evaluation.

Local repository. We built a local repository by issuing syntactic searches on
Koders.com [Koders 2012] for each of the java.lang.String functions supported by
our encoding. We scraped all lines of Java source code that contained a call to at least
one of the supported functions, totaling 5,192 lines. We pruned out duplicates, lines
that contained functions we do not support, and those that are not assignment or re-
turn statements, per the grammar in Figure 7. This left 713 unique snippets of code
that form the Java code repository used in this evaluation. By making this repository
available online, we were able to create a custom Google search engine that points to
the local repository, which was used as the keyword-based search approach.

12https://sites.google.com/site/semanticcodesearch.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

26:26 K. T. Stolee et al.

Table V. Java Artifacts Specifications for RQ1 and RQ2

Q Title Input String Output String

1
Just copy a substring in Animal.dog Animal
java World.game World

2 extract string including
whitespaces within string (java)

23 14 this is random this is random

3 How to get a 1.2 formatted string
from String?

1.500000154 1.5

4 How to pull out sub-string from
string (Android)?

<TD>TextText</TD> TextText

5 Trim last 4 characters of Object Breakfast($10) Breakfast

6
Removing a substring between two
characters (java)

I <str>really</str> want ... I really want ...

7 Splitting up a string in Java i i i block of text block of text
8 How to find substring of a string

with whitespaces in Java?
c not in(5,6) true

9 Limiting the number of 124891 1248
characters in a string, difference diff
and chopping off the rest 22.348 22.3

montreal mont

10
Trim String in Java while preserve
full word

The quick brown fox jumps The quick brown...

11 How to return everything after x
characters in a string

This is a looong string is a looong string

12 Slice a string in groovy nnYYYYYYnnnnnnn YYYYYY
13 How to replace case-insensitive FooBar Bar

literal substrings in Java fooBar Bar
14 Removing first character of a

string
Jamaica amaica

15 How to find nth occurrence of
character in a string?

/folder1/folder2/folder3/ folder3

16 Java finding substring **tok=zHVVMHy... zHVVMHy
17 Finding a string within a string ...MN=5,DTM=DIS... DTM=DISABLED

Search queries. Our search and a keyword-based search use different query mod-
els, input/output examples, and textual queries, respectively, so we found a resource
that would allow us to extract both input/output examples and keywords to perform
the searches. Using questions posted on stackoverflow, we use the posting title as the
keyword query and the input/output example(s) as the query for our approach. Of the
67 questions tagged in stackoverflow with java, string, and substring, 40 (60%) contain
some form of explicit example. For 17 of these cases, our current Java implementa-
tion supports encoding the input/output example. The remaining 23 involve constructs
we do not currently support, such as regular expressions or arrays. The titles and
input/output for the 17 questions are shown in Table V. The Q column identifies the
question number, and Title is as it appears in stackoverflow. Each of these questions
has an input and output example which are shown in the Input String and Output
String columns. For Q1, Q9, and Q13, multiple examples were provided.

Search results. Results for the keyword-based approach were obtained by issuing
each title from Table V as a keyword query against the local repository, using a Google-
powered keyword-based search engine. The top 10 results were retained for evaluation.

For our approach, we encoded the input/output as CLS for each of the 17 stackover-
flow questions and searched our local repository for matches. The top 10 results were

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

Solving the Search for Source Code 26:27

retained for evaluation. When multiple input/output examples were given, as was the
case with Q1, Q9, and Q13, the examples were considered simultaneously to identify
results. This means that if there exists a free variable in a solution, such as the upper
bound on a substring, that variable needs to be set to the same value for all examples
in order for the result to be considered. For example, with the first specification in Q1,
the input is “Animal.dog” output is “Animal”. The following code is among the 51 code
snippets identified as a match.
String fieldname = l ine . substring (0 , idx) ;

With the input bound to line and the output bound to f ieldname, the variable idx is
symbolic. The solver determines this example matches when idx
→ 6. However, con-
sidering the second specification, “World.game” and “World”, this match is eliminated
since idx
→ 5. Other results set the upper bound based on a property of the input
variable. For example, the following code matches both specifications since the upper
bound is set to be the index of the string “.” in the input variable, typel.
packagename = typel . substring (0 , typel . last indexof (‘ ‘ . ’ ’)) ;

5.1.3. Human Evaluation. For each of the top 10 results returned by either search ap-
proach, we asked programmers if the source code was relevant to the programming task
described by the original stackoverflow title. The following describes the experimental
setup and implementation.

Experimental tasks. An experimental task presents a participant with a program-
ming task (i.e., the title from Table V) and five source-code snippets. Only the titles
were presented since the descriptions also contained the input/output examples and
we did not want to bias the participants against results that did not match the exam-
ple but may still be relevant to the task (that is, results from a keyword search). The
snippets are the search results from the keyword-based search and the input/output
search, alternating. For half of the tasks, a result from the keyword-based search ap-
peared first; the other half had results from the input/output search appearing first.
Participants were not made aware of which search approach was responsible for which
snippet. Then, participants state whether or not each code snippet is relevant to the
task (yes/no response) and why (free response). Relevance was defined by “source code
[that] is directly applicable except for variable renaming or resetting.” For example, for
Q1, the following snippet was determined to be relevant if the variable, querystring, is
set to “.”.
url = url . substring (0 , url . indexof (querystring)) ;

We created 64 different tasks; this is calculated by the 17 questions * 10 search
results * 2 search approaches = 340 snippets. For Q6 and Q10, our approach returned
zero results, reducing this to 320 snippets. With five snippets per experimental task,
there were 320/5 = 64 experimental tasks available. When there were fewer than 10
responses (e.g., Q1 and our approach, Q5 and the keyword-based approach), the search
results were repeated, starting with the first result, to fill up 10 slots; otherwise,
each search result appeared exactly once. This maintained the alternating pattern of
responses in the experimental task design.

Deployment. As with part of the survey in Section 2.1, this study was deployed
on Amazon’s Mechanical Turk [2010]. This platform has been effective for gathering
programmer opinions regarding source code in our previous projects [Stolee and El-
baum 2010]. Each experimental task is implemented as a human intelligence task, or
HIT. In order to perform HITs in the study, participants had to correctly answer at
least two of four multiple-choice Java competency questions correctly (details available

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

26:28 K. T. Stolee et al.

[Stolee 2013, Appendix C]). These questions required the potential participants to read
and analyze the behavior of Java methods.

Each HIT paid $0.50 and participants could complete all 64. For replication, five par-
ticipants performed each HIT. The study was available for one month from September
22, 2013 until October 22, 2013.

Subjects. Our study involved 19 participants. The average participant had over four
years of Java experience; 68% of the participants reported to program daily while
the remaining six participants programmed less frequently. Approximately half the
participants reported to search for code daily or “whenever [they] code”.

The median number of HITs completed per participant was 7, with a maximum of 62
and a minimum of 1. While the quantity of HITs performed by a couple of participants
was high, the impact on the overall P@10 was minimal. For example, removing the
responses from the participant who completed 62 HITs had a -0.017 impact on P@10
for our approach and a +0.003 impact for the keyword-based approach.

Each HIT took participants approximately 4.5 minutes to complete for an effective
hourly rate of $6.52.

5.1.4. Results. The results for both RQ1 and RQ2 (see Section 5.2.3) are shown in
Table VI. The Q column matches the specifications shown in Table V. The next sets of
columns, Our Approach and Keyword Approach, show results for RQ1.

On average, our approach found 20.5 matches for each query, ranging from zero (in
two cases, Q6 and Q10) to 49 results. As an example, for Q2 in Table V, given the
input “23 14 this is random” and output “this is random”, our search approach finds 24
matches including, for example, the following.

String message = name. substring (6) ;

Although queries can be refined by adding extra examples, some refinements are
better than others. Adding the second input/output pair reduces the number of results
for Q1 from 51 to four. For Q9 and Q13, there is no reduction in the search results when
considering all the input/output pairs in the specification compared to considering just
the first input/output pair. This may be because the examples were too similar, or
because the results actually capture the intention of the programmer. Specifically, for
Q9, at least one result matched the community-approved result on stackoverflow.

Using the keyword-based search, on average, 48.5 matches were found for each
query, ranging from two to 100. These results are under the Keyword Approach column
in Table VI. In Q2, for example, we see that the keyword-based approach returns 34
results.

Comparing all results to the solutions proposed and positively voted by the stack-
overflow community, our approach returns results that match the community solutions
for five of the 17 searches (Q4, Q9, Q11, Q12, and Q14, each marked with the *), and
keyword-based results matched for two searches (Q4 and Q9). A match was determined
if all API calls were the same between two snippets.13 For example, consider Q9. Our
search returns 49 snippets, including relevant snippets s1 and s2.

s1 . repos i tory = l o cat ion . substring (0 , colon index) ;
s2 . String fieldname = l ine . substring (0 , idx) ;

The keyword-based approach returned 41 results, including relevant snippets s3 and
s4.

13The stackoverflow community often proposed solutions that used regular expressions, string tokenizers,
and arrays, which are not currently supported by our encoding and thus do not appear in any of our result
sets.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

Solving the Search for Source Code 26:29

Table VI. Java Results for RQ1 where P@10 is Based on an Assessment Using 19 Programmers and for
RQ2 where Our Approach is Combined with Google

RQ1 RQ2
Our Approach Keyword Approach Google Global + Us

Q # P@10 # P@10 S@10 Discarded S’@10 % Reduction

1 4 1.00 99 0.28 25 18 7 72%
2 24 0.84 34 0.36 17 0 17 0%
3 48 0.90 37 0.30 0 0 0 –
4 13 *0.88 100 *0.28 36 12 +24 33%
5 48 0.98 5 0.14 3 0 3 0%
6 0 0.00 99 0.42 37 6 31 16%
7 21 0.82 42 0.28 16 4 12 25%
8 20 0.54 99 0.26 38 7 31 18%
9 49 *0.86 41 *0.20 0 0 0 –
10 0 0.00 40 0.42 9 2 7 22%
11 23 *0.72 70 0.42 6 3 3 50%
12 13 *0.92 38 0.22 7 2 +5 29%
13 24 0.86 2 0.04 29 11 17 38%
14 22 *0.76 38 0.24 0 0 0 –
15 13 0.96 42 0.26 0 0 0 –
16 14 0.94 2 0.08 26 14 12 54%
17 13 0.90 34 0.16 8 7 1 88%

Average 20.5 0.76 48.4 0.26 15 5 10 34%
Key:
#: The number of results from the search.
P@10: Relevant results from the search (according to programmers).

(* indicates some results match Stackoverflow responses).
S@10: Count of Java snippets from top 10 Google pages.
Discarded: Snippets from S@10 that we support and are unsat.
S’@10: The reduced pool of snippets to evaluate.
Reduction: The reduction in snippets that need to be evaluated.

(+ indicates a results returned sat).

s3 . String = str ing . substring (0 , end) ;
s4 . String axispart = mdxquery . substring (mdxquery . indexOf (s e l e c t) , mdxquery .

indexOf (from)) ;

Stackoverflow suggests snippet s5 as a result.
s5 . String . substring (0 , maxLength) ;

While s4 could be instantiated to fit the specification in Q9, snippets s1, s2, and s3
match the API calls used in s5.

The ultimate oracle for the relevance, however, is a human judge. For this reason,
we also turned to programmers to determine the relevance of the search results with
respect to the problems and to calculate P@10.

The average relevance among the top 10 search results for our approach was 0.76
versus 0.26 for the keyword-based approach. The breakdown per question is shown in
Table VI. For our approach, the best results came from Q1 where all the results were
found to be relevant (P@10 = 1.00). This may have been due, in part, to the fact that
multiple input/output examples were given, leading to highly relevant results. For the
other questions that had multiple input/output pairs, Q9 and Q13, the relevance was
slightly lower at 0.86 each. For the keyword-based approach, the highest relevance

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

26:30 K. T. Stolee et al.

came from Q6, Q10, and Q11 with P@10 = 0.42 for each. While the keyword-based
results’ relevance was always lower, this demonstrates a complementary nature among
the search approaches. For two of the highest-performing questions for the keyword-
based approach, our approach was not able to find any search results (i.e., Q6 and
Q10).

In summary, we observed that, using the same repository, the keyword-based ap-
proach returns over twice as many results as our approach, but among the top ten, our
approach is nearly three times more effective at returning relevant results. For four
of the 17 searches (Q5, Q8, Q13, and Q16), our approach provides matches when the
keyword-based approach does not find any as the syntactic query was not good enough
to identify results.

In terms of performance, encoding all 713 snippets takes 2.991 seconds (averaged
over ten runs), which is approximately 4ms per snippet. Among all the input/output
examples in Table VI and all searches, the average solver time to determine sat is
0.0483 seconds and to determine unsat is 0.0051 seconds. However, given that the
snippets and the specifications are small, this may represent a best-case scenario.
In the presence of larger and more complex programs and larger and more complex
specifications, these performance measures drop, as we observe with RQ3 and RQ4.

5.2. RQ2: Combining Our Search with Google – Java

Rather than treating our search approach as an alternate to a keyword-based search
engine, we hypothesized that these two approaches are complementary. For RQ2, we
perform Google searches on the Web and explore how the results could be filtered and
improved by also using our search approach.

5.2.1. Metrics. A syntactic search returns many Web pages that could contain several
snippets of code. To capture the space of code that must be evaluated by a programmer,
we define new metrics, S@10 and S’@10. The metric S@10 represents the number of
code snippets returned in the top ten results from a general Google search.

To capture S@10, we issue Google queries, then scrape and count the Java code
snippets from the top 10 page results. The metric S’@10 represents the number of
snippets the programmer must evaluate after applying our search technique on top
of the Google results. To capture S’@10, we first attempt to encode all the snippets
in S@10. Next, we run our search technique using the encoded S@10 snippets as a
repository and the example input/output as a specification, and discard snippets that
return unsat. This set of discarded snippets represents those that the programmer does
not need to evaluate by hand. S’@10 is calculated as the difference (S@10 − Discarded),
representing the reduced space of snippets for the user to evaluate.

5.2.2. Artifacts. We use the same artifacts gathered for RQ1, shown in Table V. The
initial queries to Google were formed using the titles. For each of the top 10 page
results, we collected the source-code snippets. This formed a temporary repository for
the input/output search, which used the input/output examples from Table V as the
query.

5.2.3. Results. The results for RQ2 are shown in Table VI in the last set of columns,
Global Google + Us. On average, 15 snippets were gathered from the top 10 search
results per search, with a range from zero to 38 (zero occurred when none of the
retrieved pages was in the Java language).

By trying to encode each of these snippets, we were able to check the input/output
pairs from Table V against the retrieved snippets as a way to identify matches and
prune the result set. The number of snippets for which the SMT solver returns unsat

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

Solving the Search for Source Code 26:31

given the input/output specification is shown in the Discarded column. The programmer
must then only look at S’@10 snippets. Overall, the number of snippets returned could
be reduced by 34% just by using our semantic search on top of the Google results,
though the search time would clearly increase. In two cases, Q4 and Q12 (marked with
+ in Table VI), at least one snippet returned sat, indicating that the snippet matches
the specification and would be a solution. Since we do not support the entire Java
language, matches were not as common; for those snippets that we do support, most
could be quickly discarded.

While our approach can assist syntactic searches by removing irrelevant results, it
should be noted that if a syntactic query misses a possible solution (i.e., a snippet of
code that would provide a solution is not in the Google result set), then our search would
not have the opportunity to evaluate that solution. Here again, the effectiveness of the
search is dependent on the programmer’s ability to write a query tied to documentation
or syntax, a limitation that is addressed when our search is used in isolation, as
was done for RQ1. Still, integrating syntactic search capabilities may be useful for
programmers who know a little about the implementation they desire, though clearly
the programmer would sacrifice some performance over just a syntactic search.

5.3. RQ3: Impact of Tweaking Search Parameters – Yahoo! Pipes

In Yahoo! Pipes, the specifications can be quite large and complex, and tweaking the
search parameters can have a profound impact on the results. We begin by looking at
the effectiveness of the state-of-the-practice search approach, to show when the existing
search succeeds and when it fails. Then the results for RQ3 are presented, exploring
the impact of tweaking search parameters, specifically solver time, specification size,
and the abstraction level of program encodings, on the effectiveness of the search in
Yahoo! Pipes. We measure effectiveness using precision and recall, where the baseline
is our search at the most abstract encodings. This is different from the previous study
because we are not comparing our results to another search engine, but rather are
comparing against an oracle.

5.3.1. Artifacts. To evaluate RQ3, we require a repository of Yahoo! Pipes programs and
specifications to search the repository. In a previous study with Yahoo! Pipes [Stolee
et al. 2012] we scraped 32,887 pipes programs from the public repository by issuing
approximately 50 queries against the repository and removing all duplicates. Among
these pipes, 2,859 are supported by our encoding (Section 4.2.2), which forms the local
repository.

To perform the searches for the study, we gathered specifications from five represen-
tative pipes in the repository. These pipes were identified as follows: the pipes were
clustered based on their structural similarity (i.e., modules and wires match in topology,
but the field values within modules can differ). The clusters were ordered according to
size and one pipe was selected from each of the median five clusters. Each specification
was obtained by retrieving the RSS feeds to form the input list(s) and executing the
pipe to capture the output list.

The pipes used to generate the specifications are described in the Structure column
in Table VII. The first pipe has one URL that gathers weather information. The spec-
ification retrieved from this pipe is specification 1. The second pipe has one URL and
retains records that contain “hotel” in the description field, then sorts the list and
retains the first three records. The retrieved specification is specification 2. The third
pipe has three URLs and forms specification 3. The fourth pipe has one URL and is
similar to the pipe shown in Figure 2(a); the retrieved specification is specification 4.
The fifth pipe creates specification 5. It aggregates and sorts the items from two URLs.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

26:32 K. T. Stolee et al.

Table VII. State-of-the-Practice Search by URL Query on Global and Local Repositories

Global Search Local Search
Pipe Structure URLs Matches P@10 Matches P@10

1
output union
((filter) (filter))
split fetch

rss.weather.com 71 0.2 1 0.1

2 output truncate sort
filter fetch

feeds.feedburner.com 16,990 0.0 881 0.0

3
output sort union anunturi-gratis.ro

1,281 0.0 220 0.0
(truncate fetch) anunturi-utile.ro
(truncate fetch)
(truncate fetch)

feedproxy.google.com

4 output tail truncate
fetch

ocregister.com 38 0.0 1 0.1

5
output sort union feeds.gawker.com

4 0.1 1 0.1
(fetch filter)(fetch) lifehacker.com.au

5.3.2. Metrics. To explore the effectiveness of the state-of-the-practice search, we
searched repositories of Yahoo! Pipes programs using the URLs from each of the
derived specifications. We report the number of matches returned by the search,
and P@10, which is determined by executing each pipe and evaluating the results.
This search is preformed on the global Yahoo! Pipes repository and on our local
repository.

For the input/output search, we manipulate three search parameters, namely the
abstraction of the program encodings, the specification size, and the maximum solver
time. We report the number of pipes in the local repository that return sat, unsat, and
unknown (?) at each of four solver times, 1, 10, 100, and 1,000 seconds (sec.), considering
four sizes of specification and two levels of abstraction on the program encoding. The
specification sizes are measured as a percentage of the full specification from which
the precision and recall are computed. The levels considered are 25%, 50%, 75%, and
100%. For example, if a specification has 10 RSS items in the input, as is the case with
specifications 1, 2, and 5, then 75% of the input size would consider the first 8 items,
and 50% would consider the first 5 items. The output is adjusted according to the input.
That is, the ninth item in specification 2 is included in the output, but when considering
the first 75% of the specification, this item is dropped also from the output. Abstraction
has two levels, all concrete and all symbolic, on the string and integer fields. In the
symbolic encoding, all configurable string and integer fields in the operator modules
(<operator> in Figure 9) are relaxed.

We also calculate precision and recall, where

precision = relevant ∩ sat
sat

and recall = relevant ∩ sat
relevant

.

Using the results of our own search as a baseline, relevant results are those that will
eventually (given infinite time) return sat with a symbolic encoding, which represents
the pipes for which an instantiation of the module field values can achieve the desired
behavior.

5.3.3. Results. To explore the impact of tweaking search parameters, we use our ap-
proach to search our local repository using each of the five input/output specifica-
tions, given the solver times, specification sizes, and abstraction levels described. These
search parameters are relevant to our semantic approach only, so we cannot directly
compare our results to a syntactic search on the local repository. To gain a better un-
derstanding of how programmers currently search in this domain and the potential

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

Solving the Search for Source Code 26:33

for improvement with our proposed input/output search, we first provide the results of
state-of-the-practice searches.

State-of-the-practice. The results for the state-of-the-practice searches on the global
repository are shown in Table VII in the Global Search columns, and varied substan-
tially among the five example specifications. For each search, the number of matches
and P@10 are reported.14 For two of the searches, specification 2 and 3, thousands of
matches were returned in the search. Specification 5, on the other hand, only returned
four results, where one was relevant; two pipes were relevant for specification 1. Re-
peating this search on our local repository (Local Search in Table VII), which is much
smaller (approximately 3,000 pipes), yields one match for specification 1, specification 4,
and specification 5, with and P@10 = 0.1 (the pipe from which the specifications were
generated). Specification 2 returns 881 results and specification 3 returns 220 results,
with P@10 = 0.0 for both. What this illustrates is that for the more common URLs,
programmers must sift through a lot of irrelevant results, and a pipe that behaves as
they want might not be easy to find. In all cases, to determine relevance, each pipe
must be either executed or manually inspected.

Impact of abstraction on recall. We consider two levels of abstraction: a concrete level
where the programs (sans URLs) are encoded as-is and a symbolic level in which the
strings and integers in the program encodings are made symbolic. The results of our
experiments are shown in Table VIII and Table IX for the impact of abstraction and
solver time on recall.

In Table VIII, the first set of columns reports the results for the Concrete abstraction
level, and the second set for the Symbolic abstraction level. Each row represents the
results given a specific maximum solver time. The number of matches is shown in the
Sat column, and the number of discarded programs is shown in the Unsat column.
If the solver was stopped before it could make a decision, then the solver returned
unknown, which is shown in the ? column, followed by the recall metric.

For all searches and abstraction levels, at least one match is found with the maximum
solver time of 1000 seconds, which is fitting as each specification was derived from a pipe
in our local repository. Symbolic encodings yield as many or more results than concrete.
For instance, with specification 4 in Table VIII at 1000 seconds, all the programs have
been determined to be sat or unsat for the concrete and symbolic encodings (? = 0
for both). Yet, the symbolic encoding yields 89 possible matches while the concrete
encoding only finds one.

Even though the concrete encodings yield fewer results, in all cases, our search on the
local repository (Table VIII) returns at least as many relevant results as the syntactic
searches on either the global or the local repository (Table VII). For specification 3, we
find three results with the concrete encoding whereas neither of the syntactic searches
return any relevant results among the top 10. For specification 2, one result is found,
compared to zero relevant results in the syntactic searches. We observe that it does
take some time to find results, yet, for the other three specifications, a result is returned
in the concrete encoding within 100 seconds, and in the case of specification 4, within
10 seconds.

Based on the differences in the number of results for symbolic versus concrete en-
codings, the impact of abstraction on the solver time warrants further investigation.
In the Symbolic encodings reported in Table VIII, both integers and strings were ab-
stracted. Using the five example pipes from which the specifications were derived, we
teased apart the symbolic encodings to create two additional levels of abstraction be-
tween Concrete and Symbolic; these are SICS (Symbolic Integers, Concrete Strings)

14Search results reflect the state of the repository on February 22, 2012.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

26:34 K. T. Stolee et al.

Table VIII. Pipe Specification Search Results

Specification 1

Concrete Symbolic
sec. Sat Unsat ? Recall Sat Unsat ? Recall

1000 17 2842 0 0.165 100 2756 3 0.971
100 16 2842 1 0.155 24 2756 79 0.233
10 0 2836 23 0.000 0 2723 136 0.000

1 0 2794 65 0.000 0 2572 287 0.000

Specification 2

Concrete Symbolic
sec. Sat Unsat ? Recall Sat Unsat ? Recall

1000 1 2858 0 0.333 2 2856 1 0.667
100 0 2858 1 0.000 0 2853 6 0.000
10 0 2836 23 0.000 0 2785 74 0.000

1 0 2783 76 0.000 0 2567 292 0.000

Specification 3

Concrete Symbolic
sec. Sat Unsat ? Recall Sat Unsat ? Recall

1000 3 2856 0 0.143 18 2838 3 0.857
100 0 2856 3 0.000 0 2833 26 0.000
10 0 2835 24 0.000 0 2651 208 0.000

1 0 2798 61 0.000 0 2554 305 0.000

Specification 4

Concrete Symbolic
sec. Sat Unsat ? Recall Sat Unsat ? Recall

1000 1 2858 0 0.011 89 2770 0 1.000
100 1 2858 0 0.011 86 2770 3 0.966
10 1 2858 0 0.011 3 2770 86 0.034

1 0 2795 64 0.000 0 2758 101 0.000

Specification 5

Concrete Symbolic
sec. Sat Unsat ? Recall Sat Unsat ? Recall

1000 1 2858 0 1.000 1 2858 0 1.000
100 1 2858 0 1.000 0 2857 2 0.000
10 0 2851 8 0.000 0 2773 86 0.000

1 0 2799 60 0.000 0 2607 252 0.000

and SSCI (Symbolic Strings, Concrete Integers). We paired the specification with its
original pipe at each of the four abstraction levels and invoked the solver, measuring
the runtime. Table IX presents the runtime results for the concrete encoding in the
Concrete Encoding column, averaged over three runs. The next three columns show the
Slowdown of the runtime for the various levels of abstraction. The final two columns
of the table indicate the number of strings and integers that were Abstracted in each
pipe.

For pipes where only integers were ever abstracted, pipe 3 and pipe 4, a speedup was
observed when the integers were removed (i.e., indicated by negative slowdown in SICS
and Symbolic). For the SICS encoding, a 58% speedup is observed for pipe 3, and a 27%

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

Solving the Search for Source Code 26:35

Table IX. Comparative Runtime in Seconds after Applying Abstraction

Concrete Slowdown Abstracted
Encoding SICS SSCI Symbolic Strings Integers

Pipe 1 181 sec. −1% +908% +960% 2 0
Pipe 2 131 sec. +1000% +247% +1763% 1 1
Pipe 3 511 sec. −58% +3% −52% 0 3
Pipe 4 4.9 sec. −27% +0% −31% 0 2
Pipe 5 78 sec. +1% +237% +212% 1 0

speedup is observed for pipe 4. On the other hand, when strings are abstracted, which
happened for pipe 1, pipe 2, and pipe 5, there is a slowdown of at least 200% in the SSCI
and Symbolic columns. Combining abstracted strings with abstracted integers, which
happens for pipe 2, causes the largest slowdown we observed. In terms of complexity,
pipe 2 includes f ilter, sort, and truncate modules, whereas each of the other pipes
contains only one or two of those module types; we hypothesize that the combination
of complex modules contributes to the poor performance. Using this information will
be important when optimizing the performance of the search approach in the presence
of abstraction.

Impact of solver time on recall. The concrete encodings can discard irrelevant pro-
grams faster than the symbolic encodings, in part because the constraint systems are
tighter and the solver has fewer decisions to make. For all examples and all ranges of
solver times, the number of unsat programs for the concrete encoding is always greater
than or equal to the number for its symbolic counterpart. Since cutting the solver time
before it has reached a conclusion returns unknown, the recall is reduced as only sat
pipes are considered results. Treating the unknown pipes as results will increase recall
to 1.00, but at the cost of precision. Studying this trade-off is left as future work.

Impact of specification size on precision. Larger specifications seem to have a bimodal
profile, either returning nothing because they run out of time or returning a precise
match if they are allowed to run longer. Figure 11 shows the impact of modifying the
specification size on precision for each of the specifications and two abstraction levels,
with a range of solver times from 1 to 1000 seconds. Each combination of specification
and abstraction level is presented in a graph. The x-axis shows the solver time in
seconds on a base-10 logarithmic scale (i.e., 0.6 represents 100.6 ≈ 4.0 seconds, 3.0
represents 103.0 = 1000 seconds). The y-axis shows the search precision. Each line in
each graph represents a percentage of the specification size used in the search, either
25%, 50%, 75%, or 100%. For example, with specification 1, the concrete encoding,
100 seconds (2.0 on the x-axis), and 50% of the specification, the search precision is
0.719. In this case, 32 results are found in total, and only 23 of those are relevant based
on pipe behavior.

Overall, we see that a smaller specification can yield results faster, but at the cost of
precision. For example, with specification 3, a concrete encoding, and a full specification,
no results are found until 600 seconds (2.78 on the x-axis). However, considering 25%
of the specification yields 13 results in 6 seconds (0.8 on the x-axis), but only with a
precision of 0.231. Considering 50% of the specification yields perfect precision at 20 and
30 seconds, but the precision drops to 0.600 after 40 seconds (this happens because the
incomplete specification can return false positives; for this specification, and those do
not appear until after 40 seconds). Considering 75% of the specification returns results
within 200 seconds (2.3 on the x-axis) with 100% precision. For specification 1 and a
concrete encoding, 50% of the specification reaches a plateau of precision at 0.719 after
50 seconds. Using a full specification requires a wait of 60 seconds and yields precision
of 1.000. With the symbolic encoding of specification 4, 75% of the specification yields

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

26:36 K. T. Stolee et al.

Fig. 11. Impact of specification size and solver time on precision. The x-axis represents time in seconds and
the y-axis represents precision. Each line represents a specification size. The full specification is represented
as 100%. A three-quarter specification is represented by the 75% line, and so forth.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

Solving the Search for Source Code 26:37

precision of 1.00 within 1 second. Results are also found with 50% and 25% of the
specification, but the precision is much lower; the precision for 25% never rises above
0.239. Given the potential for parallelization of the approach, it may be worthwhile to
launch solvers with different maximum times in parallel with different spec lengths.

While the smaller specifications can yield results faster, care must be taken. In
specification 5 and a symbolic encoding, considering 25% of the specification returns 45
results in 10 seconds, yet none is relevant and precision is 0.0. Understanding when it
is appropriate to consider a reduced specification size is left for future work, but we see
an opportunity to decrease the search time at the cost of precision, which could make
the approach more amenable to being combined with other approaches (e.g., syntactic
searches as explored in RQ2).

5.4. RQ4: Impact of Query Complexity on Search Time – SQL

In our search approach, we have two primary concerns with respect to scalability:
increasing the size of the repositories and increasing the size and complexity of the
programs and specification. In the former case, scalability may be improved by in-
troducing parallelization, more clever heuristics, and higher-level encodings, which
we leave for future work. RQ4 explores the impact of size and complexity of speci-
fications on the time for the solver to return sat, indicating a match. Since SQL ta-
bles can become very large in practice, it was the natural domain for evaluating this
question.

5.4.1. Artifacts. To address RQ4, we required a careful manipulation of the specifi-
cation to vary size and complexity. We selected a program (SQL select query) from
stackoverflow15 and systematically decomposed it to generate input/output of different
sizes and complexity. To identify that program, we searched stackoverflow postings for
select statements containing the clauses we support, and selected the first one when
ranked by number of votes that also had an input/output example.
SELECT username FROM table WHERE balance >= 1000000 ORDER BY balance DESC;

To vary specification complexity, we decompose the statement into component
clauses, where and order by, and generate four SQL statements using the combi-
nations. These statements are as follows.
s1 . SELECT username FROM table ;
s2 . SELECT username FROM table WHERE balance >=1000000;
s3 . SELECT username FROM table ORDER BY balance DESC;
s4 . SELECT username FROM table WHERE balance >= 1000000 ORDER BY balance DESC;

To vary the specification size, we generate input tables with 10 to 100 rows in incre-
ments of 10, for each of the component combinations. The values of balance in the
input tables were pulled from a normal distribution N (μ = 1,000,000, σ 2 = 200,000).
For each decomposed select statement and each specification size, the output tables
were generated from the input table to satisfy the query and caused the solver to
return sat.

5.4.2. Metrics. We report the time to return sat, averaged over ten runs, for each
decomposed select statement and each specification size. On each run, a new input
table was pulled from the normal distribution and a new output table was generated.

5.4.3. Results. Figure 12 shows the results of the experiment, with solver time on the
y-axis in seconds (on a logarithmic scale) and the input size, in number of rows, on the
x-axis. Each of the four decomposed programs is represented by a symbol on the graph.

15http://stackoverflow.com/questions/11599636/.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

26:38 K. T. Stolee et al.

Fig. 12. Specification size versus solver time in SQL.

The solving time increases exponentially with the number of rows for all the spec-
ifications. In all cases, the output table size is a function of the input size. When the
where clause is present, the number of rows in the output is approximately half of the
rows in the input since the balance values were pulled from a normal distribution
where μ was equal to the critical value in the query (i.e., 1,000,000). When the where
clause is omitted, the sizes of the input and output tables are equal. In the graph,
the performance of the select where statement and select where order statement
are very close to the performance of the select statement. This is not entirely intuitive
since the output table size for the former two is approximately half the input table size,
and for the latter the table sizes are equal. The select order statement is the least
efficient, and the input and output table sizes are the same. Regardless, there is a clear
relationship between the size of the input table and solver time.

It is more subtle how the complexity of the specification may impact the solving
time. Specifications that require more clauses to be matched do not necessarily require
more time. For example, the specification with select order takes more time than the
one with select where order, as the expensive sorting constraints from order need to
operate on the smaller filtered dataset generated by where. Further study is needed to
tease apart these nuances, but it is clear that the application of multiple clauses makes
the results harder to predict and that there is a trend of exponentially increasing solver
time as the input size increases.

5.5. Threats to Validity

Our evaluation explores different aspects of the approach in each of the three languages,
and each comes with its own limitations and threats to validity.

In the Java study for RQ1, we show that our search approach finds more relevant
results than a keyword-based search when using our local repository. In practice, how-
ever, syntactic searches thrive in large repositories in terms of finding matches at the
cost of precision. By applying our technique on top of snippets gathered from general
Google searches, as in RQ2, we are able to quickly discard many irrelevant snippets
and also identify some matches. We recognize four primary threats to validity. First,
the syntactic queries were taken from the titles of the stackoverflow questions, and
may differ from queries issued by the programmers. Second, our local repository is
small, and some queries may require a solution that we have not encoded. By our

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

Solving the Search for Source Code 26:39

current methodology, those potential solutions are ignored.16 Third, our encodings are
limited to a small subset of the Java language that handles single-path programs.
Regardless, these small programs were still found relevant to the programming tasks
according to the opinions of 19 participants in an empirical evaluation. Fourth, by
pointing a keyword-based search engine at a local repository, the ranking capabilities
may have been handicapped, which may have artificially reduced the relevance of the
top 10 results captured by the P@10 metric. As we move forward, comparing against
generic Google will be necessary, and necessitate the development of our own ranking
algorithms.

In the Yahoo! Pipes study for RQ3, symbolic encodings found more relevant examples,
but the concrete encodings could more quickly discard irrelevant results. The relevant
results were identified as those that would return sat eventually for some instantiation
of the pipe. With this domain, the input is generated from a URL, which is stateful.
Gathering the RSS feeds at a different time can yield a different input/output, and
consequently a different set of relevant results.

With the SQL study for RQ4, solving time increased with input size. Our instantia-
tion of SQL only works on integers, and it is likely that the time would be much longer
in the presence of more complex datatypes; further study is needed.

Selection bias and potential implementation errors are two threats that may have
affected the results on all three domains. We made our selection process explicit and
developed extensive test suites to mitigate these threats.

As this approach has been implemented in only three languages, applicability beyond
these languages is yet to be explored so generality is a concern. Adapting the approach
to a new language takes an effort, but we did not evaluate it from that perspective at
this exploratory stage.

The query model of input/output pairs may not be representative of a general and
realistic programming model for programs. Based on the evaluation of questions asked
on stackoverflow, the input/output model seems reasonable (Section 2.2). Combining
the input/output with keywords, allowing partial programs, or negative examples may
be useful and a part of our future work.

An additional threat to validity comes from the fact that we have developed an
approach to code search that is designed to help programmers, but we do not evaluate
it in the hands of users beyond the evaluation of search results in RQ1. To show the
benefits in practice requires an empirical study with actual programmers, which will
require a robust prototype with complete interface. Still, illustrating the generality,
effectiveness, and efficiency of the approach are the first steps toward the ultimate
goal of building an efficient code search engine for programmers.

The final point of discussion here comes from the legal implications of encouraging
code reuse. In the evaluations, the source-code repositories we have used come from
open-source, publicly available repositories. However, within a company, reuse of public
resources may be discouraged or constrained to specific types of licenses. Implementing
the search within a company where the repository is built from company code would
skirt these issues. It is also worth pointing out that these issues are not just faced by
us, but by any researcher or practitioner involved with search.

5.6. Summary

To summarize the studies, we revisit the research questions and discuss the findings.
In general, although our approach covers only a limited amount of each language,
the results are promising. As our language support increases and our implementation

16To alleviate this threat, we can apply abstractions to expand the space of matching program behavior,
which is evaluated for Yahoo! Pipes.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

26:40 K. T. Stolee et al.

is able to handle larger and more complex programs, we anticipate that this search
approach will become even more effective when compared to the state-of-the-practice.

5.6.1. RQ1: How Does Our Search Compare to Syntactic Searches from the Perspective of the
Programmer? In this study, we used the Java language and evaluated how well our
search results compare to the results found using a keyword-based search from the
programmer’s perspective. We found that, when using the same repository, a keyword-
based search returns over twice as many results as our approach, but among the top
ten, our approach is nearly three times more effective at returning relevant results
based on the opinions of 19 programmers in an empirical study.

5.6.2. RQ2: How Much Can Existing Search Approaches Be Improved by Augmenting Results
with Our Search Approach? In this study, we conducted a Google search and extracted all
code snippets from the top 10 results. Using those as a local repository, we conducted a
search with input/output examples to prune the space of results. By using our search
on top of Google, the number of snippets returned could be reduced by 34%.

5.6.3. RQ3: What Is the Impact of Tweaking Search Parameters on the Search Effectiveness? In
this study, we used Yahoo! Pipes and evaluated the impact of tweaking three search
parameters, namely solver time, abstraction, and specification size, on precision and
recall. The results showed that a search using concrete pipe encodings can discard ir-
relevant programs faster than with symbolic encodings. The maximum allowed solver
time has a clear impact on recall where lower solver times lead to lower recalls. A sim-
ilar effect was observed with manipulations on the specification size, where smaller
specifications led to lower precision. However, smaller specifications also returned re-
sults faster.

5.6.4. RQ4: What Is the Impact of Query Complexity on Search Time? This study considered
SQL, and the results show that the size of the specification has a clear impact on the
solver time, and that the complexity of the specification likewise has an impact on
solver time. This echoes some findings in RQ3 where the size of the specification had
an impact on precision. The differences are that with the SQL study, the specifications
were designed to return sat, so precision was 1.00 by design. Additionally, the SQL
specification considered only integers whereas the Yahoo! Pipes specification considered
integers and strings. Understanding which factors lead some specifications to have a
longer runtime is left for future work.

6. RELATED WORK

We have motivated, defined, instantiated, and evaluated a new approach to source-code
search that uses input/output examples as specifications and an SMT solver to identify
search results. In this section, we discuss the related work.

Our approach is related to recent work in code search, code reuse, verification and
validation, and program synthesis.

6.1. Code Search

We have described an approach to code search that is semantic and uses input/output
examples to define the queries, which is closely related to research in code search.

Recent studies have revealed that programmers frequently use general search en-
gines to find code for reuse [Sim et al. 2011], and our own study confirms these find-
ings [Stolee and Elbaum 2012a]. More specialized syntactic code search engines in the
state-of-the-practice (e.g., Koders, Krugle) also incorporate filtering capabilities (e.g.,
language, libraries) and program syntax into the query to guide the matching process,
such as type signatures of desired code [Sim et al. 2011]. These approaches search
at an Internet scale, whereas our search approach operates over repositories. Other

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

Solving the Search for Source Code 26:41

approaches in the state-of-the-art add natural language processing to increase the po-
tential matches [Grechanik et al. 2010; McMillan et al. 2011]. Our work is different
in that the search is semantic, but as we show (Section 5.2.3), both approaches are
complementary and can be combined.

Early work in semantic code search required developers to write complex specifi-
cations using first-order logic or specialized languages (e.g., Ghezzi and Mocci [2010],
Penix and Alexander [1999], and Zaremski and Wing [1997]), which can be expensive
to develop and error prone. The cost of writing specifications can be reduced by using
incomplete behavioral specifications, such as those provided by test cases (a form of
input/output) [Lazzarini Lemos et al. 2007; Podgurski and Pierce 1993; Reiss 2009], but
these approaches require that the code be executed to find matches. Some approaches
also require a keyword query to first prune the search space, which could miss some
solutions [Reiss 2009]. Further, executing test cases only returns exact matches, miss-
ing many relevant matches that may have a slightly different signature (e.g., extra
parameter). Other search approaches use sequences of API calls [Mishne et al. 2012]
or sequences of textual statements [Chan et al. 2012] as queries to find code that per-
forms the specified actions in a specified order, but implementation details are required
for an effective search.

6.2. Code Reuse

In the code reuse process, there are two primary activities: finding and integrating.
Our approach focuses on finding, which is what we have evaluated, but it has potential
to be useful with integration.

For effective reuse, scope and dependencies must be understood for developers to
effectively integrate code [Garlan et al. 1995]. Some recent work assists programmers
with integrating new code by matching it to structural properties in their development
environment (e.g., method signature, return types) [Cottrell et al. 2008; Holmes et al.
2006]. Real-time clone detection can promote reuse by identifying code clones as they
are developed, but again this depends on a developer having a sense of how to im-
plement code [Lee et al. 2010]. Further, while these approaches guarantee structural
matching, the behavior of the integrated code may not be well understood.

6.3. Verification and Validation

In this work, we have talked about how symbolic analysis is used to generate con-
straints that represent the program behavior, and that this representation is used in
the search process. Symbolic execution [Clarke 1976; Clarke and Richardson 1985;
King 1976] is a technique that executes code with symbolic, rather than concrete,
values, and can generate such symbolic summaries of source code. These are simi-
lar to the summaries that our implementation generates to represent code behavior.
For two of our languages presented in this work, SQL and Yahoo! Pipes, symbolic
execution tools are not readily available. For Java, however, tools like the symbolic
execution extension [Khurshid et al. 2003; JPF-symbc 2012] to the Java PathFinder
model checker [Visser et al. 2003] can generate symbolic summaries that we can use,
but are limited in the datatypes that are supported. At this point, part of our ongoing
work is to integrate our encoding process with such tools, taking advantage of their
capabilities to generate summaries for certain complex code structures.

In validation, constraint and SMT solvers have been used extensively for test case
generation. Toward the goal of database generation for testing, reverse query process-
ing takes a query and a result table as inputs and, using a constraint solver, produces a
database instance that could have produced the result [Binnig et al. 2007]. Other work
in test case generation for SQL queries has used SMT solvers to generate tables based
on queries [Veanes et al. 2010]. In our work, we do not generate database tables, but

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

26:42 K. T. Stolee et al.

rather determine if a given query could have produced a specified result set (output)
from specified input table(s).

6.4. Program Synthesis

Previous work in the area of automated program generation [Balzer 1985] relates to
our work in that the high-level specifications are used as the basis to derive programs.
Closer to our work is that in the area of program synthesis, more specifically, that which
makes use of solvers to derive a function from input/output examples (e.g., Godefroid
and Taly [2012], Gulwani et al. [2011], and Harris and Gulwani [2011]). The key dif-
ference is that our approach uses the solver to find a match against real programs
that have been encoded, while these synthesis efforts have to define templates [Gode-
froid and Taly 2012] or a domain-specific grammar that can be traversed exhaustively
[Gulwani et al. 2011; Harris and Gulwani 2011] to generate a program that matches
the programmer’s examples. A similar approach uses the source and destination (akin
to input and output) objects to synthesize for finding code snippets based on types, as
is done in Jungloid [Mandelin et al. 2005]. This approach is particularly useful for type
conversion. Our search, on the other hand, returns results based on concrete examples
of desired behavior.

7. CONCLUSION

We present an approach to source-code search that uses input/output examples as
queries and searches a repository for source code that matches the defined behavior.
The novelty of the approach resides in using an input/output example as a query and
in using a constraint solver to assist with the matching process. This necessitates a
transformation process on the source code and the specifications into first-order logic
so the solver can identify matches.

To motivate the need for better code search, we surveyed 99 programmers about their
search habits, finding that code search is a common task and that current search tools
are often inadequate. To assess the viability of an input/output model for queries, we
explored questions asked by the community on stackoverflow and found that questions
are frequently accompanied by input/output examples, indicating that programmers
already think in this way when looking for help online.

We discuss the potential and trade-offs of our search approach over the state-of-the-
practice and the state-of-the-art, describe how to encode search queries and programs
in three languages, namely the Java String library, Yahoo! Pipes, and SQL select
statements, and explore the effectiveness of our approach in each of these domains.
Generality and efficiency in the context of richer programs, such as those containing
loops and other complex constructs, are concerns that still need to be addressed. Despite
this, we have shown that this approach is applicable in a variety of languages, can
handle nontrivial specifications, is flexible in finding programs that are close matches
that can be easily modified to satisfy the user specifications, and can be used in lieu of
or to complement the state-of-the-practice code searches. This is just one step toward
our ultimate goal of leveraging existing resources, such as source-code repositories, to
positively impact programmer productivity.

REFERENCES

Robert Balzer. 1985. A 15 year perspective on automatic programming. IEEE Trans. Softw. Engin. 11, 11,
1257–1268.

Carsten Binnig, Donald Kossmann, and Eric Lo. 2007. Reverse query processing. In Proceedings of the 23rd

IEEE International Conference on Data Engineering (ICDE’07). 506–515.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

Solving the Search for Source Code 26:43

Nikolaj Bjorner, Nikolai Tillmann, and Andrei Voronkov. 2009. Path feasibility analysis for string-
manipulating programs. In Proceedings of the International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. 307–321.

Wing-Kwan Chan, Hong Cheng, and David Lo. 2012. Searching connected api subgraph via text phrases.
In Proceedings of the 20th ACM SIGSOFT International Symposium on the Foundations of Software
Engineering (FSE’12). ACM Press, New York.

Lori A. Clarke. 1976. A system to generate test data and symbolically execute programs. IEEE Trans. Softw.
Engin. SE-2, 3, 215–222.

Lori A. Clarke and Debra J. Richardson. 1985. Applications of symbolic evaluation. J. Syst. Softw. 5, 1, 15–35.
Rylan Cottrell, Robert J. Walker, and Jorg Denzinger. 2008. Semi-automating small-scale source code reuse

via structural correspondence. In Proceedings of the International Symposium on Foundations of Soft-
ware Engineering. 214–225.

Nick Craswell and David Hawkings. 2004. Overview of the trec 2004 webl track. In Proceedings of the 13th

Text Retrieval Conference (NIST’04). 1–9.
Allen Cypher, Daniel C. Halbert, David Kurlander, Henry Lieberman, David Maulsby, Brad A. Myers, and

Alan Turransky. 1993. Watch What I Do: Programming by Demonstration. MIT Press, Cambridge, MA.
Leonardo De Moura and Nikolaj Bjorner. 2008. Z3: An efficient smt solver. In Proceedings of the 14th Inter-

national Conference on Tools and Algorithms for the Construction and Analysis of Systems: Theory and
Practice of Software (TACAS’08/ETAPS’08). 337–340.

Gerhard Fischer, Scott Henninger, and David Redmiles. 1991. Cognitive tools for locating and comprehending
software objects for reuse. In Proceedings of the International Conference on Software Engineering. 318–
328.

David Garlan, Robert Allen, and John Ockerbloom. 1995. Architectural mismatch: Why reuse is so hard.
IEEE Softw. 12, 6, 17–26.

Carlo Ghezzi and Andrea Mocci. 2010. Behavior model based component search: An initial assessment.
In Proceedings of the ICSE Workshop on Search-driven Development: Users, Infrastructure, Tools and
Evaluation. 4.

Patrice Godefroid and Ankur Taly. 2012. Automated synthesis of symbolic instruction encodings from i/o
samples. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’12). 441–452.

Mark Grechanik, Chen Fu, Qing Xie, Collin Mcmillan, Denys Poshyvanyk, and Chad Cumby. 2010. Exemplar:
EXEcutable examples archive. In Proceedings of the International Conference on Software Engineering.
259–262.

Sumit Gulwani, Vijay Anand Korthikanti, and Ashish Tiwari. 2011. Synthesizing geometry constructions.
In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI’11). 50–61.

Sonia Haiduc, Gabriele Bavota, Andrian Marcus, Rocco Oliveto, Andrea De Lucia, and Tim Menzies. 2013.
Automatic query reformulations for text retrieval in software engineering. In Proceedings of the Inter-
national Conference on Software Engineering (ICSE’13). IEEE Press, 842–851.

William R. Harris and Sumit Gulwani. 2011. Spreadsheet table transformations from examples. SIGPLAN
Not. 46, 6, 317–328.

Reid Holmes, Robert J. Walker, and Gail C. Murphy. 2006. Approximate structural context matching: An
approach to recommend relevant examples. IEEE Trans. Softw. Engin. 32, 12, 952–970.

Jeff Huang and Efthimis N. Efthimiadis. 2009. Analyzing and evaluating query reformulation strategies in
web search logs. In Proceedings of the 18th ACM Conference on Information and Knowledge Management
(CIKM’09). ACM Press, New York, 77–86.

M. Cameron Jones and Elizabeth F. Churchill. 2009. Conversations in developer communities: A prelim-
inary analysis of the yahoo! Pipes community. In Proceedings of the 4th International Conference on
Communities and Technologies (C&T’09). 195–204.

JPF-Symbc. 2012. Symbolic pathfinder. http://babel sh.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc.
Sarfraz Khurshid, Corina S. Pasareanu, and Willem Visser. 2003. Generalized symbolic execution for model

checking and testing. In Proceedings of the 9th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’03). Springer, 553–568.

Adam Kiezun, Vijay Ganesh, Philip J. Guo, Pieter Hooimeijer, and Michael D. Ernst. 2009. HAMPI: A solver
for string constraints. In Proceedings of the International Symposium on Software Testing and Analysis
(ISSTA’09). 105–116.

James C. King. 1976. Symbolic execution and program testing. Comm. ACM 19, 7, 385–394.
Koders. 2012. Koders. http://code.ohloh.net/.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

26:44 K. T. Stolee et al.

Amy N. Langville and Carl D. Meyer. 2006. Google Page Rank and Beyond. Princeton University Press.
Otavio Augusto Lazzarini Lemos, Sushil Krishna Bajracharya, and Joel Ossher. 2007. CodeGenie: A tool

for test-driven source code search. In 22nd ACM SIGPLAN Conference on Object-Oriented Programming
Systems and Applications Companion. 917–918.

Mu-Woong Lee, Jong-Won Roh, Seung-Won Hwang, and Sunghun Kim. 2010. Instant code clone search. In
Proceedings of the 18th ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing (FSE’10). ACM Press, New York, 167–176.

David Mandelin, Lin Xu, Rastislav Bodik, and Doug Kimelman. 2005. Jungloid mining: Helping to navigate
the api jungle. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’05). ACM Press, New York, 48–61.

Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing Xie, and Chen Fu. 2011. Portfolio: Finding
relevant functions and their usage. In Proceedings of the 33rd International Conference on Software
Engineering (ICSE’11). 111–120.

Mechanicalturk. 2010. Amazon mechanical turk. https://www.mturk.com/mturk/welcome.
Alon Mishne, Sharon Shoham, and Eran Yahav. 2012. Typestate-based semantic code search over partial

programs. In Proceedings of the International Conference on Object Oriented Programming Systems
Languages and Applications (OOPSLA’12). 997–1016.

Flemming Nielson, Hanne R. Nielson, and Chris Hankin. 2004. Principles of Program Analysis. Springer.
John Penix and Perry Alexander. 1999. Efficient specification-based component retrieval. Autom. Softw.

Engin. 6, 2, 32.
Pipes. 2012. Yahoo! pipes. http://pipes.yahoo.com/.
Andy Podgurski and Lynn Pierce. 1993. Retrieving reusable software by sampling behavior. ACM Trans.

Softw. Engin. Methodol. 2, 3, 18.
Steven P. Reiss. 2009. Semantics-based code search. In Proceedings of the International Conference on

Software Engineering. 243–253.
Nicholas Sawadsky, Gail C. Murphy, and Rahul Jiresal. 2013. Reverb: Recommending code-related web

pages. In Proceedings of the International Conference on Software Engineering (ICSE’13). IEEE Press,
812–821.

Susan Elliott Sim, Medha Umarji, Sukanya Ratanotayanon, and Cristina V. Lopes. 2011. How well do search
engines support code retrieval on the web? ACM Trans. Softw. Engin. Methodol. 21, 1, 4:1–4:25.

Rishabh Singh and Armando Solar-Lezama. 2011. Synthesizing data structure manipulations from story-
boards. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering (ESEC/FSE’11). ACM Press, New York, 289–299.

Smtlib2. 2012. SMT-LIB. http://www.smtlib.org/.
Kathryn T. Stolee, Sebastian Elbaum, and Anita Sarma. 2012. Discovering how end-user programmers and

their communities use public repositories: A study on yahoo! pipes. Inf. Softw. Technol. 55, 7, 1289–
1303.

Kathryn T. Stolee. 2013. Solving the search for source code. Ph.D. dissertation, University of Nebraska at
Lincoln.

Kathryn T. Stolee and Sebastian Elbaum. 2010. Exploring the use of crowdsourcing to support empirical
studies in software engineering. In Proceedings of the ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM’10).

Kathryn T. Stolee and Sebastian Elbaum. 2011. Refactoring pipe-like mashups for end-user programmers.
In Proceedings of the International Conference on Software Engineering. 81–90.

Kathryn T. Stolee and Sebastian Elbaum. 2012a. Solving the search for suitable code: An initial implemen-
tation. Tech. rep. CSE 126, University of Nebraska-Lincoln.

Kathryn T. Stolee and Sebastian Elbaum. 2012b. Toward semantic search via smt solver. In Proceedings of
the 20th ACM SIGSOFT International Symposium on the Foundations of Software Engineering.

Kathryn T. Stolee and Sebastian Elbaum. 2013. On the use of input/output queries for code search. In
Proceedings of the ACM/IEEE International Symposium on Empirical Software Engineering and Mea-
surement.

Margus Veanes, Nikolai Tillmann, and Jonathan De Halleux. 2010. Qex: Symbolic sql query explorer. In
Proceedings of the 16th International Conference on Logic for Programming, Artificial Intelligence, and
Reasoning. 425–446.

Willem Visser, Jaco Geldenhuys, and Matthew B. Dwyer. 2012. Green: Reducing, reusing and recycling
constraints in program analysis. In Proceedings of the 20th ACM SIGSOFT International Symposium
on the Foundations of Software Engineering (FSE’12). ACM Press, New York.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

Solving the Search for Source Code 26:45

Willem Visser, Klaus Havelund, Guillaume Brat, Seungjoon Park, and Flavio Lerda. 2003. Model checking
programs. Autom. Softw. Engin. 10, 2, 203–232.

Ian H. Witten and Dan Mo. 1993. TELS: Learning text editing tasks from examples. In Watch What I Do,
MIT Press, 183–203.

Amy Moormann Zaremski and Jeannette M. Wing. 1997. Specification matching of software components.
ACM Trans. Softw. Engin. Methodol. 6, 4, 333–369.

Yunhui Zheng, Xiangyu Zhang, and Vijay Ganesh. 2013. Z3-str: A z3-based string solver for web ap-
plication analysis. In Proceedings of the 9th Joint Meeting on Foundations of Software Engineering
(ES-EC/FSE’13). ACM Press, New York, 114–124.

Received December 2012; revised December 2013; accepted February 2014

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 26, Pub. date: May 2014.

