
Cross-Language Code Search using Static and Dynamic Analyses

George Mathew
North Carolina State University

USA
george2@ncsu.edu

Kathryn T. Stolee
North Carolina State University

USA
ktstolee@ncsu.edu

ABSTRACT

As code search permeates most activities in software development,

code-to-code search has emerged to support using code as a query

and retrieving similar code in the search results. Applications in-

clude duplicate code detection for refactoring, patch identification

for program repair, and language translation. Existing code-to-code

search tools rely on static similarity approaches such as the com-

parison of tokens and abstract syntax trees (AST) to approximate

dynamic behavior, leading to low precision. Most tools do not sup-

port cross-language code-to-code search, and those that do, rely on

machine learning models that require labeled training data.

We present Code-to-Code Search Across Languages (COSAL), a

cross-language technique that uses both static and dynamic analy-

ses to identify similar code and does not require a machine learning

model. Code snippets are ranked using non-dominated sorting

based on code token similarity, structural similarity, and behavioral

similarity.We empirically evaluate COSAL on two datasets of 43,146

Java and Python files and 55,499 Java files and find that 1) code

search based on non-dominated ranking of static and dynamic sim-

ilarity measures is more effective compared to single or weighted

measures; and 2) COSAL has better precision and recall compared

to state-of-the-art within-language and cross-language code-to-

code search tools. We explore the potential for using COSAL on

large open-source repositories and discuss scalability to more lan-

guages and similarity metrics, providing a gateway for practical,

multi-language code-to-code search.

CCS CONCEPTS

· Software and its engineering→ Softwaremaintenance tools;

· Information systems→ Similarity measures.

KEYWORDS

code-to-code search, cross-language code search, non-dominated

sorting, static analysis, dynamic analysis

ACM Reference Format:

George Mathew and Kathryn T. Stolee. 2021. Cross-Language Code Search

using Static and Dynamic Analyses. In Proceedings of the 29th ACM Joint Eu-

ropean Software Engineering Conference and Symposium on the Foundations

of Software Engineering (ESEC/FSE ’21), August 23ś28, 2021, Athens, Greece.

ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3468264.3468538

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8562-6/21/08. . . $15.00
https://doi.org/10.1145/3468264.3468538

1 INTRODUCTION

Code-to-code search describes the task of using a code query to

search for similar code in a repository. This task is particularly

challenging when the query and results belong to different lan-

guages due to syntactic and semantic differences between the lan-

guages [20]. Consider the case of code migration, where it is com-

mon for applications in a specific language to be re-written to

another language [52]. For example, while porting the video game

Fez from Microsoft XBox to Sony PlayStation, the developers faced

their biggest challenge in converting the original C# code to C++

as the PlayStation did not support the C# compiler [85]. Code-to-

code search is also involved in identifying code clones [63, 66],

finding translations of code in a different language [58], program

repair [10, 68], and supporting students in learning a new program-

ming language [3]. The growing prominence of large online code

repositories and the repetitive nature of source code [48, 70] lead to

the presence of large quantities of potentially similar code across

languages, providing a viable platform for code-to-code search.

We propose the first cross-language code-to-code search ap-

proach with dynamic and static similarity measures. The novelty is

in the application of non-dominated sorting [19] to code-to-code

search, allowing static and dynamic information (without aggre-

gation) to identify search results. COSAL leverages prior art in

clone detection using input-output (IO) behavior [51]. As dynamic

clone detection requires executable code, individually it cannot

achieve the recall required for practical search applications. This is

where the prior art in static analysis shines; we use token-based and

AST-based measures to complement the dynamic analysis. COSAL

reaps the benefits of dynamic analysis in finding code that behaves

similarly, when dynamic information is available, and the benefits

of static information when dynamic information is infeasible. It

provides results that balance how code looks with how it behaves, in

the spirit of returning code that looks more natural to the user.

We evaluate COSAL using 43,146 Java and Python files from

AtCoder, a programming contest dataset, and 55,499 Java files from

BigCloneBench [79], a Java based clone detection benchmark. We

show that combining static and dynamic analyses yields better pre-

cision and success rate compared to code search with individual

or weighted analyses. COSAL performs better in cross-language

and within-language contexts compared to the state-of-the-art

code search tool FaCoY and the industrial benchmark, GitHub.

COSAL can also detect more cross-language code clones compared

to SLACC and CLCDSA, the state-of-the-art code clone detection

techniques. The contributions of this work are:

• the first code-to-code search approach using non-dominated

sorting over static and dynamic similarity measures,

• an evaluation of COSAL with state-of-the-practice cross-

language code search in GitHub and ElasticSearch (RQ2),

205

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3468264.3468538
https://doi.org/10.1145/3468264.3468538
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3468264.3468538&domain=pdf&date_stamp=2021-08-18

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece George Mathew and Kathryn T. Stolee

1 List<Integer> getEvens(int max) {

2 List<Integer> evens = new ArrayList<>();

3 for(int i = 0; i < max; i++)

4 if (i % 2 == 0)

5 evens.add(i);

6 return evens;

7 }

(a) Java: for loop to populate an array of even numbers

1 def all_odds(n):

2 odds = []

3 n = range(n)

4 for i in n:

5 if i % 2 == 0: continue

6 odds.append(i)

7 return odds

(b) Python: for loop to populate an array of odd numbers

1 Integer[] func(int x) {

2 int[] n = IntStream.range(0, x).toArray();

3 List<Integer> e = new ArrayList<>();

4 for (int i=0; i<n.length(); i++)

5 if (n.get(i) % 2 == 0)

6 e.add(n.get(i));

7 return e.toArray();

8 }

(c) Java: List of even numbers using version specific libraries

1 def even_nums(max_val):

2 nums = xrange(max_val)

3 return [i for i in nums if i % 2 == 0]

(d) Python: list of even numbers using list-comprehension

Figure 1: Different functions to return a filtered array of

numbers implemented in Java and Python. The code in (a), (c),

and (d) are functionally identical. The code in (b) is different.

• an evaluation of COSALwith state-of-the-art single-language

code search technique FaCoY (RQ3),

• an evaluation of COSAL against cross-language clone detec-

tion techniques CLCDSA and SLACC (RQ4), and

• an open-source tool that performs cross-language code search

on Java and Python and can be extended to other languages [2].

2 MOTIVATION

Effective code-to-code search requires code similarity measures

that cover a variety of developer concerns. Code-to-code search

should preserve code behavior, and thus IO similarity from dynamic

analysis is an important consideration. Prior work has shown that

identifiers impact source code comprehension, especially for be-

ginners [14], and as developers must understand the code returned

by search, tokens are an important consideration. Prior work in

code-to-code search that relies on ASTs have seen high precision

and recall [43, 63] suggesting that is an important consideration as

well. Individually, each measure has shortcomings. Taken together,

however, we show the whole is greater than the sum of its parts.

Consider the code snippets in Figure 1. Three of the functions

are behaviorally identical, taking an input integer and returning

an array of even integers: 1(a) is a Java function which uses a for

loop; 1(c) uses the stream library from Java v8; 1(d) is a Python

function which uses a filtered list-comprehension. 1(b) is different:

it is a Python function that takes an integer𝑚𝑎𝑥 and returns a list

Fig. AST Tokens

𝐽 1(a)

getevens, get, evens,

max, list, integer, ar-

raylist, array, add

𝑃 1(b)
allodds, all, odds,

range, append

𝐽 1(c)
func, intstream,

stream, range, toarray,

array, list, integer,

arraylist, length,get,

add

𝑃 1(d) evennums, even,

nums, maxval, max,

val, xrange

Figure 2: Generic ASTs and Tokens for Java(𝐽) and Python(𝑃)

functions from Figure 1

of odd numbers between [0,𝑚𝑎𝑥). Figure 2 contains AST and token

information for the code snippets, discussed extensively in ğ 3.

To identify behaviorally identical Python code for Figure 1(a), a

code-to-code search engine should support both the programming

languages Java and Python. In this case, using a purely token-based

approach for cross-language search will not be very helpful. First,

the syntactic features of each language will skew the search. For

example, since Java is static typed, variables are declared with

a datatype, while variables in Python lack these tokens due to

dynamic typing in Python. Second, even if the language-specific

keywords are ignored, there is an over reliance on the names of vari-

ables and libraries to infer behavioral context whichmay not always

succeed. For example, 1(a) uses evens to denote a Java list, while 1(d)

uses nums to represent the same Python array. Still, identifier names

can be informative in describing the behavior of code [86, 87] and

are thereby useful as a metric.

Using an AST-based approach to identify similar code across

languages is useful but not consistently viable due to the language-

specific constructs. For example, 1(a) uses a standard for loop to

populate the list while 1(d) uses list-comprehension which is a

pythonic construct for the same task. The nearest structural match

would be 1(b) since it also uses a for loop. However, the func-

tions 1(a) and 1(b) are behaviorally different. In such cases, a dy-

namic approach based on IO similarity would reveal the differences.

Behavioral approaches also have their limitations. For example,

IntStream from 1(c) is specific to Java v8 and above. Similarly xrange

from 1(d) is specific to Python v2.x. Hence, the right version of the

206

Cross-Language Code Search using Static and Dynamic Analyses ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

language and libraries is a prerequisite and in many cases a major

bottleneck for dynamic similarity.

There is no single best similarity measure for cross-language

code-to-code search. It depends on multiple varying criteria which

cannot be generalized for all cases. Hence, we need a code-to-code

search technique that enables search based on multiple similarity

measures. This can be handled by aggregating the multiple mea-

sures into a single measure or by using all the measures in tandem.

When aggregating into a single measure, it is easier to compare

but there are limitations. Search methods [38, 41] and evolution-

ary algorithms [25] convert multiple search objectives to a single-

objective search problem [53]. Using such methods is not very

optimal [92] as ranking the results would be very subjective if the

objectives are independent or weakly correlated to each other. An

aggregated approach can also lead to bias in comparison [17]. This

motivates the use of an approach to ranking that preserves each of

the similarity measures, using them in tandem. In this section, we

have shown that code that matches on one measure (e.g., AST simi-

larity would match 1(a) with 1(b)) may differ on another measure

(e.g., behavioral similarity shows 1(a) and 1(b) are different). When

aggregating into a single measure, such nuances are often lost.

Non-dominated ranking orders search results across multiple

independent search objectives without aggregating them. We se-

lect three similarity measures to represent the context, structure

and behavior across programming languages. These measures are

weakly and moderately correlated to each other, presenting non-

overlapping perspectives when used to compare code. Further,

non-dominated ranking could provide information sufficient to

explain why one result is ranked above another in a meaningful

way, an ability that is lacking in aggregated approaches (e.g., " 1(a)

and 1(b) have more structural similarity"). While we do not investi-

gate the value of the explanations in this work, we conjecture that

such explanations may be useful when developers discern between

search results and leave that for future exploration.

3 CODE-TO-CODE SEARCH ACROSS
LANGUAGES

Figure 3 depicts the general workflow of COSAL:

(1) Offline, a Repository is crawled to extract Code Snippets (e.g.,

GitHub, a local File System.)

(2) Offline, Indices are created for each of the following:

(a) A Token Index for code names and libraries (ğ 3.1).

(b) A language-agnostic AST Index for code structures (ğ 3.2).

(c) If the code can be executed, the IO Index is recorded (ğ 3.3).

(3) During search, a Code Query is processed in the samemanner

as Steps 2(a)-(c), to gather Tokens, AST, and IO information.

(4) Non-Dominated Sorting identifies Search Results, which are

ranked and returned to the user (ğ 3.4)

We illustrate COSAL using the code examples from Figure 1.

3.1 Token-Based Search

Fragments of code that are contextually similar often use simi-

lar variable names [69], though the naming conventions vary by

language. For example, Java primarily uses camelCase conventions

while Python uses snake_case. Libraries across languages tend to

share similar function names or contexts [4]; for example List

Figure 3: Overview of COSAL

class from java.util library and list from the Python __builtin__

library are both commonly used to represent an array. Develop-

ers tend to describe the code in comments based on the function-

ality [33]. We infer context by extracting non-language-specific

tokens from source code and comments as follows:

(1) Remove language-specific keywords based on the documen-

tation [18, 60]. For example, Java tokens public and static,

and Python tokens def and assert, are all removed.

(2) Remove frequently-used words used in a language based on

common coding conventions. For example, in Python, the

token self is often used to denote the class object. 1

(3) Remove common stopwords from the English vocabulary [15],

such as does and from.

(4) Split tokens to address language-specific nomenclature. Vari-

ables typically use camelCase in Java and snake_case in

Python. These are split into {łcamelž and łcasež} and {łsnakež

and łcasež}, respectively.

(5) Remove tokens of length less than MIN_TOK_LEN.

(6) Convert all the tokens to lower case.

A repository of code is tokenized using the above approach and

stored in an ElasticSearch [29] index. For a user’s code query, the

tokens generated from the indexing approach are looked up in the

search index and the best matched results are returned using the

token similarity distance (𝑑𝑡𝑜𝑘𝑒𝑛). This distance is the same as the

Jaccard Coefficient [59] and is defined as follows:

𝑑𝑡𝑜𝑘𝑒𝑛 =

|𝑡𝑜𝑘𝑒𝑛𝑠𝑞𝑢𝑒𝑟𝑦 ∩ 𝑡𝑜𝑘𝑒𝑛𝑠𝑟𝑒𝑠𝑢𝑙𝑡 |

|𝑡𝑜𝑘𝑒𝑛𝑠𝑞𝑢𝑒𝑟𝑦 ∪ 𝑡𝑜𝑘𝑒𝑛𝑠𝑟𝑒𝑠𝑢𝑙𝑡 |

𝑑𝑡𝑜𝑘𝑒𝑛 will range from [0.0, 1.0]. Larger values of 𝑑𝑡𝑜𝑘𝑒𝑛 indicate

higher similarity between the query and result.

For the functions in Figure 1, the generated tokens using this

approach are shown in Figure 2 and the token similarity distance for

each pair of functions is shown in Table 1 (𝑑𝑡𝑜𝑘𝑒𝑛). If the Java func-

tion 1(a) is the query, the best Python result would be 1(d) (𝑑𝑡𝑜𝑘𝑒𝑛
= 0.067). The common token max extracted from these functions

help in identifying this similarity. Note that none of the functions

in Figure 1 have code comments, while in our implementation the

comments are analyzed.

In many cases the token-based analysis cannot yield ideal results.

It relies on self-describing snippets; the choice of variable names,

function names, libraries used, and comments all impact the results.

1Complete lists of the removed tokens are available [2].

207

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece George Mathew and Kathryn T. Stolee

Table 1: Similarity measures for Java(𝐽) and Python(𝑃) func-

tions from Figure 1. High similarity implies high values (↑)

of 𝑑𝑡𝑜𝑘𝑒𝑛 , low values (↓) of 𝑑𝐴𝑆𝑇 , and high values (↑) of 𝑑𝐼𝑂 .

Snip 1 Snip 2 𝒅𝒕𝒐𝒌𝒆𝒏 (↑) 𝒅𝑨𝑺𝑻 (↓) 𝒅𝑰𝑶 (↑)

(s1, s2) (s2, s1)

𝐽 - 1(a) 𝑃 - 1(b) 0.0 1 0.0 0.0

𝐽 - 1(a) 𝐽 - 1(c) 0.333 16 1.0 1.0

𝐽 - 1(a) 𝑃 - 1(d) 0.067 7 1.0 1.0

𝑃 - 1(b) 𝐽 - 1(c) 0.0 17 0.5 0.3

𝑃 - 1(b) 𝑃 - 1(d) 0.0 8 0.5 0.5

𝐽 - 1(c) 𝑃 - 1(d) 0.059 21 1.0 1.0

Not all code snippets adhere to intuitive naming conventions. For

example, in 1(c), the programmer chose very generic names. Still,

we show in ğ 6.1 that our approach for tokenization yields more

precise results compared to full text search.

3.2 AST-Based Search

A tree-based representation for comparison across languages is

challenging since there is no generic AST representation that en-

compasses syntactic features of different languages. Traditional

AST parsers like ANTLR [61], JavaParser [83], python-ast [65] mod-

ules use different grammars to denote similar features. For example,

a function node in JavaParser is represented as MethodDeclaration

while the python-ast parser represents the node as FunctionDef. As

a result, to compare ASTs of different languages requires a mapping

scheme between each pair of programming languages.

For better scalability to additional programming languages, we

built a parser for a generic AST. By mapping the ASTs for Java

and for Python onto the generic AST, we can compare across these

languages (see ğ 7.3.2 for a discussion on scalability). The generic

AST is based on our intuition and chosen languages, and there may

be more effective or efficient representations. It contains a superset

of the language features, as follows:

• Common control structures: Control structures are sim-

plified and clustered. For example, the loop node is used for

the Java constructs: for, forEach, while and do-while; and

Python constructs: for, while, and list-comprehension.

• Normalizing Variable: Variables are denoted as var nodes.

• Normalizing Literals: Literals are denoted as lit nodes.

• NormalizingOperators: Operators are denoted as op nodes.

• Language specific features: If a feature is implemented in

only one language, a custom node is created. For example,

switch is specific to Java and not supported in Python. As a

result, a custom node switch is created for this statement.

Similarity between ASTs is computed using the Zhang-Sasha

algorithm [90] (𝑑𝐴𝑆𝑇). The algorithm computes the minimum num-

ber of edits required to transform an ordered labeled tree to another

ordered labeled tree in quadratic time. 𝑑𝐴𝑆𝑇 will range from [0,∞).

Lower values of 𝑑𝐴𝑆𝑇 are associated with higher similarity.

For the functions in Figure 1, the generated ASTs are shown

in Figure 2 and the AST edit distance for each pair of functions

is shown in Table 1 (𝑑𝐴𝑆𝑇). Based on 𝑑𝐴𝑆𝑇 , a query with Python

function 1(d) yields 1(a) as the best Java result (𝑑𝐴𝑆𝑇 = 7). No-

tably, the syntactic constructs of the two functions are also dif-

ferent. The Python search query 1(d) uses a list-comprehension

which is a Python feature and the Java search result 1(a) uses a

for loop. Identifying the matching search result is possible, since

list-comprehension and the for loop are denoted as loop nodes in

the grammar for the generic AST.

There are cases where a generic AST-based approach is non-

ideal. For example, if the Java function 1(a) is queried using 𝑑𝐴𝑆𝑇 ,

the best Python result would be 1(b). This is because both functions

use traditional for loops and updates the return array sequentially,

and yet, the search result is behaviorally different from the query.

Such scenarios can be handled using dynamic similarity.

3.3 Input-Output Based Search

Dynamic search in COSAL, is performed by clustering code based

on the their IO relationship. To determine the IO relationship be-

tween two pieces of code, we use SLACC [51], a publicly-available

IO-based cross-language code clone detection tool. SLACC seg-

ments code into executable snippets of size greater than MIN_STMTS

and executed on ARGS_MAX arguments generated using a grey-box

strategy. The executed functions are then clustered using a similar-

ity measure (𝑠𝑖𝑚) based on the inputs and outputs of the functions.

Consider a query 𝑞 and a potential search result 𝑠 . Let 𝑄 and 𝑆 be

sets of segments identified by SLACC from 𝑞 and 𝑠 respectively. We

define the IO similarity as:

𝑑𝐼𝑂 (𝑞, 𝑠) =
1

|𝑄 |

∑

𝑞𝑖 ∈𝑄

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝑠𝑘 ∈𝑆

𝑠𝑖𝑚(𝑞𝑖 , 𝑠𝑘)

The value 𝑑𝐼𝑂 range from [0.0, 1.0]. Higher similarity corresponds

to higher values of 𝑑𝐼𝑂 .

The IO similarity between any 𝑞 and 𝑠 is not commutative.

This is because it is often preferred for a search result to con-

tain extra behavior as compared to the query [76]. Also, there

may be a many-to-one mapping where multiple query segments

match with a single segment in the result. Consider an example: let

𝑄 = {𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5} be set of five segments and 𝑆 = {𝑠1, 𝑠2, 𝑠3}

be set of three segments identified by SLACC. Segments 𝑞1, 𝑞2 and

𝑞3 find segments 𝑠1, 𝑠2 and 𝑠1 to be the most similar, respectively,

with similarity scores (𝑠𝑖𝑚) of 𝑠𝑖𝑚(𝑞1, 𝑠1) = 0.8, 𝑠𝑖𝑚(𝑞2, 𝑠2) = 0.95

and 𝑠𝑖𝑚(𝑞3, 𝑠1) = 0.7. Notice how 𝑠1 is identified as the closest

match for both 𝑞1 and 𝑞3. Segments 𝑞4 and 𝑞5 did not find seg-

ments in 𝑆 with similarity greater than 0.0. In this case, 𝑑𝐼𝑂 (𝑞, 𝑠) =
0.8+0.95+0.7+0.0+0.0

5 = 0.49.

As a practical example, say a developer is looking for a Java API

for QuickSelect2, which finds the 𝑘𝑡ℎ smallest number from an array

of integers. It has a method that identifies a random pivot in the

array and a method that swaps values. However, these methods do

not call each other. Thus, to characterize the behavior of this file,

we characterize and aggregate the behavior of segments of the file.

Then, when comparing to a custom Python QuickSort3 API that

has a function to recursively find a random pivot and perform a

swap operation, a match is identified even though the number of

methods and how they accomplish the same task are different.

2from org.apache.datasketches
3stackabuse.com/quicksort-in-python

208

https://stackabuse.com/quicksort-in-python/

Cross-Language Code Search using Static and Dynamic Analyses ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

The dynamic similarity between all the functions in Figure 1 is

shown in Table 1. We noticed in ğ 3.2 that 1(a) and 1(b) were very

similar based on 𝑑𝐴𝑆𝑇 , but functionally different. Using behavioral

analysis, we see that they are indeed functionally different as 𝑑𝐼𝑂 =

0.5 for both measures of 𝑑𝐼𝑂 . In contrast, 1(a) and 1(c) are similar

based on behavior (𝑑𝐼𝑂 = 1.0), even though structural similarity

(𝑑𝐴𝑆𝑇) is low.

3.4 Non-dominated Ranking

We use Non-dominated Sorting, which is a component of NSGA-

II [19], and orders results with multiple objectives without aggre-

gation. COSAL uses this algorithm to rank search results based on

𝑑𝑡𝑜𝑘𝑒𝑛 , 𝑑𝐴𝑆𝑇 , and 𝑑𝐼𝑂 . We note that the similarity measures consid-

ered in this work are weakly correlated, as described in ğ 7.2, making

this an appropriate algorithmic choice. We use the algorithm in a

novel context; this is the first work that uses non-dominated sorting

for code-to-code search.

In our context, each similarity measure is an objective. COSAL

incorporates non-dominated ranking as follows:

(1) Individual Search: For a query, top TOP_N search results

are fetched using each similarity measure (𝑑𝑡𝑜𝑘𝑒𝑛 , 𝑑𝐴𝑆𝑇 and

𝑑𝐼𝑂) independently.

(2) Merge: The individual search results are merged such that

duplicate instances of search results are removed.

(3) Sort: The merged results are sorted by NSGA-II [19] by mea-

suring the dominance of one result over the other.

A search result 𝑠 is said to dominate a search result 𝑡 , if 𝑠 is no

worse than 𝑡 in any objective and is better than 𝑡 in at least one

objective. Otherwise, there is a tie. In case of a tie, we select the

result that has the dominant objective closest to the optimal value.

For example, consider the following scenarios of the relationship

between 𝑠 and 𝑡 and three hypothetical similarity measures, 𝑑𝐴 , 𝑑𝐵 ,

and 𝑑𝐶 , where higher values mean higher similarity:

scenario 𝒅𝑨 𝒅𝑩 𝒅𝑪 winner

1 s > 𝑡 s > 𝑡 s > 𝑡 𝑠

2 𝑠 = 𝑡 𝑠 = 𝑡 s > 𝑡 𝑠

3 𝑠 = 𝑡 𝑠 < t s > 𝑡 tie

4 𝑠 < t 𝑠 < t s > 𝑡 tie

For scenario 1, 𝑠 is better than 𝑡 on all measures, making 𝑠 thewinner.

In scenario 2, since 𝑠 is better than 𝑡 on one measure, and is never

worse than 𝑡 , 𝑠 is the winner. In the third scenario, 𝑠 is better than

𝑡 on one measure (𝑑𝐶), and worse on another (𝑑𝐵). Therefore, there

is a tie. Similarly on scenario 4, 𝑠 is worse than 𝑡 on two measures

and better on one, so it is also a tie. Ties are broken by looking at

the search results that are better for each similarity measure and

then comparing to optimal values (typically 1 or 0, depending on

whether high or low values represent better similarity).

Using the examples from ğ 2, consider the Python functions 1(d)

and 1(b) in Figure 1 as queries. The potential cross-language results

are 1(a) and 1(c). We show the relationships between the potential

results using three similarity measures; see Table 1 for specific

values. The winner for each comparison is bolded for clarity.

query 𝒅𝒕𝒐𝒌𝒆𝒏𝒔 (↑) 𝒅𝑨𝑺𝑻 (↓) 𝒅𝑰𝑶 (↑) winner

1(d) 1(a) > 1(c) 1(a) < 1(c) 1(a) = 1(c) 1(a)

1(b) 1(a) = 1(c) 1(a) < 1(c) 1(a) < 1(c) tie

When the query is 1(d), 1(a) is better than 1(c) on two of the

measures, and equal on the third, thus making 1(a) the winner.

When the query is 1(b), 1(a) is the winner for 𝑑𝐴𝑆𝑇 and 1(c) is the

winner for 𝑑𝐼𝑂 , meaning we need to break the tie.

To break ties, we compute distances between each search result

and the optimal value for each similarity measure (omitting similar-

ity measures on which the results are tied). The optimal value for

𝑑𝐴𝑆𝑇 is 0, as that represents isomorphic ASTs. The optimal value for

𝑑𝐼𝑂 is 1, as that represents a perfect match in code behavior (i.e., the

search result and query return the same output for all the provided

inputs). The optimal value for 𝑑𝑡𝑜𝑘𝑒𝑛 is also 1, as this represents

highly similar syntax. We use a normalized distance because the

similarity measures have different ranges of values. Thus, normal-

izing ensures a uniform comparison scale between the different

similarity measures and subsequently avoid the precedence of one

similarity measure over other similarity measures. The normalized

distance of a similarity measure (𝑋) on a snippet 𝑠 is computed

as
𝑑𝑋 (𝑠)−𝑚𝑖𝑛 (𝑑𝑋)

𝑚𝑎𝑥 (𝑑𝑋)−𝑚𝑖𝑛 (𝑑𝑋)
. For 𝑑𝑡𝑜𝑘𝑒𝑛 and 𝑑𝐼𝑂 , the𝑚𝑎𝑥 and𝑚𝑖𝑛 values

are 0.0 and 1.0 respectively. In the case of 𝑑𝐴𝑆𝑇 , the𝑚𝑖𝑛 value is 0

and the max value is set to the largest value of 𝑑𝐴𝑆𝑇 from all the

individual search results. This is because 𝑑𝐴𝑆𝑇 , can theoretically be

infinitely large so we use the largest observed value. For example,

𝑚𝑎𝑥 (𝑑𝐴𝑆𝑇) for the query 1(d) is 21 from Table 1.

Continuing with the example, the normalized distance for 1(a) to

the optimal 𝑑𝐴𝑆𝑇 is 0.048. We do not need to consider the distance

for 1(c) since 1(a) was thewinner for𝑑𝐴𝑆𝑇 . The normalized distance

between 𝑑𝐼𝑂 of 1(c) is 0.5. Since the normalized 𝑑𝐴𝑆𝑇 of 1(a) is

closer to the optimal value compared to the normalized 𝑑𝐼𝑂 of 1(c),

COSAL ranks 1(a) as the winner for the query 1(b).

We note that similarity measures characterizing other code re-

lationships, such as software metrics [9, 62], could be added with

relative ease. Non-domination ranking preserves each objective’s in-

dependence and there are no weights that require tuning; see ğ 7.3.3.

4 RESEARCH QUESTIONS

There does not exist a cross-language code-to-code search tool to

compare against directly (see ğ 8). Thus, our evaluation assesses

each part of COSAL: the ranking algorithm, within-language code-

to-code search compared to state-of-the-practice and state-of-the-

art tools, and cross-language clone detection. The first research

question (RQ) examines the similarity measures and ranking:

RQ 1

Does non-dominated ranking using tokens, AST and IO yield

better results for cross-language code-to-code search as com-

pared to any subset or aggregation of those search similarity

measures?

After validating the choice of using multiple code similarity

measures and non-domination ranking, COSAL is compared to the

state-of-the-practice search in GitHub Search and ElasticSearch

which are based on full text search. We ask:
RQ 2

How effective is COSAL in cross-language code-to-code search

compared to state-of-the-practice public code search tools?

209

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece George Mathew and Kathryn T. Stolee

Table 2: Summary of RQs with the application (code-to-code search, clone detection), baselines, benchmarks (AtCoder or Big-

CloneBench) and the language(s). COSAL<𝑠𝑖𝑛𝑔𝑙𝑒 > represents COSAL using a single similarity measure.

RQ Purpose Application Baselines Language(s) Benchmarks

1 Merit of using multiple similarity measures Code-to-Code Search COSAL <𝑠𝑖𝑛𝑔𝑙𝑒> Java↔ Python AtCoder

2 Vs state-of-the-practice cross-language tools Code-to-Code Search ElasticSearch, GitHub Java↔ Python AtCoder

3 Vs state of the art within-language tools Code-to-Code Search FaCoY Java AtCoder, BigCloneBench

4 Using COSAL to identify similar code Clone Detection CLCDSA, ASTLearner Java↔ Python AtCoder

FaCoY [40], the state-of-the-art in code-to-code search is within-

language, but COSAL is a multi-language tool. We limit our tool to

within-language code-to-code search and evaluate it against FaCoY.

RQ 3

How effective is COSAL in within-language code-to-code

search as compared to the state-of-the-art?

Code-to-code search is often used in clone detection [66, 68]. Us-

ing COSAL for clone detection, we compare against ASTLearner [63],

CLCDSA [56], and SLACC [51]:

RQ 4

Can COSAL effectively detect cross-language code clones?

5 STUDY

The setup for each RQ is different. In all evaluations we make a

best effort to be fair in the comparison. The RQs are summarized in

Table 2, which lists the application (either code-to-code search or

clone detection), baseline approaches, language(s), and benchmarks.

5.1 Data

The data used in this study are available online [2].

5.1.1 AtCoder (AtC). We require a labeled set of similar code snip-

pets in multiple programming languages for queries and search

results. Hence, like prior studies [56, 63], we use AtCoder [5] to cre-

ate a dataset of similar code snippets across different programming

languages. Competitive programming contests like AtCoder [5]

have open problems where users can submit their solutions in most

common programming languages. Solutions which are syntactically

incorrect or do not pass the extensive test suite are filtered out by

AtCoder. All the accepted solutions for a single problem implement

the same functionality and are behavioral code clones. If a search

query and a result belong to the same problem, we consider the

result to be valid and the query-result pair as valid code clones;

the problem solutions are the ground truth in our experiments. We

limit our study to the most recent 398 problems which had solutions

in Java or Python. For these problems, we crawled 43,146 files from

all the accepted Java and Python solutions. Table 3 lists an overview

of the dataset used for the study; 307 of the 398 problems have both

a Java and Python solutions.

5.1.2 BigCloneBench (BCB). BigCloneBench [79] is one of the

largest publicly available code clone benchmarks for Java with over

55,000 source code files harnessed from approximately 25,000 open-

source repositories. Table 3 lists a summary of BigCloneBench. We

consider query-result snippets belonging to the same functionality

as a valid search result. Fragments of code with less than 6 lines or

50 tokens are not considered which is a standard minimum clone

size for benchmarking [12, 40, 79].

5.2 Baselines

We compare COSAL to each of the other tools by searching over

the same data sets. For RQ3 and RQ4, we used the source code in

the GitHub repositories of the tools for experimentation.

5.2.1 RQ2 – Text Search. Google search is commonly used by de-

velopers for code search [75]. Textual queries can take the form of

keywords, expected code, or exceptions raised. In our study, Google

failed to index our code repository after a six week wait. As a result,

we turned to a custom full text search using ElasticSearch [29]

which takes in a code snippet, tokenizes the code and identifies

results based on Lucene’s Practical Scoring Engine [6]. For this

study, each Java and Python file is added to an ElasticSearch index

and searched using the ElasticSearch programmatic search API.

5.2.2 RQ2 – GitHub Search. GitHub search engine is an IR-based

search model over code repositories, including issues, pull request,

documentation, and code data [81]. Using the built-in code search

on GitHub, code can be searched globally across all of GitHub, or

searched within a particular repository or organization. We add the

Java and Python files from the dataset to a single GitHub repository

and search within the repository using the GitHub Search API [80].

5.2.3 RQ3 – FaCoY. FaCoY [40] is a Java-based code-to-code search

tool that uses a query alternation approach using relevant keywords

from StackOverflow Q&A posts. FaCoY can be modified to change

its search database from Q&A posts to custom datasets. In our ex-

periments, we redirected the search to the repositories of code from

the AtCoder and BigCloneBench datasets. Similar to the experi-

ments in the FaCoY evaluation when comparing against research

tools, FaCoY does not use StackOverflow in our baseline.

5.2.4 RQ4 – ASTLearner. Perez and Chiba developed a semi-

supervised cross-language syntactic clone detection method that

we call ASTLearner [63]. It uses a skip-gram model and an LSTM

based encoder. The encodings train a feed forward neural network

classifier using negative sampling to identify clones. ASTLearner

considered code as clones if the classifier score is greater than 0.5.

5.2.5 RQ4 – CLCDSA. Cross Language Code Clone Detection [56]

(CLCDSA), uses syntactic features and API documentation to detect

cross-language clones in Java, Python and C#. Nine features are

extracted from the AST; API call similarity is learned using API

documentation and aWord2Vec [54] model. The vectorized features

train a reconfigured Siamese architecture [8] using a large amount

210

Cross-Language Code Search using Static and Dynamic Analyses ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 3: Summaries of AtCoder and BigCloneBench datasets

AtCoder (AtC) BigCloneBench (BCB)

Metric Java Python Metric Java

#Problems 364 333 #Features 43

#Files 20,828 22,318 #Files 55,499

Avg. Files/Problem 57 67 Avg. Files/Feature 1291

#Methods 81,896 10,020 #Methods 765,331

Avg. Lines/File 51 14 Avg. Lines/File 278

of labeled data. CLCDSA uses cosine similarity to detect clones; the

best F1 scores were when the similarity threshold was 0.5.

5.2.6 RQ4 – SLACC. Simion-based Language-Agnostic Code

Clones [51] (SLACC), uses IO behavior to identify clones. It is

also used in COSAL for dynamic similarity. Here, we use SLACC

as a baseline in its original context, clone detection. We use the

same values for the hyper-parameters set by the authors of SLACC:

MIN_STMTS is set to 1; ARGS_MAX is set to 256; SIM_T is set to 1.0.

5.3 Metrics

5.3.1 Code Search. For code search applications (RQ1, RQ2, RQ3),

we use Precision@k, SuccessRate@k, and MRR.

Precision@k or P@k is the average percentage of relevant results

in the top-k search results for a query [31, 40]. SuccessRate@k or

SR@k is the percentage of queries for which one or more relevant

result exists among the top-k search results [31, 49]. MRR is the

Mean Reciprocal Rank of the relevant results for a query [31, 40, 49].

Consider a query 𝑞 in a set of queries 𝑄 . 𝑅𝑘𝑞 is set of all relevant

results in the top k results for𝑞.𝐵𝑅(𝑞) is the rank of the first relevant
search result for 𝑞. 𝛿𝑘 is an indicator function which returns 1 if the
input is less than or equal to 𝑘 and 0 otherwise. Mathematically,

𝑃@𝑘 =

∑
𝑞∈𝑄

|𝑅𝑘
𝑞 |

𝑘

|𝑄 |
𝑆𝑅@𝑘 =

∑
𝑞∈𝑄

𝛿𝑘 (𝐵𝑅 (𝑞))

|𝑄 |
𝑀𝑅𝑅 =

∑
𝑞∈𝑄

1
𝐵𝑅 (𝑞)

|𝑄 |

Precision@k, SuccessRate@k and MRR range [0.0, 1.0]. For better

readability, in the rest of study, we report these metrics as per-

centages ranging between [0, 100]. For 𝑘 = 1, Precision@k and

SuccessRate@k are the same. For higher values of 𝑘 , SuccessRate@k

indicates whether there is something relevant in the results, Preci-

sion@k measures how relevant the 𝑘 results are on average. We set

𝑘 = {1, 3, 5, 10}. Higher values of MRR imply relevant results are

ranked higher in the results.

5.3.2 Clone Detection. For clone detection [56, 63] (RQ4), we use

Precision, Recall and F1 score. Precision (P) is the ratio of valid

clones to the number of retrieved clones. Recall (R) is the ratio of

the number of accurately detected clones to the number of total

actual clones. F1 or F-Measure, is the harmonic mean of precision

and recall. We define |𝐶+ | as the number of valid clones identified,

|𝐶− | as the number of valid clones not identified, and |𝑁𝐶+ | as the

number of invalid clones identified:

𝑃 =

|𝐶+ |

|𝐶+ | + |𝑁𝐶+ |
𝑅 =

|𝐶+ |

|𝐶+ | + |𝐶− |
𝐹1 =

2 ∗ 𝑃 ∗ 𝑅

𝑃 + 𝑅

Precision, Recall and F1 range from [0.0, 1.0]. Like the code search

metrics, we report Precision, Recall and F1 as percentages between

[0, 100] for better readability. Higher values of precision mean the

detected clones contain fewer false positives and higher values of

recall mean more clones were identified with fewer false negatives.

5.4 Experimental Setup

Our experiments were run on a Ubuntu 18.04 LTS Virtual Machine

with 32 CPUs and 64GB memory using a Dell PowerEdge R640

server with Intel Xeon Silver 4210 CPU @ 2.2 GHz and VMware

ESXi 6.7.0 hypervisior. The experiments have four hyper-parameters:

5.4.1 Minimum Token Size. (MIN_TOK_SIZE in ğ 3.1) This is set to

three. IR based techniques [33, 86] on source code find that tokens

less than three characters are irrelevant.

5.4.2 Minimum Segment Size. (MIN_STMTS in ğ 3.3) A small value

of MIN_STMTS results in more granular snippets. We set it to 1 for

maximum number of behavioral snippets of code.

5.4.3 Maximum Number of Arguments. (ARGS_MAX in ğ 3.3) Prior

work finds ARGS_MAX=256 was sufficient for cross-language clones

in Google Code Jam [27] , so we use the same.

5.4.4 Number of Individual Search Results. (TOP_N in ğ 3.4) This is

set to 100. We experimented on COSAL with 10% of the AtCoder

dataset varying TOP_N in {10, 20, 50, 100, 200, 500}. For TOP_N greater

than 100, we see aminimal change in the code searchmetrics. Hence,

for each individual search, we fetch the top 100 search results.

6 RESULTS

We present the results of each RQ in turn.

6.1 RQ1: Single vs Multiple Search Similarity
Measures

In a cross-language search context, we compare the results of

COSAL with multiple search similarity measures to COSAL with

subsets of the similarity (e.g., COSAL𝐴𝑆𝑇 is COSAL with only the

AST similarity). The validation of this study was performed using

‘leave-one-out’ cross-validation [72] where each code fragment is

used as a query against all other fragments in the repository. We

use this approach over the traditional k-fold cross validation since

‘leave-one-out’ is approximately unbiased and more thorough [50].

Each of the 43,146 code fragments is used as a query. The results

are detailed in Table 4. Overall, COSAL outperforms the other

formulations that use subsets of the similarity measures. It also

outperforms an alternate ranking approach based on weighted

measures (KDTree [13]).

We observe that token-based search (COSAL𝑡𝑜𝑘𝑒𝑛𝑠) and AST-

based search (COSAL𝐴𝑆𝑇) are less precise individually compared

to dynamic search (COSAL𝑆𝐿𝐴𝐶𝐶), but have higher success rate for

𝑘 = {5, 10}. When both the static similarity measures are used as

parts of a bi-similarity search (COSAL𝑠𝑡𝑎𝑡𝑖𝑐), we see better metrics

compared to each similarity individually, and better metrics than

the dynamic approach COSAL𝑆𝐿𝐴𝐶𝐶 in P@k and SR@k when 𝑘 > 1.

The power of the technique comes from using static and dynamic

information without converting them into a single search metric.

Rather than non-dominated ranking, an alternate avenue would be

a weighted approach. For example, KD𝐼𝑂+𝐴𝑆𝑇+𝑡𝑜𝑘𝑒𝑛 uses 𝑑𝑡𝑜𝑘𝑒𝑛 ,

𝑑𝐴𝑆𝑇 and 𝑑𝐼𝑂 to build a KDTree [13], a common approach used

211

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece George Mathew and Kathryn T. Stolee

Table 4: RQ1 & RQ2: Cross-language code search re-

sults on AtCoder dataset comparing COSAL against the

state-of-the-practice (SotP) GitHub, and ElasticSearch.

COSAL𝑡𝑜𝑘𝑒𝑛 , COSAL𝐴𝑆𝑇 , COSAL𝑆𝐿𝐴𝐶𝐶 use single search

similarities (Single Sim.) 𝑑𝑡𝑜𝑘𝑒𝑛 , 𝑑𝐴𝑆𝑇 and 𝑑𝐼𝑂 respectively.

COSAL𝑠𝑡𝑎𝑡𝑖𝑐 uses 𝑑𝑡𝑜𝑘𝑒𝑛 and 𝑑𝐴𝑆𝑇 with non-domination.

KD𝐼𝑂+𝐴𝑆𝑇+𝑡𝑜𝑘𝑒𝑛performs code search with KDTree using

𝑑𝑡𝑜𝑘𝑒𝑛 , 𝑑𝐴𝑆𝑇 and 𝑑𝐼𝑂 . Code search techniques using multiple

similarity measures are represented withMulti Sim.

Search MRR P@1/3/5/10 SR@1/3/5/10

SotP
ElasticSearch 29 27/25/23/24 27/44/57/75

GitHub 37 32/36/38/39 32/49/60/73

Single

Sim.

COSAL𝑡𝑜𝑘𝑒𝑛 31 27/31/40/42 27/48/58/72

COSAL𝐴𝑆𝑇 34 34/41/45/44 34/41/58/82

COSAL𝑆𝐿𝐴𝐶𝐶 45 42/42/35/27 42/45/47/47

Multi

Sim.

COSAL𝑠𝑡𝑎𝑡𝑖𝑐 43 40/45/44/48 40/72/85/86

KD𝐼𝑂+𝐴𝑆𝑇+𝑡𝑜𝑘𝑒𝑛 39 39/41/40/37 39/56/71/89

COSAL 64 58/64/65/61 58/88/91/94

for information retrieval [21, 30]. Although KD𝐼𝑂+𝐴𝑆𝑇+𝑡𝑜𝑘𝑒𝑛 and

COSAL use the same similaritymeasures for code search, the former

under-performs on all metrics compared to the latter. This suggests

that aggregation of similarity measures into a single measure does

not help code search as these measures complement each other.

Using non-dominated ranking with static and dynamic similarity

measures improves the quality of results for code-to-code search

compared to subsets or a weighted aggregation of measures.

6.2 RQ2: State-of-the-Practice Cross-Language
Code-to-Code Search

We compare COSAL against GitHub Search (ğ 5.2.2) and a custom

full text search based on ElasticSearch (ğ 5.2.1). We use ‘leave-one-

out’ cross-validation with each of the 43,146 code fragments as a

query. Results are shown in Table 4.

We observe that between the textual code search tools, GitHub

Search has better MRR, Precision@k and SuccessRate@k compared

to ElasticSearch except for SuccessRate@10. Yet, GitHub Search and

ElasticSearch are worse off compared to COSAL in all metrics.

COSAL obtains better Precision@k, SuccessRate@k andMRR com-

pared to GitHub Search and ElasticSearch.

6.3 RQ3: State-of-the-Art Code-to-Code Search

FaCoY [40] is a state-of-the-art code-to-code search tool for Java.

Hence, we compare COSAL against FaCoY using Java code snippets

only. This reduces the AtCoder dataset to 351 problems with 20,673

Java files. To ensure that the dataset is not skewed due to outlier

projects with limited submissions, we use Java projects with 10

or more submissions. Like RQ1 and RQ2, we use ‘leave-one-out’

cross-validation with each of the 20,673 code fragments as a query

and the remaining problems as the search index.

Table 5: RQ3: Single-language Java code search comparing

COSAL to the state-of-the-art (SotA) FaCoY on AtCoder and

BigCloneBench.

Search MRR P@1/3/5/10 SR@1/3/5/10

A
tC

o
d
e
r

SotA FaCoY 51 37/35/33/32 37/40/49/63

Single

Sim.

COSAL𝑡𝑜𝑘𝑒𝑛𝑠 46 36/32/31/29 36/40/45/58

COSAL𝐴𝑆𝑇 40 38/33/31/28 38/42/51/69

COSAL𝑆𝐿𝐴𝐶𝐶 40 39/39/38/32 39/48/52/59

Multi

Sim.

COSAL𝑠𝑡𝑎𝑡𝑖𝑐 53 43/45/44/41 43/58/65/77

COSAL 57 50/53/54/48 50/63/75/88

B
ig
C
lo
n
e
B
e
n
ch SotA FaCoY 76 70/68/68/65 70/72/74/81

Single

Sim.

COSAL𝑡𝑜𝑘𝑒𝑛𝑠 75 69/65/61/59 69/72/74/81

COSAL𝐴𝑆𝑇 72 68/61/55/51 68/74/76/83

COSAL𝑆𝐿𝐴𝐶𝐶 07 06/02/01/01 06/07/07/09

Multi

Sim.

COSAL𝑠𝑡𝑎𝑡𝑖𝑐 81 76/73/72/67 76/81/89/94

COSAL 81 77/73/72/68 77/81/89/94

The results for MRR, Precision@k and SuccessRate@k are tabu-

lated in Table 5. COSAL has better scores on all metrics compared to

FaCoY. Even if COSAL is used with only static similarity measures

(COSAL𝑠𝑡𝑎𝑡𝑖𝑐), it consistently performs better than FaCoY.

Since, FaCoY supports only Java, we also compare FaCoY to

COSAL using BigCloneBench. This experiment moves us toward

evaluating the feasibility of COSAL with open-source projects. We

again use ‘leave-one-out‘ cross-validation where each file from

BigCloneBench is used as a query and the other files are used as

search results. A search result is considered valid if it has the same

functionality group as the search query.

Compared to AtCoder, the BigCloneBench dataset yields better

results for all techniques. This is because the 43 functionalities in

BigCloneBench have minimal overlap. This can be corroborated by

the better scores for token-based search compared to the AST-based

search on BigCloneBench dataset. In contrast, on AtCoder, AST-

based search out-performs token-based search. Like the AtCoder

dataset, search based on a combination of measures (COSAL𝑠𝑡𝑎𝑡𝑖𝑐 ,

COSAL) yield better results compared to FaCoY.

Only 4,984 (9%) of the files from BigCloneBench are executable

by SLACC; the remaining files depend on external libraries. Thus,

dynamic similarity (COSAL𝑆𝐿𝐴𝐶𝐶) has much lower scores in Ta-

ble 5. Subsequently, the inclusion of dynamic similarity hardly

contributes to the results of COSAL as highlighted by their similar

values for COSAL𝑠𝑡𝑎𝑡𝑖𝑐 and COSAL. We dive deeper into the role

of dynamic similarity in ğ 7.1.

Compared to state-of-the-art Java code-to-code search FaCoY,

using dynamic information helps COSAL obtains better search

results when executable code snippets are present. In the absence

of dynamic information, a combination of AST and token-based

similarity measures still yields better results than FaCoY.

6.4 RQ4: Cross-Language Code Clone Detection

As there is no existing tool for cross-language code-to-code search,

we instead compare to cross-language code clone detection tech-

niques: ASTLearner, CLCDSA and SLACC. While code-to-code

212

Cross-Language Code Search using Static and Dynamic Analyses ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 6: RQ4: Cross-language performance of COSAL in

clone detection compared to ASTLearner, CLCDSA, and

SLACC on AtCoder.

Clone Detector Precision Recall F1

Single Sim.

ASTLearner 25 80 38

CLCDSA 49 83 62

SLACC 66 19 30

Multi Sim.
COSAL𝑠𝑡𝑎𝑡𝑖𝑐 48 85 61

COSAL 55 89 68

search can be part of clone detection, they are different. For a given

code snippet, code clone detection returns an identical code snip-

pet and code-to-code search returns a set of potentially relevant

snippets. Hence, to use COSAL as a clone detection tool, we select

the top-1 ranked search result returned by non-dominated ranking.

ASTLearner and CLCDSA build deep learning models and re-

quire a training, validation and testing set. Hence we randomly

divide our dataset into these three sets using the same approach

adopted in CLCDSA [56]. We only consider projects with at least

20 Java and 20 Python submissions, reducing the dataset to 302

different problems. For each problem, we select ten submissions

each from Java and Python as part of the training set, five for the

validation set and five for the test set. We used the default hyper-

parameters from ASTLearner and CLCDSA to build their models.

Since COSAL and SLACC do not use machine learning models, we

add all the submissions from the training set to the search data-

base and use the test set for evaluation. We do not include the

validation set in the search database to ensure a fair comparison to

ASTLearner and CLCDSA. To account for variance, we repeat this

step 10 times and report the mean precision, recall and F1 scores.

Results are shown in Table 6, separating the techniques that

use a single similarity measure (Single Sim.) from those that use

multiple similarity measures (Multi Sim.). SLACC is the most precise

technique on this dataset but has extremely low recall compared to

other techniques, and hence the lowest F1. The low recall on SLACC

is because it requires executable code snippets. COSAL has better

precision and recall compared to the static similarity approaches

ASTLearner and CLCDSA. If COSAL is used only with the static

similarity measures (COSAL𝑠𝑡𝑎𝑡𝑖𝑐), the precision and recall is still

better than ASTLearner and comparable to CLCDSA.

For code clone detection, COSAL obtains better precision, recall

and F1 scores compared to ASTLearner and CLCDSA, without

the need to build models. COSAL has lower precision to SLACC

but much better recall and F1 score.

7 DISCUSSION

We have evaluated COSAL extensively against prior work in code-

to-code search and clone detection. In all cases, it outperforms the

competition without the need to build, train, or update models. In

this section, we discuss the cost/benefit of dynamic analysis, the

potential for scalability, and threats to the validity.

Table 7: Performance based on 4,984 executable code snip-

pets from BigCloneBench.

Search MRR P@1/3/5/10 SR@1/3/5/10

SotP GitHub 68 64/58/54/46 64/68/72/75

SotA FaCoY 79 74/70/68/57 74/76/81/84

Single

Sim.
COSAL𝑆𝐿𝐴𝐶𝐶 82 81/78/74/67 81/83/89/94

Multi

Sim.

COSAL𝑠𝑡𝑎𝑡𝑖𝑐 80 78/75/72/66 79/83/87/91

COSAL 83 81/79/74/68 81/86/91/96

Table 8: Pearson’s correlation (𝑟) between 𝑑𝑡𝑜𝑘𝑒𝑛 , 𝑑𝐴𝑆𝑇 and

𝑑𝐼𝑂 for cross-language snippets on AtCoder (AtC) and

within-language Java snippets on AtCoder and on 4,984 ex-

ecutable BigCloneBench(BCB) datasets.

Dataset Language
Correlations (𝑟)

𝑡𝑜𝑘𝑒𝑛,𝐴𝑆𝑇 𝑡𝑜𝑘𝑒𝑛, 𝐼𝑂 𝐴𝑆𝑇, 𝐼𝑂

AtC Java ↔ Python -0.38 0.33 -0.41

AtC Java ↔ Java -0.49 0.51 -0.68

BCB Java↔ Java -0.46 0.53 -0.71

7.1 On the Cost/Benefit of Dynamic Analysis

In ğ 6.3 and Table 5, we observe a low scores for code search using

IO-based similarity (COSAL𝑆𝐿𝐴𝐶𝐶) compared to other techniques

due to the small sample of files in BigCloneBench (9%) with exe-

cutable code. To study the relative contribution of dynamic analysis

to COSAL results, we repeat the validation study on BigCloneBench

but restricted to the files that can be executed (4,984).

Results on the executable dataset are slightly better for all the

techniques compared to the complete BigCloneBench dataset (Ta-

ble 7). Although COSAL𝑆𝐿𝐴𝐶𝐶 is slightly better than COSAL𝑠𝑡𝑎𝑡𝑖𝑐 ,

executing snippets takes more time and memory, making code

search slow and impractical if the runtime data are not cached.

Since the gains are not very high with the BigCloneBench dataset,

it might be sufficient to rely on static similarity in this case.

However, this cannot be generalized across datasets as Big-

CloneBench is built on Java code from open-source projects. For

cross-language search (Table 4), using dynamic and static similarity

measures vastly improves the results. This is due to the syntactic dif-

ferences between languages which can be overcome in many cases

with dynamic information [35]. Hence, the benefit of including

dynamic similarity must be balanced against the cost and context.

7.2 On Non-dominated Sorting

For cross-language code search, combining the similarity measures

using an aggregated weighted approach (KD𝐼𝑂+𝐴𝑆𝑇+𝑡𝑜𝑘𝑒𝑛) results

in lower MRR, P@k and SR@k compared to the non-dominated

sorting approach (Table 4). As one potential explanation, this poorer

performance for the aggregation approach could be a result of bias

due to the independence or weak correlation between the three

similarity measures [17] . In this section, we explore the impact of

the correlations between the similarity measures.

213

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece George Mathew and Kathryn T. Stolee

1 class HashMultiSet<E> ... {

2 ...

3 public int count(Object element) {

4 Count frequency = Maps.safeGet(backingMap, element);

5 return (frequency == null) ? 0 : frequency.get();

6 }

7 ...

8 }

(a) Method that returns count of a MultiSet from google-guava

1 class Counter(dict):

2 """

3 ... count ...

4 """

5 ...

6 def __getitem__(key):

7 return self.get(key, 0)

8 ...

(b) Function to get count of a key from a Counter from

collections library.

Figure 4: Open Source code; the query in (a) yields (b) based

on cross-language static and dynamic information

Table 8 shows the Pearson’s correlation (𝑟) between the three sim-

ilarity measures for cross-language and within-language snippets

on 20 repeats of 1000 random pairs of snippets. Overall, for the cross-

language analysis, we observe lower correlations compared to the

within-language analyses. The cross-language correlations areweak

(0.20 ≤ |𝑟 | ≤ 0.39) [55] to moderate (0.40 ≤ |𝑟 | ≤ 0.59). The single-

language correlations are moderate to strong (0.60 ≤ |𝑟 | ≤ 0.79).

Connecting this to our results, the weak to moderate correlations

in the cross-language context may have contributed to relatively

better performance of non-dominated sorting. Since non-dominated

sorting is effective for search objectives with low correlation [82,

92], it seems appropriate for cross-language code-to-code search.

Studies have also shown that non-dominated sorting works best for

fewer objectives [23, 91]. As COSAL is extended with more metrics

in the future, we will want to revisit this analysis.

However, as correlation impacts the performance of the ranking

algorithm, non-dominated sorting is not a panacea. When the simi-

larity measures are more strongly correlated, which our analysis

shows is true for single-language code search, a different approach

may be needed, such as aggregation or evolutionary algorithms.

7.3 Scalability Exploration

We explore three scalability concerns: indexing and searching open-

source code, adding new languages, and adding similarity measures.

7.3.1 Open-Source Repositories. We used the AtCoder and Big-

CloneBench datasets to benchmark our experiments, similar to

prior art in code search and clone detection [40, 71, 77, 78]. Yet,

neither dataset is particularly realistic. AtCoder is composed of

programming contest submissions and is not a true representation

of open-source code. BigCloneBench contains example code clones,

making clone detection and code search relatively easier. To some

extent, these datasets set us (and the baselines) up for success.

We want to explore how COSAL could work with an arbitrary

open-source project. To do this, we consider three popular open-

source libraries for Java and Python: Guava Java library by Google,

commons-collections Java library by Apache Software Foundation,

and collections Python 2.7 system library.

Consider the code snippets in Figure 4. For this example, COSAL

uses 4(a) as the query, which counts the number of occurrences

of an object in the MultiSet. Across languages, COSAL identifies a

similar code snippet from the collections library in Python: 4(b)

returns the count of an element from a Counter. A Counter is a

Python collection, like a bag, that takes elements and maintains

a count of their occurrences. For this pair, we can see that they

share few common tokens (count, get), do not have similar ASTs,

but are behaviorally similar. Hence, the token-based and IO-based

similarity in COSAL influence the ranking of search results and

returns 4(b) as a valid search result for the query 4(a).

In our experiments, we see low scores for COSAL𝑆𝐿𝐴𝐶𝐶 since

only around 9% of the files in BigCloneBench had executable code.

In this open-source exploration, around 68% of the Java and all the

Python classes had executable code. The presence of dependent

code in the libraries compared to the isolated files in BigCloneBench

actually facilitated more widely applicable behavioral analysis.

Thus, we conclude that COSAL can be scaled to support open-

source projects in the current implementation. The token-based

and AST-based similarity measures for COSAL can be used on

any project or file(s) in its current version. Since the behavioral

similarity measure used by COSAL is heavily dependent on SLACC,

scaling to support new projects would require the projects have all

its dependencies satisfied and executable.

7.3.2 Support for New Languages. COSAL currently supports Java

and Python. While we have not demonstrated scalability to new

languages, we comment on the effort required.

For dynamic behavior, COSAL is dependent on SLACC [51], so

adding a new language to COSAL requires support in SLACC. How-

ever, COSAL𝑠𝑡𝑎𝑡𝑖𝑐 can be extended to new languages by adapting

the token and AST analyses. A language-specific tokenizer like

c-tokenizer [32] or a generic tokenizer like ANTLR [61] can be

used to parse code and convert it into tokens as detailed in ğ 3.1.

For the AST, COSAL uses a generic AST to represent source code

across different languages. Using a language-specific AST Parser

like clang for C [45] or roslyn for .NET [22], code could be parsed

and converted to the generic AST-based on the grammar available

in the GitHub code repository for COSAL [2]. If a feature specific

to a language is not supported by the grammar, a new node should

be created based on the feature’s syntactic structure.

7.3.3 Adding New Search Similarity Measures. COSAL uses three

search similarity measures for code-to-code search, which provides

a start for this line of research. New search similarity measures

can be added or existing similarity measures can be replaced in

COSAL. First, a similarity measure to compare code snippets has

to be defined. The similarity measure has to be a numerical value

to support non-dominated ranking of the search results. Next, an

index must be created characterizing the similarity measure. Lastly,

the similarity measure has to be updated in the configuration file.

7.4 Threats to Validity

Language Bias. COSAL was implemented for Java and Python

and may not generalize to other languages.

Baseline Bias. The ElasticSearch baseline for cross-language code-

to-code search (in RQ2) is not an exact representation of a code-to-

code search tool used by developers [70].

214

Cross-Language Code Search using Static and Dynamic Analyses ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Data Bias. The datasets are from a programming contest and a

code clone benchmark, which are not representative of industrial

or open-source coding practices. However, our initial investiga-

tion into open-source code (ğ 7.3.1) revealed that COSAL can be

successful in that context, but more exploration is needed.

Similarity Bias. COSAL uses three similarity measures based on

syntactic and semantic features for code search based on the context,

structure and IO behavior. Other similarity measures [9, 62] are

not explored in this study. But, COSAL can be extended to support

these similarity measures as described in Section ğ 7.3.3.

8 RELATED WORK

We present work in code similarity, search, and clone detection.

8.1 Code Similarity

Source code similarity is used to characterize the relationship be-

tween pieces of code in software engineering applications such as

program repair [28, 37, 57, 74, 75], code search [40, 49, 66], soft-

ware security [67, 84, 89] and identifying plagiarized code [7]. Code

similarity can be measured through static or dynamic analyses.

Techniques that use static code attributes to compute similar-

ity often parse code into an intermediate representation based on

text [7, 36, 47], AST [11, 34] or graph-based [26, 46] and compute

a measure for syntactic similarity. For cross-language syntactic

similarity, most techniques are text-based [43, 56, 58]. Tree- and

graph-based approaches have not been explored for cross-language

similarity due to language specific grammar. We tackle this chal-

lenge by creating a language-agnostic grammar by abstracting out

common features across languages to build a generic AST (ğ 3.2)

Techniques that execute code to determine similarity are classi-

fied as dynamic. For some techniques, functions are adjudged to

be similar if they have similar inputs, outputs, and side-effects [24,

35, 51, 78]. Other techniques use abstract program states after exe-

cutions to analyze the behaviors of the code fragments [39, 64, 77].

Dynamic measures are particularly successful in detecting code

clones across languages since it does not rely on syntactic prop-

erties [35, 51]. Limitations to this approach include the need to

execute the code which dictates the granularity [20] and runtime.

8.2 Code Search

In code search, the goal is to find code that is similar to a given query.

Historically, developers have preferred general search engines such

as Google and Bing when searching for code to reuse [73, 75, 76].

Some code search tools [1, 44] use code snippets as the query, a prob-

lem called code-to-code search. Solutions to code-to-code search

vary in several dimensions, we list three: within [31, 40] vs. across

languages [49, 56, 63], static [1, 34, 36] vs. dynamic analysis [51, 68],

and index-based [40, 49, 81] vs. model based [31, 56, 63].

In cross-language code-to-code search, the query is a code snip-

pet in one source language and the results are from a different target

language(s). AROMA [49], supports cross-language code-to-code

search across Java, Hack, JavaScript, and Python using static analy-

sis based on the parse tree. Since AROMA is not publicly available,

it is not used as a baseline in this study. InferCode [16] is a self su-

pervised cross-language (Java, C, C++ and C#) code representation

approach using Tree-based Convolutional Neural Networks based

on syntax subtrees. Since this work was performed in parallel to

our study, we have not benchmarked COSAL against InferCode

and leave that for future work. FaCoY [40] is a within-language

code-to-code search tool on JAVA that uses query alteration to find

semantically similar code snippets using Q&A posts.

8.3 Clone Detection

Clone detection is a special case of code-to-code search; results are

identified as clones if they meet a specified similarity threshold.

Clones are often categorized into four types: types I-III are based

on syntax and type IV is based on behavior.

Most code clone detection tools [11, 26, 34ś36, 46, 47, 78] have

been proposed for single language clone detection and on static

typed languages like Java [34, 42] and C [11, 34, 36, 88]. A small

number of tools support cross-language code clone detection [51,

56, 58, 63]. API2Vec [58] detects clones between two syntacti-

cally similar languages by embedding source code into a vectors

and subsequently comparing the similarity between the vectors.

CLCDSA [56] identifies nine features from the source code AST and

uses a deep neural network to learn the features and detect cross

language clones. Perez and Chiba [63] propose an LSTM-based

deep learning architecture using ASTs to detect clones in Java and

Python code. These three tools build machine learning models to

detect code clones. As a result, these techniques require a large

number of annotated training data to build the model and the hyper-

parameters need to be carefully optimized to avoid over-fitting.

SLACC [51] is a cross-language code clone detection tool that

uses IO profiles. It succeeds in detecting code clones with high

precision between programming languages with different typing

schemes. However, SLACC requires the code snippets to be exe-

cutable and as a result has low recall and a large runtime.

In a clone detection context, we use CLCDSA, the Perez and

Chiba approach, and SLACC as baselines for comparison (ğ 6.4).

9 CONCLUSION

We present COSAL, a cross-language code-to-code search tool that

uses static and dynamic analyses. It uses two static similarity mea-

sures based on extracted tokens from source code and a tree edit dis-

tance based on a generic AST, and one dynamic similarity measure

to compute IO similarity. For a given code search query, these three

similarity measures find results using non-dominated sorting. Our

experimental evaluation on 98,645 Java and Python files from At-

Coder and BigCloneBench datasets show that COSAL outperforms

state-of-the-art code search tools FaCoY and industrial benchmark

of GitHub code search. We also compare COSAL to state-of-the-

art clone detection techniques using the AtCoder dataset and find

that COSAL has better Recall and F1. Cross-language code-to-code

search appears to have a bright future, but more work is needed to

evaluate it for more languages and in relevant applications.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feedback.

This work is supported in part by the National Science Foundation

under NSF SHF #1645136, #1749936, and #2006947.

215

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1645136
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1749936
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2006947

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece George Mathew and Kathryn T. Stolee

REFERENCES
[1] [n.d.]. SearchCode. searchcode.com. [Online; accessed 06-February-2020].
[2] 2021. COSAL. Mathew, George and Stolee, Kathryn T. Stolee. https://doi.org/10.

5281/zenodo.4968705
[3] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim, Michelle L Mazurek,

and Christian Stransky. 2016. You get where you’re looking for: The impact of
information sources on code security. In 2016 IEEE Symposium on Security and
Privacy (SP). IEEE, 289ś305. https://doi.org/10.1109/SP.2016.25

[4] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. 2014.
Learning natural coding conventions. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering. 281ś293.
https://doi.org/10.1145/2635868.2635883

[5] AtCoder Inc. [n.d.]. AtCoder. atcoder.jp. Accessed: 2020-08-12.
[6] Leif Azzopardi, Yashar Moshfeghi, Martin Halvey, Rami S Alkhawaldeh, Krisztian

Balog, Emanuele Di Buccio, Diego Ceccarelli, Juan M Fernández-Luna, Charlie
Hull, Jake Mannix, et al. 2017. Lucene4IR: Developing information retrieval
evaluation resources using Lucene. In ACM SIGIR Forum, Vol. 50. ACM New York,
NY, USA, 58ś75. https://doi.org/10.1145/3053408.3053421

[7] Brenda S Baker. 1995. On finding duplication and near-duplication in large
software systems. In Proceedings of 2ndWorking Conference on Reverse Engineering.
IEEE, 86ś95. https://doi.org/10.1109/WCRE.1995.514697

[8] Pierre Baldi and Yves Chauvin. 1993. Neural networks for fingerprint recognition.
neural computation 5, 3 (1993), 402ś418. https://doi.org/10.1162/neco.1993.5.3.402

[9] Geetika Bansal and Rajkumar Tekchandani. 2014. Selecting a set of appropriate
metrics for detecting code clones. In 2014 Seventh International Conference on
Contemporary Computing (IC3). IEEE, 484ś488. https://doi.org/10.1109/IC3.2014.
6897221

[10] Earl T Barr, Yuriy Brun, Premkumar Devanbu, Mark Harman, and Federica Sarro.
2014. The plastic surgery hypothesis. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM, 306ś317.
https://doi.org/10.1145/2635868.2635898

[11] Ira D Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lorraine
Bier. 1998. Clone detection using abstract syntax trees. In Software Maintenance,
1998. Proceedings., International Conference on. IEEE, 368ś377. https://doi.org/10.
1109/ICSM.1998.738528

[12] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore Merlo.
2007. Comparison and evaluation of clone detection tools. IEEE Transactions on
software engineering 33, 9 (2007), 577ś591. https://doi.org/10.1109/TSE.2007.70725

[13] Jon Louis Bentley. 1975. Multidimensional binary search trees used for associative
searching. Commun. ACM 18, 9 (1975), 509ś517. https://doi.org/10.1145/361002.
361007

[14] Dave Binkley, Marcia Davis, Dawn Lawrie, Jonathan I Maletic, Christopher
Morrell, and Bonita Sharif. 2013. The impact of identifier style on effort and
comprehension. Empirical Software Engineering 18, 2 (2013), 219ś276. https:
//doi.org/10.1007/s10664-012-9201-4

[15] S Bird, E Klein, and E Loper. 2009. Accessing text corpora and lexical resources.
Natural Language Processing with Python (2009). https://doi.org/10.5555/1717171

[16] Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. 2021. InferCode: Self-Supervised
Learning of Code Representations by Predicting Subtrees. In 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). IEEE, 1186ś1197.
https://doi.org/10.1109/ICSE43902.2021.00109

[17] William AV Clark and Karen L Avery. 1976. The effects of data aggregation in
statistical analysis. Geographical Analysis 8, 4 (1976), 428ś438. https://doi.org/
10.1111/j.1538-4632.1976.tb00549.x

[18] Python Community. [n.d.]. Python Keywords. tiny.cc/q7jqsz. Accessed: 2020-08-
12.

[19] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002.
A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions
on evolutionary computation 6, 2 (2002), 182ś197. https://doi.org/10.1109/4235.
996017

[20] Florian Deissenboeck, Lars Heinemann, Benjamin Hummel, and Stefan Wagner.
2012. Challenges of the dynamic detection of functionally similar code fragments.
In SoftwareMaintenance and Reengineering (CSMR), 2012 16th European Conference
on. IEEE, 299ś308. https://doi.org/10.1109/CSMR.2012.38

[21] Kan Deng. 1998. Omega: On-line memory-based general purpose system classifier.
Ph.D. Dissertation. Carnegie Mellon University. https://doi.org/10.5555/929042

[22] DotNet. [n.d.]. Roslyn. https://github.com/dotnet/roslyn. Accessed: 2020-08-12.
[23] Maha Elarbi, Slim Bechikh, Abhishek Gupta, Lamjed Ben Said, and Yew-Soon Ong.

2017. A new decomposition-based NSGA-II for many-objective optimization.
IEEE transactions on systems, man, and cybernetics: systems 48, 7 (2017), 1191ś1210.
https://doi.org/10.1109/TSMC.2017.2654301

[24] Rochelle Elva and Gary T Leavens. 2012. Semantic clone detection using method
ioe-behavior. In 2012 6th International Workshop on Software Clones (IWSC). IEEE,
80ś81. https://doi.org/10.1109/IWSC.2012.6227874

[25] Carlos M Fonseca, Peter J Fleming, et al. 1993. Genetic Algorithms for Multiob-
jective Optimization: FormulationDiscussion and Generalization.. In Icga, Vol. 93.
Citeseer, 416ś423. https://doi.org/10.5555/645513.657757

[26] Mark Gabel, Lingxiao Jiang, and Zhendong Su. 2008. Scalable detection of
semantic clones. In Proceedings of the 30th international conference on Software
engineering. ACM, 321ś330. https://doi.org/10.1145/1368088.1368132

[27] Google. [n.d.]. Google Code Jam. code.google.com/codejam. Accessed: 2018-09-
25.

[28] Divya Gopinath, Muhammad Zubair Malik, and Sarfraz Khurshid. 2011.
Specification-based program repair using SAT. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. Springer, 173ś188.
https://doi.org/10.1007/978-3-642-19835-9_15

[29] Clinton Gormley and Zachary Tong. 2015. Elasticsearch: the definitive guide: a
distributed real-time search and analytics engine. " O’Reilly Media, Inc.".

[30] Michael Greenspan and Mike Yurick. 2003. Approximate kd tree search for effi-
cient ICP. In Fourth International Conference on 3-D Digital Imaging and Modeling,
2003. 3DIM 2003. Proceedings. IEEE, 442ś448. https://doi.org/10.1109/IM.2003.
1240280

[31] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In
Proceedings of the 40th International Conference on Software Engineering. ACM,
933ś944. https://doi.org/10.1145/3180155.3180167

[32] James Halliday. [n.d.]. c-tokenzier. https://github.com/substack/c-tokenizer.
Accessed: 2020-08-12.

[33] Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
2012. On the naturalness of software. In 2012 34th International Conference on
Software Engineering (ICSE). IEEE, 837ś847. https://doi.org/10.5555/2337223.
2337322

[34] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007.
Deckard: Scalable and accurate tree-based detection of code clones. In Proceedings
of the 29th international conference on Software Engineering. IEEE Computer
Society, 96ś105. https://doi.org/10.1109/ICSE.2007.30

[35] Lingxiao Jiang and Zhendong Su. 2009. Automatic mining of functionally equiv-
alent code fragments via random testing. In Proceedings of the eighteenth in-
ternational symposium on Software testing and analysis. ACM, 81ś92. https:
//doi.org/10.1145/1572272.1572283

[36] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: a
multilinguistic token-based code clone detection system for large scale source
code. IEEE Transactions on Software Engineering 28, 7 (2002), 654ś670. https:
//doi.org/10.1109/TSE.2002.1019480

[37] Yalin Ke, Kathryn T Stolee, Claire Le Goues, and Yuriy Brun. 2015. Repairing
programs with semantic code search. In Automated Software Engineering (ASE),
2015 30th IEEE/ACM International Conference on. IEEE, 295ś306. https://doi.org/
10.1109/ASE.2015.60

[38] James Kennedy and Russell Eberhart. 1995. Particle swarm optimization. In
Proceedings of ICNN’95-International Conference on Neural Networks, Vol. 4. IEEE,
1942ś1948. https://doi.org/10.1109/ICNN.1995.488968

[39] Heejung Kim, Yungbum Jung, Sunghun Kim, and Kwankeun Yi. 2011. MeCC:
memory comparison-based clone detector. In Proceedings of the 33rd International
Conference on Software Engineering. ACM, 301ś310. https://doi.org/10.1145/
1985793.1985835

[40] Kisub Kim, Dongsun Kim, Tegawendé F Bissyandé, Eunjong Choi, Li Li, Jacques
Klein, and Yves Le Traon. 2018. FaCoY: a code-to-code search engine. In Pro-
ceedings of the 40th International Conference on Software Engineering. 946ś957.
https://doi.org/10.1145/3180155.3180187

[41] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. 1983. Optimization by
simulated annealing. science 220, 4598 (1983), 671ś680. https://doi.org/10.1126/
science.220.4598.671

[42] Rainer Koschke, Raimar Falke, and Pierre Frenzel. 2006. Clone detection using ab-
stract syntax suffix trees. In 2006 13th Working Conference on Reverse Engineering.
IEEE, 253ś262. https://doi.org/10.1109/WCRE.2006.18

[43] Nicholas A Kraft, Brandon W Bonds, and Randy K Smith. 2008. Cross-language
Clone Detection.. In SEKE. 54ś59. https://doi.org/10.1.1.725.26

[44] Ken Krugler. 2013. Krugle code search architecture. In Finding Source Code on
the Web for Remix and Reuse. Springer, 103ś120. https://doi.org/10.1007/978-1-
4614-6596-6

[45] Chris Lattner et al. [n.d.]. clang: a C language family frontend for LLVM. http:
//clang.llvm.org. Accessed: 2020-08-12.

[46] Jingyue Li and Michael D Ernst. 2012. CBCD: Cloned buggy code detector. In
Proceedings of the 34th International Conference on Software Engineering. IEEE
Press, 310ś320. https://doi.org/10.1109/ICSE.2012.6227183

[47] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. 2004. CP-Miner:
A Tool for Finding Copy-paste and Related Bugs in Operating System Code.. In
OSdi, Vol. 4. 289ś302. https://doi.org/10.1109/TSE.2006.28

[48] Cristina V Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub Zitny,
Hitesh Sajnani, and Jan Vitek. 2017. DéjàVu: a map of code duplicates on GitHub.
Proceedings of the ACM on Programming Languages 1, OOPSLA (2017), 1ś28.
https://doi.org/10.1145/3133908

[49] Sifei Luan, Di Yang, Celeste Barnaby, Koushik Sen, and Satish Chandra. 2019.
Aroma: Code recommendation via structural code search. Proceedings of the ACM
on Programming Languages 3, OOPSLA (2019), 1ś28. https://doi.org/10.1145/
3360578

216

searchcode.com
https://doi.org/10.5281/zenodo.4968705
https://doi.org/10.5281/zenodo.4968705
https://doi.org/10.1109/SP.2016.25
https://doi.org/10.1145/2635868.2635883
atcoder.jp
https://doi.org/10.1145/3053408.3053421
https://doi.org/10.1109/WCRE.1995.514697
https://doi.org/10.1162/neco.1993.5.3.402
https://doi.org/10.1109/IC3.2014.6897221
https://doi.org/10.1109/IC3.2014.6897221
https://doi.org/10.1145/2635868.2635898
https://doi.org/10.1109/ICSM.1998.738528
https://doi.org/10.1109/ICSM.1998.738528
https://doi.org/10.1109/TSE.2007.70725
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1007/s10664-012-9201-4
https://doi.org/10.1007/s10664-012-9201-4
https://doi.org/10.5555/1717171
https://doi.org/10.1109/ICSE43902.2021.00109
https://doi.org/10.1111/j.1538-4632.1976.tb00549.x
https://doi.org/10.1111/j.1538-4632.1976.tb00549.x
tiny.cc/q7jqsz
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/CSMR.2012.38
https://doi.org/10.5555/929042
https://github.com/dotnet/roslyn
https://doi.org/10.1109/TSMC.2017.2654301
https://doi.org/10.1109/IWSC.2012.6227874
https://doi.org/10.5555/645513.657757
https://doi.org/10.1145/1368088.1368132
code.google.com/codejam
https://doi.org/10.1007/978-3-642-19835-9_15
https://doi.org/10.1109/IM.2003.1240280
https://doi.org/10.1109/IM.2003.1240280
https://doi.org/10.1145/3180155.3180167
https://github.com/substack/c-tokenizer
https://doi.org/10.5555/2337223.2337322
https://doi.org/10.5555/2337223.2337322
https://doi.org/10.1109/ICSE.2007.30
https://doi.org/10.1145/1572272.1572283
https://doi.org/10.1145/1572272.1572283
https://doi.org/10.1109/TSE.2002.1019480
https://doi.org/10.1109/TSE.2002.1019480
https://doi.org/10.1109/ASE.2015.60
https://doi.org/10.1109/ASE.2015.60
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1145/1985793.1985835
https://doi.org/10.1145/1985793.1985835
https://doi.org/10.1145/3180155.3180187
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1109/WCRE.2006.18
https://doi.org/10.1.1.725.26
https://doi.org/10.1007/978-1-4614-6596-6
https://doi.org/10.1007/978-1-4614-6596-6
http://clang.llvm.org
http://clang.llvm.org
https://doi.org/10.1109/ICSE.2012.6227183
https://doi.org/10.1109/TSE.2006.28
https://doi.org/10.1145/3133908
https://doi.org/10.1145/3360578
https://doi.org/10.1145/3360578

Cross-Language Code Search using Static and Dynamic Analyses ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

[50] Aleksandr Luntz. 1969. On estimation of characters obtained in statistical proce-
dure of recognition. Technicheskaya Kibernetica 3 (1969).

[51] GeorgeMathew, Christopher Parnin, and Kathryn T. Stolee. 2020. SLACC: Simion-
based Language Agnostic Code Clones. International Conference on Software
Engineering (ICSE) (Jul 2020). https://doi.org/10.1145/3377811.3380407

[52] Philip Mayer, Michael Kirsch, and Minh Anh Le. 2017. On multi-language soft-
ware development, cross-language links and accompanying tools: a survey of
professional software developers. Journal of Software Engineering Research and
Development 5, 1 (2017), 1. https://doi.org/10.1186/s40411-017-0035-z

[53] Kaisa Miettinen. 2012. Nonlinear multiobjective optimization. Vol. 12. Springer
Science & Business Media.

[54] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[55] David S Moore and Stephane Kirkland. 2007. The basic practice of statistics. Vol. 2.
WH Freeman New York.

[56] KawserWazed Nafi, Tonny Shekha Kar, Banani Roy, Chanchal K Roy, and Kevin A
Schneider. 2019. CLCDSA: cross language code clone detection using syntactical
features and API documentation. In 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 1026ś1037. https://doi.org/10.
1109/ASE.2019.00099

[57] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. 2013. Semfix: Program repair via semantic analysis. In Software Engi-
neering (ICSE), 2013 35th International Conference on. IEEE, 772ś781. https:
//doi.org/10.1109/ICSE.2013.6606623

[58] Trong Duc Nguyen, Anh Tuan Nguyen, Hung Dang Phan, and Tien N Nguyen.
2017. Exploring API embedding for API usages and applications. In Software
Engineering (ICSE), 2017 IEEE/ACM 39th International Conference on. IEEE, 438ś
449. https://doi.org/10.1109/ICSE.2017.47

[59] Suphakit Niwattanakul, Jatsada Singthongchai, Ekkachai Naenudorn, and Su-
pachanun Wanapu. 2013. Using of Jaccard coefficient for keywords similarity.
In Proceedings of the international multiconference of engineers and computer
scientists, Vol. 1. 380ś384.

[60] Oracle. [n.d.]. Java Language Keywords. tiny.cc/s7jqsz. Accessed: 2020-08-12.
[61] Terence Parr. 2013. The definitive ANTLR 4 reference. Pragmatic Bookshelf.
[62] J-F Patenaude, Ettore Merlo, Michel Dagenais, and Bruno Laguë. 1999. Extending

software quality assessment techniques to java systems. In Proceedings Seventh
International Workshop on Program Comprehension. IEEE, 49ś56. https://doi.org/
10.1109/WPC.1999.777743

[63] Daniel Perez and Shigeru Chiba. 2019. Cross-language clone detection by learning
over abstract syntax trees. In 2019 IEEE/ACM 16th International Conference on
Mining Software Repositories (MSR). IEEE, 518ś528. https://doi.org/10.1109/MSR.
2019.00078

[64] David M Perry, Dohyeong Kim, Roopsha Samanta, and Xiangyu Zhang. 2019.
SemCluster: clustering of imperative programming assignments based on quan-
titative semantic features. In Proceedings of the 40th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. 860ś873. https:
//doi.org/10.1145/3314221.3314629

[65] Python Community. [n.d.]. Python AST. docs.python.org/3/library/ast.html.
[Online; accessed 23-August-2019].

[66] Chaiyong Ragkhitwetsagul and Jens Krinke. 2019. Siamese: scalable and incre-
mental code clone search via multiple code representations. Empirical Software
Engineering 24, 4 (2019), 2236ś2284. https://doi.org/10.1007/s10664-019-09697-7

[67] Baishakhi Ray, Miryung Kim, Suzette Person, and Neha Rungta. 2013. Detecting
and Characterizing Semantic Inconsistencies in Ported Code. In Proceedings of
the 28th IEEE/ACM International Conference on Automated Software Engineering
(Silicon Valley, CA, USA) (ASE’13). IEEE Press, Piscataway, NJ, USA, 367ś377.
https://doi.org/10.1109/ASE.2013.6693095

[68] Steven P Reiss. 2009. Semantics-based code search. In 2009 IEEE 31st International
Conference on Software Engineering. IEEE, 243ś253. https://doi.org/10.1109/ICSE.
2009.5070525

[69] PA Relf. 2004. Achieving software quality through identifier names. In Qualcon
2004. 33ś34.

[70] Caitlin Sadowski, Kathryn T Stolee, and Sebastian Elbaum. 2015. How developers
search for code: a case study. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering. 191ś201.

[71] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K Roy, and Cristina V
Lopes. 2016. SourcererCC: Scaling code clone detection to big-code. In Proceedings
of the 38th International Conference on Software Engineering. 1157ś1168. https:
//doi.org/10.1145/2884781.2884877

[72] Claude Sammut and Geoffrey I Webb. 2010. Leave-one-out cross-validation.
Encyclopedia of machine learning (2010), 600ś601.

[73] Susan Elliott Sim, Medha Umarji, Sukanya Ratanotayanon, and Cristina V Lopes.
2011. How well do search engines support code retrieval on the web? ACM
Transactions on Software Engineering and Methodology (TOSEM) 21, 1 (2011), 1ś25.
https://doi.org/10.1145/2063239.2063243

[74] Kathryn T Stolee and Sebastian Elbaum. 2012. Toward semantic search via SMT
solver. In Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering. ACM, 25. https://doi.org/10.1145/2393596.
2393625

[75] Kathryn T Stolee, Sebastian Elbaum, and Daniel Dobos. 2014. Solving the search
for source code. ACM Transactions on Software Engineering and Methodology
(TOSEM) 23, 3 (2014), 26. https://doi.org/10.1145/2581377

[76] Kathryn T Stolee, Sebastian Elbaum, and Matthew B Dwyer. 2016. Code search
with input/output queries: Generalizing, ranking, and assessment. Journal of
Systems and Software 116 (2016), 35ś48. https://doi.org/10.1016/j.jss.2015.04.081

[77] Fang-Hsiang Su, Jonathan Bell, Kenneth Harvey, Simha Sethumadhavan, Gail
Kaiser, and Tony Jebara. 2016. Code relatives: detecting similarly behaving
software. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM, 702ś714.

[78] Fang-Hsiang Su, Jonathan Bell, Gail Kaiser, and Simha Sethumadhavan. 2016.
Identifying functionally similar code in complex codebases. In Program Compre-
hension (ICPC), 2016 IEEE 24th International Conference on. IEEE, 1ś10. https:
//doi.org/10.1109/ICPC.2016.7503720

[79] Jeffrey Svajlenko and Chanchal K Roy. 2015. Evaluating clone detection tools
with BigCloneBench. In 2015 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME). IEEE, 131ś140. https://doi.org/10.1109/ICSM.2015.
7332459

[80] Team Github. [n.d.]. Github REST API. docs.github.com/en/rest. Accessed:
2020-08-12.

[81] Team Github. [n.d.]. Github Search. tiny.cc/ig5nsz. Accessed: 2020-08-12.
[82] Ye Tian, Handing Wang, Xingyi Zhang, and Yaochu Jin. 2017. Effectiveness and

efficiency of non-dominated sorting for evolutionary multi-and many-objective
optimization. Complex & Intelligent Systems 3, 4 (2017), 247ś263. https://doi.org/
10.1007/s40747-017-0057-5

[83] Danny van Bruggen. 2015. Javaparser - For processing Java code. github.com/
javaparser/javaparser. [Online; accessed 23-August-2019].

[84] Andrew Walenstein and Arun Lakhotia. 2007. The software similarity problem
in malware analysis. In Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik.

[85] Alex Wawro. [n.d.]. What exactly goes into porting a video game? BlitWorks
explains. http://tiny.cc/r5jqsz. Accessed: 2020-08-12.

[86] Qi Xin and Steven P Reiss. 2017. Leveraging syntax-related code for automated
program repair. In 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 660ś670. https://doi.org/10.1109/ASE.2017.
8115676

[87] Qi Xin and Steven P Reiss. 2019. Revisiting ssFix for Better Program Repair. arXiv
preprint arXiv:1903.04583 (2019).

[88] Wuu Yang. 1991. Identifying syntactic differences between two programs. Soft-
ware: Practice and Experience 21, 7 (1991), 739ś755. https://doi.org/10.1002/spe.
4380210706

[89] R. Yue, Z. Gao, N. Meng, Y. Xiong, X. Wang, and J. D. Morgenthaler. 2018. Au-
tomatic Clone Recommendation for Refactoring Based on the Present and the
Past. In 2018 IEEE International Conference on Software Maintenance and Evolution
(ICSME). 115ś126. https://doi.org/10.1109/ICSME.2018.00021

[90] Kaizhong Zhang and Dennis Shasha. 1989. Simple fast algorithms for the editing
distance between trees and related problems. SIAM journal on computing 18, 6
(1989), 1245ś1262. https://doi.org/10.1137/0218082

[91] Qingfu Zhang and Hui Li. 2007. MOEA/D: A multiobjective evolutionary algo-
rithm based on decomposition. IEEE Transactions on evolutionary computation
11, 6 (2007), 712ś731. https://doi.org/10.1109/TEVC.2007.892759

[92] Eckart Zitzler and Lothar Thiele. 1998. An evolutionary algorithm for mul-
tiobjective optimization: The strength pareto approach. TIK-report 43 (1998).
https://doi.org/10.1.1.40.7696

217

https://doi.org/10.1145/3377811.3380407
https://doi.org/10.1186/s40411-017-0035-z
https://doi.org/10.1109/ASE.2019.00099
https://doi.org/10.1109/ASE.2019.00099
https://doi.org/10.1109/ICSE.2013.6606623
https://doi.org/10.1109/ICSE.2013.6606623
https://doi.org/10.1109/ICSE.2017.47
tiny.cc/s7jqsz
https://doi.org/10.1109/WPC.1999.777743
https://doi.org/10.1109/WPC.1999.777743
https://doi.org/10.1109/MSR.2019.00078
https://doi.org/10.1109/MSR.2019.00078
https://doi.org/10.1145/3314221.3314629
https://doi.org/10.1145/3314221.3314629
docs.python.org/3/library/ast.html
https://doi.org/10.1007/s10664-019-09697-7
https://doi.org/10.1109/ASE.2013.6693095
https://doi.org/10.1109/ICSE.2009.5070525
https://doi.org/10.1109/ICSE.2009.5070525
https://doi.org/10.1145/2884781.2884877
https://doi.org/10.1145/2884781.2884877
https://doi.org/10.1145/2063239.2063243
https://doi.org/10.1145/2393596.2393625
https://doi.org/10.1145/2393596.2393625
https://doi.org/10.1145/2581377
https://doi.org/10.1016/j.jss.2015.04.081
https://doi.org/10.1109/ICPC.2016.7503720
https://doi.org/10.1109/ICPC.2016.7503720
https://doi.org/10.1109/ICSM.2015.7332459
https://doi.org/10.1109/ICSM.2015.7332459
docs.github.com/en/rest
tiny.cc/ig5nsz
https://doi.org/10.1007/s40747-017-0057-5
https://doi.org/10.1007/s40747-017-0057-5
github.com/javaparser/javaparser
github.com/javaparser/javaparser
http://tiny.cc/r5jqsz
https://doi.org/10.1109/ASE.2017.8115676
https://doi.org/10.1109/ASE.2017.8115676
https://doi.org/10.1002/spe.4380210706
https://doi.org/10.1002/spe.4380210706
https://doi.org/10.1109/ICSME.2018.00021
https://doi.org/10.1137/0218082
https://doi.org/10.1109/TEVC.2007.892759
https://doi.org/10.1.1.40.7696

	Abstract
	1 Introduction
	2 Motivation
	3 Code-to-Code Search Across Languages
	3.1 Token-Based Search
	3.2 AST-Based Search
	3.3 Input-Output Based Search
	3.4 Non-dominated Ranking

	4 Research Questions
	5 Study
	5.1 Data
	5.2 Baselines
	5.3 Metrics
	5.4 Experimental Setup

	6 Results
	6.1 RQ1: Single vs Multiple Search Similarity Measures
	6.2 RQ2: State-of-the-Practice Cross-Language Code-to-Code Search
	6.3 RQ3: State-of-the-Art Code-to-Code Search
	6.4 RQ4: Cross-Language Code Clone Detection

	7 Discussion
	7.1 On the Cost/Benefit of Dynamic Analysis
	7.2 On Non-dominated Sorting
	7.3 Scalability Exploration
	7.4 Threats to Validity

	8 Related Work
	8.1 Code Similarity
	8.2 Code Search
	8.3 Clone Detection

	9 Conclusion
	Acknowledgments
	References

