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Abstract—Test smells are commonly perceived as having a
negative impact on software maintainability and correctness.
Research has shown that Assertion Roulette is the most pervasive
smell in industrial and open-source systems. However, some
recent studies argue that the impact of Assertion Roulette is not
as severe as previously believed, and developers usually consider
it acceptable.

The controversy over the impact of Assertion Roulette also
exists in the area of testing education. To assess the impact of As-
sertion Roulette, we conducted a controlled empirical study with
42 CS students. We recruited participants from two populations,
CS1 and a graduate testing course, to see what role experience
may have in terms of this test smell’s impact. Participants were
tasked with implementing a project in Java that passes provided
JUnit tests. Through analysis of student-authored source code,
we measured the impact of Assertion Roulette using code quality
measures and testing behavior measures. Our findings show that
the impact of Assertion Roulette on students in this study was
minimal. Though students with exposure to the test smell began
testing significantly later, they performed similarly in terms of
programming quality measures. Thus, it would seem the Assertion
Roulette smell is no longer a smell at all, even for less experienced
populations like students.

Index Terms—test smell, assertion roulette, computer science
education, testing education

I. INTRODUCTION

Smells in code can be frustrating, and they are not limited
to source code. Smells also exist in test code [1]. The test
smell Assertion Roulette was formally defined in 2001 [1],
and it occurs when a test case contains multiple assertions
without documentation/explanation in case one of them fails.
Prior work found it to be the most diffused test smell [2], [3],
and that it frequently co-occurs with simple bugs [4] and other
test smells [2], [5], [6]. Assertion Roulette is also notorious
for its negative impacts on the maintainability [2], [7]–[9],
readability [3], [6], [8], and correctness [2], [10] of both source
code and test code. This smell can also lead to a high rate of
code churn [11], [12].

However, recent studies argue that this smell may not actu-
ally be a smell [13] in that developers are not bothered by it.
Developers rarely refactor this smell in GitHub commits [10],
and commonly perceive the smell as low severity [14]–[16],
and hence view Assertion Roulette as an “acceptable trade-
off between maintainability and ease of writing” [14]. In fact,
having this smell may actually indicate test robustness and
increase the quality of production code [17].

The understanding of Assertion Roulette also varies among
educators. Bavota et al. [2] reported that the presence of Asser-
tion Roulette significantly reduced CS1 students’ correctness
in a program maintenance task, specifically, students in their
study were less successful at manually identifying which line
of code in the given test suite generated a particular error
trace and at understanding what had gone wrong based on
the error trace. Buffardi et al. [18] explored the relationship
between the existence of test smells, such as Conditional Logic
and Assertion Roulette, in a student-authored test suite and
test suite accuracy. Yet, they found no relationship between
the accuracy of student-authored tests and the presence of
Assertion Roulette.

In this work, we conduct an experimental, controlled study
to evaluate the impact of the Assertion Roulette smell on
students’ performance and behaviors during source code com-
position. We recruited students early in their CS education,
namely CS1, and later, in a graduate course, to see what role
experience may have with respect to the test smell’s impact.
We frame this study around two research questions:

RQ1: How does Assertion Roulette in the provided test
suite impact students’ programming performance?

RQ2: How does Assertion Roulette in the provided test
suite impact students’ testing behaviors?

In this study, 42 students participated in a two-hour lab
activity and implemented source code for a Java-based project.
We stratified the students based on education (CS1 vs. gradu-
ate), and then randomly assigned them into experimental and
control groups. The experimental group received the test suite
with Assertion Roulette (AR group) and the control group
received test suite without this smell (AR-free group). We then
analyze student-authored source code, and reveal the impact
of Assertion Roulette on students’ programming performance
and testing behaviors. Our results show that:

• The impact of the presence of Assertion Roulette in the
provided test suite is minimal, but

• The presence of Assertion Roulette significantly impacted
when students began testing; students faced with Asser-
tion Roulette began testing later.

This work contributes to research on testing education. It is
the first study on the impact of Assertion Roulette on students’
programming performance and testing behaviors.
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II. BACKGROUND AND RELATED WORK

In this section, we illustrate the Assertion Roulette smell
using the implementation task we used in this study (Sec-
tion II-A). We also discuss prior work on the assessment of
students’ programming and testing activities (Section II-B).

A. Assertion Roulette

In this study, students were tasked with implementing a
Java program Bowling Score Keeper (BSK) to score a bowling
game. We chose this project as it has been used in numerous
other testing-related studies (e.g., [19]–[24]).

Assertion Roulette comes from “having a number of asser-
tions in a test method that have no explanation” [1]. Hence,
to assess the impact of Assertion Roulette, we intentionally
seeded this smell into the test code for the experimental
group (AR group) by combining all test methods for each
user story into a single test method (seven in total, details in
Section III-B). For example, one of user stories in BSK was:

User Story 1 - Frame:
Each turn of a bowling game is called a frame. Ten pins are
arranged in each frame. The goal of the player is to knock
down as many pins as possible in each frame. The player has
two chances, or throws, to do so. The value of a throw is
given by the number of pins knocked down in that throw.

The AR-free (control) version of the test class (Fig. 1) con-
tained test cases that each had a descriptive name that reflected
the expected program behavior [14] and a single assertion [25].
For example, the test case testFrameWithScoreIsCreated()

verifies that a frame consists of two chances/throws, and the
test case testExceptionMoreThan10PinsPerFrame() verifies
that an exception is thrown when trying to create a Frame with
more than ten pins knocked down. Fig. 2 shows the Assertion
Roulette version of the test suite for User Story 1, with all
assertions in one test case (lines 5, 8, and 19). We rewrote the
test testExceptionMoreThan10PinsPerFrame() (lines 14-18
in Fig. 1) with try-catch block (lines 10-16 in Fig. 2), which
ensures that an Exception was thrown in the right place in
the test case test().

The presence of Assertion Roulette results in fewer test
cases and less granular test results. In JUnit, a test case will
stop executing when an assertion fails or when an Exception

is thrown. This means that, for example, a student with a test
containing Assertion Roulette (e.g., Fig. 2) who has a fault
revealed by the final assertion would see that they are passing
0 of 1 test cases with a pass rate of 0%. That same student
with the same fault and a test suite absent of Assertion Roulette
(e.g., Fig. 1) would pass 3 of 4 test cases with a pass rate of
75%. In this way, the lack of Assertion Roulette presents more
positive or encouraging feedback.

Unlike prior work [18] that focuses on the quality of
student-authored tests, we consider how Assertion Roulette in
a provided test suite impacts students’ development efforts.

1 public class US01 {
2 @Test
3 public void testEmptyFrameIsCreated(){
4 final Frame f = new Frame();
5 assertNotNull(f);
6 }
7

8 @Test
9 public void testFrameWithScoreIsCreated(){

10 final Frame f = new Frame(1, 2);
11 assertNotNull(f);
12 }
13

14 @Test ( expected = Exception.class )
15 public void testExceptionMoreThan10PinsPerFrame(){
16 final Frame f = new Frame(12, 12);
17 assertNotNull(f);
18 }
19

20 @Test
21 public void testFrameIsCreatedWithCorrectName(){
22 final Frame f = new Frame();
23 assertEquals("Frame",

f.getClass().getSimpleName());↪→
24 }
25 }

Fig. 1. Example test class that lacks Assertion Roulette

1 public class US01 {
2 @Test
3 public void test(){
4 Frame f = new Frame();
5 assertNotNull(f);
6

7 f = new Frame(1, 2);
8 assertNotNull(f);
9

10 try {
11 f = new Frame(12, 12);
12 fail();
13 }
14 catch (final Exception e){
15 // Exception expected
16 }
17

18 f = new Frame();
19 assertEquals("Frame",

f.getClass().getSimpleName());↪→
20 }
21 }

Fig. 2. Example test class that exhibits Assertion Roulette

B. Students’ programming and testing activities

Researchers and educators often measure the accuracy of
student-authored source code via the number of passed test
cases/suites [26]–[28] while students’ productivity is often
evaluated using the number of lines of code (LOC) changed
per hour [29] or per work session [26]. Pettit et al. [30] inves-
tigated how students modify their programs given automated
assessment tools, using more than 45,000 CS1 student submis-
sions collected over seven semesters. They evaluated students’
programming progress using the number of LOC changed
between each test execution or submission. Programming
processes are also commonly measured using compilation
behaviors; for example, the time interval between two compi-
lations [26], [31], and the total number of compilations [27],
[32]. Students’ testing behaviors are assessed by how many
times [28] and how often they test [26], as well as when during
development students usually test their code [26], [33].

In this study, we quantify students’ programming perfor-
mance in terms of: 1) accuracy, such as how many assertions
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and test cases does student-authored source code pass, and
2) effectiveness, for example, the number of LOC changed
between two consecutive test suite runs, and the time intervals
between test suite runs. We also investigate students’ testing
behaviors by studying the number of test suite executions, how
early students start testing, and how often they test.

III. STUDY

In this section, we describe the study design and execution;
materials are available on GitHub [34].

A. Procedure

This study was conducted over six two-hour lab sessions
held synchronously via Zoom. Each student attended one lab
session. At the beginning of the lab session, students received
a 20-minute introduction on the procedure of the study, an
overview of the programming project, and a step-by-step live
demo on project setup. Students were guided to a GitHub
repository containing links to the video version of the setup
instructions and the project. Students were allowed to consult
any online resources for assistance throughout the study.

B. Implementation Task

1) Project: Students implemented the Java-based project
BSK, given requirements and a test suite as a starting point.
Prior to the study, we conducted a pilot study with five CS
undergraduate and graduate students to clarify the program-
ming project and to ascertain the potential duration of the lab
session. As a result, we shortened the original BSK project,
which consists of 13 user stories, down to the first seven so it
could be completed in 90 minutes by students. Our shortened
version of the BSK project contains 37 lines of Java source
code (skeletons for the three necessary classes) and 558 lines
of Java test code (JUnit tests). Each user story had a separate
test class, with three to sixteen test cases per user story.

We used an experimental, controlled study design, wherein
we randomly assigned students, stratifying based on education,
to a control group (AR-free group) or an experimental group
(AR group). Both groups received the same project require-
ments. What differed between the groups was the number of
test cases and the number of assertions per test case. Students
in the AR-free group worked on the BSK project with tests
that lack Assertion Roulette in the test suite, while students
in the AR group worked on the BSK project with test suites
that exhibited Assertion Roulette. To verify the equivalence of
the two test suites, we used mutation testing, which serves as
an approach to compare the bug-revealing capabilities of two
different test suites. In particular, we confirmed there were no
differences in the bug-revealing capability of both test suites
via PITest [35], a commonly-adopted Java mutation testing
tool. We considered both versions of the test suites equivalent
as they killed the same set of mutants.

2) Development Environment: To ensure a consistent de-
velopment environment, we assigned each student a virtual
machine image (VM)1 with a standard Linux development

1The VMs were supported and managed by NCSU’s virtual computing lab.

Fig. 3. Sample output showing the the results of running our build script.
The output shows the number of tests run ( 1⃝) and the number of tests that
failed ( 2⃝). Because at least one test failed, the script marked the build as a
failure ( 3⃝). Detailed results of each failing test are shown, partially cut off,
in 4⃝.

environment: Ubuntu 18.04 and Eclipse Java 2020-06, Nano,
Vim, and Gedit.

The VMs were set up with a script for students to run
the test suite on their project implementation using Maven’s
test runner. After every run of the test suite, the script would
display test results to the student and make a timestamped
copy of the project, including all code and the test results.
Instructions for using the VM and running the script were
included on both the VMs and the GitHub repository, and one
of the authors gave a live demonstration in each lab session.
While the use of a script for building the projects and running
the tests is a departure from the built-in Eclipse JUnit interface,
it allowed us to take a snapshot of the entire project each
time the test suite was run in order to study the evolution
of the code and the types of changes made. To reduce the
barrier from our testing script, we integrated the script with
the Eclipse debugger so that students could debug the tests
interactively. An example of the test results that students saw
is shown in Fig. 3. The script reported the number of tests
run, the number of tests that failed (due to a failing assertion
or unexpected exception), the overall status of the build, and
detailed results on each test that failed.

C. Participants

We conducted this study with 49 students: 24 graduate
students and 25 undergraduate students from North Carolina
State University. The graduate students were recruited from
a graduate-level software testing course. All students in this
course were required to complete this study as an in-class
workshop to receive credit for the class activity, but were
allowed to opt out of having their data analyzed for this study.
The undergraduate students were recruited from a CS1-level
Java programming course and were eligible to receive extra
credit upon completion of the study.
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TABLE I
ANOVA RESULTS FOR COMPARING THE AR GROUP AND THE AR-FREE

GROUP

Independent Variable

Dependent Variable isAR isCS1
isAR
∗isCS1

Programming
Perfermance

1) passAstn 0.3663 0.0005 *** 0.4542
2) passDelta 0.5852 0.0417 * 0.4515
3) passUS 0.4449 0.0017 ** 0.8521
4) duration 0.7200 0.1500 0.5010
5) LOCdel 0.6450 0.2380 0.6380
6) LOCadd 0.1390 0.2420 0.2270
7) runInt 0.1770 0.0885 0.0678

Testing
Behaviors

8) totalRun 0.6420 0.3630 0.7000
9) testFirst 0.0282 * 0.0058 ** 0.0714
10) testFreq 0.1957 0.0726 0.0662

*p < 0.05, ** p < 0.01, *** p < 0.001

After discarding data from students who did not follow the
instructions, we were left with data from the remaining 42
students for analysis. Overall, there were 18 students in the
AR group (11 CS1s, 7 grads), and 24 students in the AR-free
group (12 CS1s, 12 grads).

D. Data and Analysis

We collected students’ timestamped implementations from
their assigned VMs upon completion of the study. In total, 42
students generated 537 timestamped copies of the project (AR
group: 220 copies, AR-free group: 317 copies) by running
the test suite. The projects were anonymized and the group
condition was concealed during data analysis.

We measured students’ programming performance in
terms of accuracy and effectiveness:

• Accuracy: We adapted the metrics from prior work,
and we evaluated the accuracy via pass rate at both
assertion (49 in total, passAstn) and user story (7 in
total, passUS) levels [26]–[28], and the improvements
that students made between two consecutive test suite
runs in terms of assertion-level pass rate (passDelta) [28].

• Effectiveness: The effectiveness of students’ program-
ming activities was measured with LOC deleted from
(LOCdel) or added to (LOCadd) the project between
two consecutive test suite runs [30], the total time spent
on the project (duration), and the time interval between
two consecutive test suite runs (runInt) [26], [31].

We adapted metrics from prior work to measure students’
testing behaviors in terms of testing effort and process:

• Testing Effort: We report students’ testing effort with
the total number of test suite runs (totalRun) [28].

• Testing Process: We quantify students’ testing process
via how early they start testing (testFirst) [26], [33], and
how often they test (testFreq) [26].

Treating each of the 10 metrics as a dependent variable, we
measured the impact of the following independent variables:
isAR for comparing the AR group to the AR-free group, and
isCS1 for the level in school. We used a two-way ANOVA
analysis to explore the impact of each variable independently
as well as their interaction (isAR ∗ isCS1). We report the
p-values in Table I.

TABLE II
MEASURING STUDENTS’ PROGRAMMING PERFORMANCE (I.E., ACCURACY

AND EFFECTIVENESS) AND TESTING BEHAVIORS (I.E., TESTING EFFORT
AND TESTING PROCESS)

Metrics Group Overall CS1 Grad
avg med avg med avg med

A
cc

ur
ac

y

passAstn
(%)

AR 71.1 90.8 56.0 42.9 94.8 91.8
AR-f 78.7 91.8 65.7 78.6 91.7 91.8

passDelta
(%)

AR +6.0 0.0 +5.2 0.0 +7.0 0.0
AR-f +6.1 0.0 +5.2 0.0 +6.9 0.0

passUS
(%)

AR 68.6 85.7 57.1 42.9 87.1 85.7
AR-f 75.7 85.7 61.4 78.6 90 85.7

E
ff

ec
tiv

en
es

s

duration
(min)

AR 71.4 68.0 76.9 77.9 62.7 60.2
AR-f 69.1 70.3 71.9 79.8 66.3 64.4

LOCdel
(count)

AR 1.9 1.0 1.8 1.0 2.0 1.0
AR-f 1.7 1.0 2.0 1.0 1.5 0.0

LOCadd
(count)

AR 5.5 2.0 5.8 2.0 5.1 2.0
AR-f 4.2 2.0 4.7 2.0 3.8 1.0

runInt
(min)

AR 6.4 3.3 7.6 3.6 4.8 2.9
AR-f 5.7 3.4 6.2 4.2 5.2 3.0

E
ff

t totalRun
(count)

AR 12.2 12.5 11.1 11.0 14.0 14.0
AR-f 13.2 11.5 12.6 11.0 13.8 13.0

Pr
oc

es
s testFirst

(min)
AR 18.7 12.4 26.9 18.9 5.9 5.5
AR-f 9.4 6.9 12.2 11.6 6.6 4.3

testFreq
(/Xmin)

AR 8.3 5.3 10.5 7.4 4.7 5.0
AR-f 6.4 5.5 6.6 6.0 6.2 5.1

IV. RESULTS

In this section, we explore the impact of Assertion Roulette
on students’ programming performance (Section IV-A) and
their testing behaviors (Section IV-B).

A. RQ1: Programming Performance

Table II shows the accuracy metrics of student-authored
source code, including the percentage of passed assertions and
fully passed user stories (passAstn, passUS), and the progress
in terms of the improved assertion-level pass rate between two
consecutive test suite runs (passDelta). Table II also contains
the metrics that reflect effectiveness: the time that students
spent on this project (duration), the number of LOC changed
in two consecutive test suite runs (LOCdel, LOCadd), and how
often students ran the tests (runInt). For example, on average,
CS1 students in the AR group were able to pass 56.0% of
assertions in 76.9 minutes, and during development they ran
the project every 3.3 minutes and passed 2.5 more assertions
each time (passDelta of 5.2%) by deleting 1.8 lines of code
and adding 5.8 lines of code to the project. Overall, they fully
passed the test cases for four user stories out of seven (57.1%).
Across the entirety of the project, students added an average
of 28.4 lines of code to the project.

We found Assertion Roulette had no statistically significant
impact on all programming performance measures (Variables
1-7 in Table I). These results indicate students in the AR-
free group achieved no higher pass rates and programmed no
more effectively than those in the AR group. Unsurprisingly,
graduate students significantly outperformed the CS1 students
in terms of accuracy (Variables 1-3 in Table I) given more
experience in programming and testing (graduate students
were recruited from a software testing course).
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Summary: The presence of Assertion Roulette in the pro-
vided test suite has no statistically significant impact on
students’ programming accuracy and effectiveness.

B. RQ2: Testing Behaviors

We present the metrics used for analyzing the testing
behaviors in Table II, including the number of test suite runs
(totalRun), when students started testing (testFirst), and how
often they tested (testFreq). For example, on average, students
in the AR group tested every 8.3 minutes and they tested 12.2
times in total, while the students in the AR-free group ran the
test suite every 6.4 minutes and they tested 13.2 times in total.
Neither difference was significant.

Table II shows that students in the AR-free group started
testing their source code in 9.4 minutes on average, and
students in the AR group started testing after 18.7 minutes. The
difference was statistically significant (p = 0.03 for testFirst,
Table I). Along with the observation in Section IV-A that
students in the AR group achieved slightly lower pass rates,
this result supports previous findings [26] that students who
test earlier are more likely to have higher-quality implemen-
tations. We saw the greatest impact here on CS1 students
(26.9 min vs. 12.2 min). It is possible that these students,
who are less familiar with how to break up a task into smaller
pieces, erroneously aimed for passing an entire test case at a
time. Hence, having few large test cases may have discouraged
novices from testing early.

Summary: Having Assertion Roulette had no statistically
significant impact on how often students test, but it had
a statistically significant negative impact on how early
students start testing.

V. DISCUSSION

This study shed light on the impacts of Assertion Roulette
on students’ programming performance and testing behaviors.

A. Is Assertion Roulette a problem for students?

In our study, both CS1 and graduate students were largely
unimpeded by this smell. This echoes the findings in re-
cent work that the impact of Assertion Roulette has di-
minished [13]–[16]. Along with the findings in recent prior
work [18] that the presence of Assertion Roulette in student-
authored test code did not impact test accuracy, we conjecture
that Assertion Roulette may no longer smell bad to students.
We suggest replication studies with more diverse sets of
participants, and projects in different sizes and programming
languages.

B. Is Assertion Roulette acceptable in testing education?

We found that the impact of Assertion Roulette on students
in this study was minimal. However, we consider that it is still
a good practice for instructors to avoid this smell when intro-
ducing and providing test cases to students. Having fewer but
well-documented assertions in each test case can improve its
readability [36], [37], and hence leads to better programming

and debugging outcomes for novices [38]. Additionally, we
observed that Assertion Roulette had a statistically significant
impact on the time at which students start testing during
implementation. This could negatively impact their source
code quality [26], and might become more substantial as the
projects become more complex.

Moreover, as better testing practices could lead to better
programming outcomes for students [39], we encourage novice
programmers and testers to document each test case; for
example, with explanatory error messages and descriptive
test names [14]. We also suggest that instructors discuss the
pros and cons of different refactoring strategies for Assertion
Roulette. For example, a commonly adopted alternative ap-
proach to get rid of this smell is to split up tests into single-
assertion tests [25], [40]. However, this strategy results in a
larger set of tests, which might be acceptable at the scale
of student assignments or projects, but it could negatively
impact test suite runtime when scaled to large applications, or
in the context of regression testing or continuous integration
environments [41].

VI. THREATS TO VALIDITY

Conclusion: The statistically insignificant results might
result from the small sample size (n = 42) [42].

Construct: Students were required to work on study tasks
individually and remotely in a limited time, which could
potentially impact their behaviors. Additionally, students were
recruited with two different incentives–graduates participated
as a required class activity, while the CS1 students self-
selected into this study and participated for extra credit. A
replication with a more consistent participant recruitment, and
a more diverse and larger set of students is needed.

Internal: While students were given the option to complete
the TDD activity within the Eclipse IDE, they were required to
compile and run the project with a provided script via the com-
mand line outside of Eclipse. Compared to the Eclipse JUnit
runner, this may impact students’ programming performance
and particularly testing behavior. However, we discarded data
from students who did not follow the instructions.

External: The conclusions were drawn based on students’
performance and behaviors when using Java and JUnit, which
may not generalize to other languages.

VII. CONCLUSION AND FUTURE WORK

We studied how Assertion Roulette impacts students’ pro-
gramming performance and testing behaviors. Though the
presence of Assertion Roulette had no statistically significant
impact on how often students test, it had a statistically sig-
nificant impact on when they started testing the code. Addi-
tionally, we found that the presence of Assertion Roulette had
no statistically significant impact on the accuracy of student-
authored source code. Hence, we conjecture that Assertion
Roulette may no longer smell bad to students. For future
work, a replication study with a more diverse and larger set
of students is suggested to better generalize how Assertion
Roulette impacts testing education.
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