Finding Suitable Programs: Semantic Search with
Incomplete and Lightweight Specifications

Kathryn T. Stolee
Department of Computer Science and Engineering
University of Nebraska—Lincoln
Lincoln, NE, USA, 68508
kstolee@cse.unl.edu - http://cse.unl.edu/~kstolee

Abstract—Finding suitable code for reuse is a common task
for programmers. Two general approaches dominate the code
search literature: syntactic and semantic. While queries for
syntactic search are easy to compose, the results are often vague
or irrelevant. On the other hand, a semantic search may return
relevant results, but current techniques require developers to
write specifications by hand, are costly as potentially matching
code need to be executed to verify congruence with the specifi-
cations, or only return exact matches. In this work, we propose
an approach for semantic search in which programmers spec-
ify lightweight, incomplete specifications and an SMT solver
automatically identifies programs from a repository, encoded
as constraints, that match the specifications. The repository of
programs is automatically encoded offline so the search for
matching programs is efficient. The program encodings cover
various levels of abstraction to enable partial matches when no
or few exact matches exists. We instantiate this approach on a
subset of the Yahoo! Pipes mashup language, and plan to extend
our techniques to more traditional programming languages as
the research progresses.

Keywords-semantic search, program composition, code reuse,
SMT solvers, constraints

I. INTRODUCTION

Programmers face many challenges when approaching a
new problem, including learning new languages, APIs, and
environments. Often, the problem being solved is not novel.
With the increasing number of large and publicly accessible
code repositories [1], the existence of similar, if not exact
solutions is likely. Yet, the costs of code reuse in terms of
finding and integrating code often outweigh the benefits [2].

Search engines are the most common way for developers
to find suitable code [3], but frequently return irrelevant re-
sults that still must be evaluated by the developers. Semantic
search by specification is effective for finding relevant code
but often requires developers to write complex specifications
(e.g., [4] [5]). Other semantic search techniques that support
partial specifications, such as test cases (e.g., [6] [7]), are
costly and unscalable since code needs to be executed to
identify matches, and also unable to identify approximate
matches when no code meets the partial specification.

To address these limitations, we propose an approach for
semantic search in which developers specify lightweight,
incomplete specifications in the form of input/output pairs

and/or partial program fragment, and incrementally refine
the specifications as needed. Instead of executing the code
to determine a match, we automatically encode repositories
of existing programs as constraints and use an SMT solver
to identify code in the repository that matches the specifi-
cations. To identify close enough matches when no exact
matches exist, we relax the matching criteria using lattices
over levels of abstraction. The programs in the repository are
automatically encoded offline, so the only costs are defining
the lightweight specifications and solver time.

In this paper, we describe our approach to finding suit-
able code by solving with incomplete specifications. The
expected contributions are:

o Approach for semantic search via lightweight specifi-
cations and program fragments using SMT solvers that
provides full, partial, and composed matches

« Prototype(s) to automatically translate programs and
specifications into constraints

« Evaluations of the aforementioned approach in at least
two programming languages

A. Related Work

Queries for syntactic code search are easy to specify, and
more sophisticated techniques leverage natural language pro-
cessing to identify matches [8], yet they ignore the structure
and behavior of code, so results may not be relevant. Early
work in semantic search involved specification matching
over component signatures and behavior, expressed using
pre/postconditions written in first-order logic [4] [5]. While
the results from these searches may be relevant, writing
specifications is non-trivial, error-prone, and often requires
a developer to learn a specification language.

To increase the practicality of semantic search, performing
transformations on the code (e.g., reordering parameters) can
make code relevant to more queries, but explodes the search
space [6]. Other techniques allow developers to create partial
specifications in the form of input/output pairs [9], test
cases [7], constraints, or a combination thereof [6]; potential
code matches are found by executing the code. While this is
effective in finding relevant code, it is costly and unscalable
as the code must be executed to identify matches. Further,

these methods are only effective if the repository contains
an exact match given the specification, albeit in some cases
after a transformation.

Some research in program synthesis aims to synthesize
code based on specifications, using input/output pairs of
objects and a solver to generate a program that meets the
specification [10]. The difference from our approach is that
we use the solver to find a match against existing programs
which makes it much more scalable.

B. Initial Scope

Our ultimate goal is to apply and evaluate our approach on
multiple languages (see Section II-C). Here, we illustrate an
application of our approach to the domain of web mashups,
using the Yahoo! Pipes [11] language for evaluation.

Yahoo! Pipes is a popular language that allows users
to create mashups within a browser, boasting over 90,000
users [12] with a public repository of over 100,000
pipes programs (an example is shown in Figure 1). This
component-based dataflow language can access multiple
data sources (e.g., RSS feeds), manipulate the data (e.g.,
filter, sort, concatenate), and create a unified output. The
input to the programs are data sources, typically RSS feeds,
that appear at the top of the programs (there are two sources
in Figure 1). The output is a list of records (e.g., the records
that reach the outputr module at the bottom). Within this
domain, we aim to help programmers find suitable code for
a variety of scenarios, including the following:

1) Order articles from two blogs by publication date
(involves sorting; a solution is shown in Figure 1)

2) Retrieve the five most-recent articles about tennis from
three different web data sources (involves processing
each data source individually with sort, filter, and head
operations, and then concatenation)

3) Use US census information to order the US states by
population (involves extraction of population informa-
tion into a new variable, reformatting it with a regular
expression, and sorting based on that variable)

II. GOALS AND APPROACH

The research problem we aim to address is to help
programmers find suitable code by narrowing the gap be-
tween code that is desired and code that is available. In
our proposed solution, programmers find desired code by
specifying lightweight, incomplete specifications. With these
specifications (automatically encoded as constraints) and an
encoded code repository of programs (Section II-B2), an
out-of-the-box SMT solver decides which programs match
the specifications. If the solver returns no or few matches,
we propose relaxations over the specifications and program
encodings that help identify 1) a program that is close
enough and can be adapted to the behavior specified, or
2) a set of programs that, when composed, match the partial
specifications provided by the developer.

URL
http://blog.nj.comijets/atom.xml

Felch Feed B
URL
http:/ffeeds.nydailynews cominydr
i
Sort — ':H_}ﬂ
Sort by
item.pubDate ¥ in| ascending ﬂumer

\ 4
i}

ol

Figure 1. Pipe Solution for First Scenario

A. Research Methodology

Our research methodology generally follows a cyclic
workflow in which we define an overall approach to address
our research problem (as defined in Section II), select a
domain (Section II-C), adapt parts of the techniques that
are domain-specific (detailed in Section II-B), prototype an
implementation, and perform an evaluation (Section II-D).

In the first iteration, we started with a domain, where,
based on our experience, finding suitable code is chal-
lenging since syntactic matches are uncommon [13]. We
built a proof-of-concept to encode Yahoo! Pipes programs
(Section 1I-B2), which led to a prototype that shows SMT
solvers can be used to identify matching programs from
an input/output pair (Section II-B3). In a small evaluation
(Section II-D), we observed that there were often too few
matches for a given specification, leading us toward subse-
quent iterations in which we refine the techniques.

In the second iteration, we defined, prototyped, and
evaluated lattices for relaxing the constraints representing
programs for the case when too few matches are found
(Section II-B4). In the third iteration, we will introduce a
technique for composing existing programs when no single
program matches the specifications (Section II-B5). An
implementation and evaluation will indicate if this technique
is sufficient, or if an alternate composition approach is
needed to stitch together solutions when none exist. The
fourth iteration will be a wrapper around the first three,
adapting this approach to new domain(s).

B. Approach

Figure 2 illustrates the big picture of our approach, which
involves five main activities; we describe each in detail.

1) Defining Specifications : Instead of textual queries,
this approach uses lightweight, incomplete specifications
that characterize the desired behavior of the code (User
Input in Figure 2). These specifications are in the form of
input/output pair(s) (e.g., two unsorted list / a combined
sorted list for the first scenario in Section I-B) and/or
partial program fragments (e.g., a sort component). The
size of the specifications defines, in part, the strength of
the specifications, and this approach allows a developer to
provide specifications incrementally.

2) Encoding a Repository of Programs : Offline, a
repository of programs (Pool of Programs in Figure 2) is

User Input

—
Pool of Programs

Encode
to Target

C

Input/Output Partial Program

Encode
Concretely
Solve
for Target

C(str) C(int)
S(int) S(str)

Refinement S
A Abstraction Lattice

t--»i Composition
i from Closest :

Output

Desired Program

Figure 2. Approach

encoded into constraints (Encode to Target). The level of
granularity for encoding must balance the cost of search (a
level too fine could result in constraint systems that cannot
be resolved efficiently) with the precision of matches (a level
too coarse could return too many matches). To permit exact
or close enough matches to be identified, the constraints are
encoded at various levels of abstraction (Section I1-B4).

For Yahoo! Pipes, we encode programs at the component
level, mapping each components onto constraints. Since it
is a dataflow language, constraints are classified in terms of
inclusion, exclusion, and order. Inclusion ensures complete-
ness; all relevant records from the input exist in the output.
Exclusion ensures precision; all records in the output are
relevant. Order ensures that the records are ordered properly,
as is necessary when asserting constraints over lists.

3) Identifying Matching Programs : After encoding the
specifications (Encode Concretely in Figure 2), an SMT
solver determines which, if any, programs match the spec-
ifications (Solve for Target). On the first iteration of this
process we search for an exact match, which corresponds to
a concrete encoding (C in the Abstraction Lattice).

4) Refinement: 1If the specifications or the encoded pro-
gram constraints are too weak, many matches may be
returned; if they are too strong, the solver may not yield any
results. To address these scenarios, we support refinement on
the specifications and encodings (Refinement in Figure 2).

Tuning Lightweight Specifications: If there are too many
matches, the developer can refine or extend the specifica-
tions. For example, if the input lists provided for the first
scenario of Section I-B are already sorted, some programs
without a sort component might match the specification.

If there are too few matches, the targets used by the
solver might be too strict, so we might need an alternate
matching criteria (Section 1I-B4) or a composition of pro-
grams (Section II-BS5). Alternately, considering a subset of
the input/output pairs may identify a close enough match.

Changing Program Encodings: Stronger constraints uti-
lize concrete values and identify exact matches (C in the Ab-

' Filter H[E[%]
Permit ?itemsthatmatch all ?ofthefollowing
Rules
item.description

3 tennis

} Contains

(a) Filtering Component in Yahoo! Pipes

Concrete: (contains(in,r) A substr(field(r), “tennis’))
— contains(out,)
Symbolic: 3s | (contains(in,r) A substr(field(r),s))
— contains(out,)
(b) Abstraction Specifications for Filtering Component

Figure 3. Abstraction Lattice Example

straction Lattice), while weaker constraints utilize symbolic
values (S in the lattice). We currently define constraints over
two datatypes that can hold concrete or symbolic values:
integers and strings. In this lattice, we can relax either the
integers (i.e., C(str) S(int)), the strings (i.e., C(int) S(str)),
or both (i.e., S). To illustrate, consider a filter component
in the Yahoo! Pipes language, shown in Figure 3(a), that
accepts records with “tennis” in the description (recall the
second scenario of Section I-B). The concrete and symbolic
constraints are shown in Figure 3(b). In the symbolic con-
straint, the string is relaxed, requiring that there exists some
string s such that all records in the output list contain s.

Another lattice we explore systematically relaxes the
inclusion, exclusion, and order constraints. We recognize
that using lattices to relax matching criteria is similar
in spirit to the pre/postcondition lattices used in previous
work [4] [5]. The key differences are that we do not rely on
the availability of component specifications but rather infer
them directly from the programs, and our use of symbolic
matches. The lattices we define 1) exploit the fact that most
languages contain constraints over multiple data types (e.g.,
strings, floats, integers, booleans, lists) and relax matching
by treating variables as symbolic, and 2) leverage domain-
specific language properties, such as order constraints, that
apply to data-flow languages like Yahoo! Pipes or query
languages like SQL that operate on tables of data.

5) Composing Programs : If no single program matches
the specifications, there might exist a composition of mul-
tiple programs that does (Composition from Closest in
Figure 2). Here, we begin with the closest program match
(defined, for example, in terms of broken constraints), and
determine if the output, provided as an input to another
program, achieves the specified output. That is, we try to
find a conjunction of two programs P and () that match
the specified input/output pair. For example, consider the
third scenario of Section I-B. Program P might extract and
format population information for each state, but leave the
list unsorted. If program @ sorts data, the composition of P
and @@ would create a pipe P with the desired behavior.

C. Scope

We have identified and experimented with one domain
of languages, Yahoo! Pipes, but our overall approach is

applicable to other domains. Currently, we can encode
constraints for:

o List manipulation (i.e., sorting, head and tail, insertion
and deletion, size, copy, concatenate, reverse, distinct)

o String processing (i.e., equality, substring, less than
comparisons, length, concatenation, reverse)

« Integer arithmetic (i.e., addition, subtraction, equality,
less than comparisons)

The constraints represent a limited yet broad range of
common programming tasks, which can apply to SQL
queries, string processing in languages like Java, C# and
C++, Lustre for control systems, or Unix commands that
use the pipe operator.

Languages must meet two requirements to be amenable
to our approach. First, there must exist a sufficiently large
amount of code that solve problems within the domains
supported by our encoding; this forms the repository. The
second requirement is one to make our approach of practical
value; specifying the input/output must be easier than build-
ing the program. Over more general domains, the presence
of side-effects and the richness of program semantics make
specification extraction more difficult, which is a challenge
we anticipate as we move forward with this research.

D. Evaluation and Preliminary Work

We hope to address one big question: When is writing our
lightweight, incomplete specifications more cost-effective
than building a program from scratch, or than other standard
search techniques? We have several factors that will be
evaluated: difficulty of problem being solved, commonality
of the problem, quality of solutions, and background knowl-
edge of the participant.

For preliminary work, we have a repository of Pipes
programs from previous work [13] [14], forming Pool of
Programs in Figure 2. We have prototyped the infrastructure
to support experimentation for the Yahoo! Pipes domain and
are currently in the evaluation stage of the second iteration
of our research methodology (Section II-A). Our current
implementation encodes a subset of the Yahoo! Pipes lan-
guage into constraints in SMT-LIB2 format, considering the
problem domains described in Section II-C, and uses the Z3
SMT solver [15] to identify matches. We have automatically
encoded over 3600 Pipes programs considering each level
of the Abstraction Lattice (Section I1-B4).

III. PRIOR PUBLICATIONS

My prior publications, organized by conference, are:
ICSE [14], FSE [16], ESEM [13] [17], SIGCSE [18], and
VL/HCC [19].

ACKNOWLEDGMENT

Special thanks to my Ph.D. advisor Sebastian Elbaum
for his continued guidance on this research. This work was
supported by the NSF Graduate Research Fellowship under
CFDA#47.076 and NSF Award #0915526

(1]

(2]

(3]

(4]

[5]

[6]

(71

[8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

REFERENCES

O. Hummel, W. Janjic, and C. Atkinson, “Code conjurer:
Pulling reusable software out of thin air,” Software, IEEE,
vol. 25, no. 5, pp. 45 =52, sept.-oct. 2008.

C. W. Krueger, “Software reuse,” ACM Comput. Surv., vol. 24,
June 1992.

S. E. Sim, M. Umarji, S. Ratanotayanon, and C. V. Lopes,
“How well do search engines support code retrieval on the
web?” ACM Trans. Softw. Eng. Methodol., vol. 21, no. 1,
pp. 4:1-4:25, Dec. 2011.

A. M. Zaremski and J. M. Wing, “Specification matching of
software components,” ACM Trans. Softw. Eng. Methodol.,
vol. 6, October 1997.

J. Penix and P. Alexander, “Efficient specification-based
component retrieval,” Automated Software Engineering,
vol. 6, April 1999.

S. P. Reiss, “Semantics-based code search,” in Proceedings
of the International Conference on Software Engineering,
2009, pp. 243-253.

O. A. Lazzarini Lemos, S. K. Bajracharya, and J. Ossher,
“Codegenie:: a tool for test-driven source code search,” in
Conference on Object-oriented programming systems and
applications companion, 2007.

M. Grechanik, C. Fu, Q. Xie, C. McMillan, D. Poshyvanyk,
and C. Cumby, “Exemplar: Executable examples archive,” in
International Conference on Software Engineering, 2010.

A. Podgurski and L. Pierce, “Retrieving reusable software
by sampling behavior,” ACM Trans. Softw. Eng. Methodol.,
vol. 2, July 1993.

S. Gulwani, V. A. Korthikanti, and A. Tiwari, “Synthesizing
geometry constructions,” in Conference on Programming
language design and implementation, 2011.

“Yahoo! Pipes,” http://pipes.yahoo.com/, February 2011.

M. C. Jones and E. F. Churchill, “Conversations in Developer
Communities: A Preliminary Analysis of the Yahoo! Pipes
Community,” in International Conference on Communities
and Technologies, 2009.

K. T. Stolee, S. Elbaum, and A. Sarma, “End-user
programmers and their communities: An artifact-based
analysis,” in International Symposium on Empirical
Software Engineering and Measurement, 2011.

K. T. Stolee and S. Elbaum, “Refactoring pipe-like mashups
for end-user programmers,” in International Conference on
Software Engineering, 2011.

“Z3: Theorem Prover,” http://research.microsoft.com/en-
us/um/redmond/projects/z3/, November 2011.

A. Koesnandar, S. Elbaum, G. Rothermel, L. Hochstein,
C. Scaffidi, and K. T. Stolee, “Using assertions to help
end-user programmers create dependable web macros,” in
Symposium on Foundations of Software Engineering, 2008.

K. T. Stolee and S. Elbaum, “Exploring the use of
crowdsourcing to support empirical studies in software
engineering,” in International Symposium on Empirical
Software Engineering and Measurement, 2010.

K. T. Stolee and T. Fristoe, “Expressing computer science
concepts through kodu game lab,” in Technical symposium
on Computer science education (SIGCSE), 2011.

K. T. Stolee, S. Elbaum, and G. Rothermel, “Revealing the
copy and paste habits of end users,” in Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), 2009.

