
Improving Grading Outcomes in Software
Engineering Projects Through Automated

Contributions Summaries

Kai Presler-Marshall
Department of Computer Science

Bowdoin College

Brunswick, ME, US

Email: k.preslermarshall@bowdoin.edu

Sarah Heckman
Department of Computer Science

North Carolina State University

Raleigh, NC, US

Email: sarah heckman@ncsu.edu

Kathryn T. Stolee
Department of Computer Science

North Carolina State University

Raleigh, NC, US

Email: ktstolee@ncsu.edu

Abstract—Teaming is a key aspect of most professional software
engineering positions, and consequently, team-based learning
(TBL) features heavily in many undergraduate computer science
(CS) and software engineering programs. However, while TBL
offers many pedagogical benefits, it is not without challenges. One
such challenge is assessment, as the course teaching staff must
be able to accurately identify individual students’ contributions
to both encourage and reward participation. In this paper, we
study improvements to grading practises in the context of a
CS1.5 introductory software engineering course, where assessing
individual students’ contributions to weekly lab assignments is
done manually by teaching assistants (TAs). We explore the impact
of presenting TAs with automated summaries of individual student
contributions to their team’s GitHub repository. To do so, we
propose a novel algorithm, and implement a tool based off of
it, AutoVCS. We measure the impact on grading metrics in
terms of grading speed, grading consistency, and TA satisfaction.
We evaluate our algorithm, as implemented in AutoVCS, in a
controlled experimental study on Java-based lab assignments
from a recent offering of NC State University’s CS1.5 course. We
find our automated summaries help TAs grade more consistently
and provides students with more actionable feedback. Although
TAs grade no faster using automated summaries, they nonetheless
strongly prefer grading with the support of them than without.
We conclude with recommendations for future work to explore
improving consistency in contribution grading for student software
engineering teams.

Index Terms—grading consistency, program analysis, software
engineering teams

I. INTRODUCTION

Professional software engineering is, almost without excep-

tion, a team-based activity, drawing together multiple develop-

ers with disparate skills to solve complicated problems [1]. To

help prepare students for this reality, most computer science

(CS) and software engineering programs include some form

of collaborative learning. Many programs explicitly use team-

based learning (TBL) to give students a realistic collaborative

experience and teach teaming skills [2], [3], [4].

TBL means that students must learn effective collaboration.

One common challenge is encouraging students to participate

equitably in their team’s efforts, rather than freeriding off

of the contributions of their teammates [5] or dominating

the effort and thus preventing others from contributing [6].

Ensuring equitable contributions generally requires individual

contribution grades for each student [7], which is often done

by TAs.
Unfortunately, TAs may struggle to provide students with

consistent and actionable feedback that recognises individual

contributions. While providing a grade deduction can serve as

a motivator to do better for freeriders, the most effective way

for students to learn is by providing formative feedback with

specific comments on how to improve [8], [9]. For students to

improve, they must receive consistent feedback [10]. However,

TAs may provide inconsistent grades and feedback [11], [12]

that impedes learning.
Prior efforts to improve grading consistency have considered

the use of rubrics [13], [14] and having multiple TAs or

instructors grade each assignment [15], [14]. However, even

with rubrics, grading individual contributions is subjective and

difficult to do consistently [13]; replicating grading efforts can

help resolve this, but is a drain on teaching staff resources.

In this study, we consider if automation can take the place

of multiple graders and offer similar benefits to grading

consistency.
We frame our work around the following research questions:

• RQ1: Can automated summaries of student contributions
enable faster grading by TAs?

• RQ2: Can automated summaries of student contributions
enable more consistent grading by TAs?

• RQ3: Can automated summaries of student contributions
enable less frustrating grading from the perspective of
TAs?

• RQ4: How do automated summaries of student contribu-
tions enable better feedback?

To answer these questions, we designed an algorithm to

summarise individual students’ code contributions to team

assignments, and built a reference implementation, AutoVCS,

for Java projects tracked through GitHub. To attribute contri-

butions to individual students, our algorithm uses Git commit

history and abstract syntax tree (AST)-based differencing [16],

and thus presents richer insights than tallying lines of code

259

2023 IEEE/ACM 45th International Conference on Software Engineering: Software Engineering Education and Training (ICSE-
SEET)

979-8-3503-2259-0/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE-SEET58685.2023.0003020

23
 IE

EE
/A

C
M

 4
5t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
En

gi
ne

er
in

g:
 S

of
tw

ar
e

En
gi

ne
er

in
g

Ed
uc

at
io

n
an

d
Tr

ai
ni

ng
 (I

C
SE

-S
EE

T)
 |

97
9-

8-
35

03
-2

25
9-

0/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

SE
-S

EE
T5

86
85

.2
02

3.
00

03
0

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 14,2025 at 14:02:03 UTC from IEEE Xplore. Restrictions apply.

(LOC) [17], [18]. We conduct a controlled experimental study

with 13 current or former TAs to understand how they grade

assignments when using automated summaries. Our results

show that automated summaries can help TAs grade more

consistently and provide more nuanced and actionable feedback,

compared to grading without summaries from the algorithm

and tool.

The contributions of this paper are as follows:

• an algorithm for summarising what individual developers

have contributed to collaborative software assignments,

• an implementation of our algorithm as a tool, AutoVCS,

which works on Java projects,

• a demonstration that our algorithm, implemented in Au-

toVCS, helps TAs grade lab assignments more consistently

and provide students with more useful feedback, and

• a demonstration that TAs prefer grading with summaries

from our algorithm.

II. RELATED WORK

Here, we discuss teaming in computer science and software

engineering education (Section II-A), formative assessment

(Section II-B), data mining in software engineering (Sec-

tion II-C), and measuring individual developers’ team con-

tributions (Section II-D).

A. Teaming in Computer Science and Software Engineering

Professional software engineering is a team-based activity [1],

[19] and consequently teaming is a core outcome assessed

by accreditation agencies [20]. To prepare students for this,

teaming is a core component of many CS programs [21], [18],

[22]. Teaming is used in many different contexts, ranging from

algorithms courses [23] to introductory courses [24] to final

capstones [21], [2]. Teaming is particularly common in software

engineering programs or courses [3], [21], [18], [25], [2].

Prior work has demonstrated that not all teams of soft-

ware engineering students work effectively together. Research

suggests that students lack the time management and project

management skills necessary to run a team [26], [4], resulting

in general disorganisation or interpersonal conflicts [4], [27],

[25]. Iacob and Faily [4] report that dysfunction is a risk in

student software engineering teams, where low engagement

or poor communication can hamper individual and team

outcomes. They identify that there may be team dysfunction,

but do not study its causes. Marques [27] proposes having a

“monitor” conduct weekly meetings with teams of software

engineering students, observing them work and providing

feedback on the overall team function and contributions of

each member. Presler-Marshall et al. [25] demonstrate that

these struggling teams can be proactively identified with a

collaboration reflection survey. Other prior work has indicated

social loafing, or freeriding, as the dominant challenge in

undergraduate engineering projects [5], [28]. Borrego et al. [28]

argue that freeriding is particularly common in introductory

courses and those with academically unbalanced teams [29],

as these students struggle the most at identifying how each

member can participate equitably. In this work, we aim to help

instructors identify when students’ contributions are insufficient

and help them provide the students with more actionable

feedback on what effective teamwork looks like.

B. Formative Assessment

Formative assessment is a key component of student-centred

learning, where students are provided early, and regular,

feedback on their work [9], [8]. Sadler argues that formative

assessment helps students identify the characteristics of “high

quality work” by providing them with a “direct authentic

evaluative experience” [30]. This gives students the opportunity

to better engage with material and identify what they have

mastered and where they need to improve. While formative

assessment may take many forms, “specific written comments

are more effective than providing grades” at maximizing

learning [31], [9]. Formative assessment has been demonstrated

to be particularly helpful for lower-achieving students, helping

them perform better and thus narrowing the gap between the

lowest and highest achievers in a class [8].

Formative assessment is commonly used in CS and software

engineering education [32], [33], and may take many different

forms. Common approaches include giving students many, low-

stakes assignments or exams [34], [35], [36] and pre-tests to

assess areas for improvement [37]. Formative assessment may

be used in collaborative learning, giving students a chance to

engage in peer learning [35] or providing feedback that focuses

on working in teams [38]. Peer evaluations can also serve as

formative assessment [39].

C. Data Mining in Software Engineering

Prior work in data mining in software engineering fo-

cuses on version control systems (VCSs) such as GitHub.

Most approaches consider large-scale analysis of open-source

projects [40], [41], [42], [43], and often include machine

learning approaches [44].

Prior work has explored data mining within computer science

and software engineering education to understand how student

teams work. Glassy [45] studies software engineering teams

using SVN data and concludes that intermediate deadlines

can counteract a tendency to procrastinate. Merle et al. [17]

look at process and product features to see which features

correlate with student grades on software engineering projects.

They conclude that none work well, but LOC performs best.

Gitinabard et al. [44] use Git data to create a machine learning

classifier for identify types of commits from commit messages.

Smith [46] presents gitRHIG for visualising information from

assignments that use Git, although they merely demonstrate its

features and provide little formal evaluation.

Evaluating the processes and practises followed by student

teams can be a tedious experience, particularly when teams use

multiple distinct tools (such as GitHub, Jenkins, and Heroku).

To help instructors synthesise information across multiple

sources, Garcia et al. [47] present BlueJay, a customisable tool

that pulls together information from GitHub, Travis, Pivotal

Tracker, and others into a series of dashboards. They report that

these dashboards help instructors evaluate student development

260

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 14,2025 at 14:02:03 UTC from IEEE Xplore. Restrictions apply.

processes, and the dashboards reveal that much work remains

in encouraging students to follow better Agile development

processes. By contrast, in our context Agile development

processes are taught more extensively in a followup course,

and thus our contributions summary algorithm, described in

more detail in Section IV, focuses on the code contributions

students make rather than the development processes that they

follow.

To enable drawing richer conclusions, prior research has

considered program analysis techniques. Fluri et al. [48]

use AST analysis with ChangeDistiller, which builds ASTs

representing two revisions of a Java file, and then performs

tree differencing to identify what was changed between the

two versions. Feist et al. [16] also use AST differencing to

understand the evolution of open-source projects. Spirin et

al. [49] present PSIMiner, a tool for producing annotated ASTs

from source code, thus enabling richer analytics from it. Our

algorithm builds on ChangeDistiller to identify changes made

in Java code, and integrates this with Git commit history to

understand how individual students are contributing to their

team’s overall effort.

D. Measuring Developer Contributions

Measuring individual developers’ contributions to software

projects remains an open challenge in industry and education.

Most techniques build off version control systems such as

Git and GitHub, measuring metrics including the number

of commits [17], [18], [40], [50], [51], pull requests [18],

[51], or lines of code [17], [18] made by each developer.

However, all of these approaches are limited. Commits and

pull requests can be large or small, and lines of code may

represent substantive changes or simply reformatting existing

code or committing auto-generated code. Measuring non-code

contributions is particularly challenging and is typically done

manually [19], [40]. In education, individual contributions

are typically assessed manually, usually by TAs [7]. Software

engineering projects in education also often use peer evaluations

to give more feedback on who is contributing and how [52],

[53].

III. BACKGROUND

At NC State University, CS1.5 is a Java-based introductory

software engineering course taken by all CS majors and minors

and is open to non-majors. CS1.5 typically has between 250 and

350 students a semester, and is taught by one PhD professor and

12-18 TAs, giving a student:teaching staff ratio of approximately

20:1. CS1.5 teaches fundamentals in object-oriented design

and development, best practises in software testing, and other

core software engineering processes and practises; additionally

it covers topics such as finite state machines and how to build

and use linear data structures. To apply concepts covered in

lecture, CS1.5 has a companion lab, where students work in

teams of three to implement and test a Java application. Pair

programming is introduced in the first lab session, and students

are encouraged, but not required, to work collaboratively on

lab tasks. Students work together on the same team, and use

the same GitHub repository, for three or four weeks, at which

point teams are scrambled for the next set of labs. Students

complete a total of 11 labs with three different teams over

the semester. When students rotate to a new team, they build

off of the best implementation of their new teammates. In

this way, students develop a medium-sized application, writing

approximately 2,500 lines of code over 11 weeks. As described

by Heckman and King [54], Jenkins is used to give students

immediate feedback on their code and automate most grading.

With most grading automated through Jenkins, TAs are

responsible only for grading Javadoc (to ensure it describes

the code) and individual contributions (which are evaluated by

checking commit history on GitHub to ensure each student

is participating equitably). We have observed that grading

individual contributions is a slow task that TAs dislike. Prior

work has shown that even with rubrics, precisely evaluating

contributions requires subjective judgement [13]; thus TAs

are unlikely to draw meaningful single-point distinctions.

Consequently, TAs provide coarse grades and feedback, giving

a 0 (“No contributions”), 5 (“Insufficient contributions”)

or 10 (“Sufficient contributions”), typically with no further

elaboration. However, this level of feedback may be insufficient

for students to identify what a sufficient contribution looks like,

and why their contribution was deemed insufficient. Prior work

argues that students want more feedback on their work [55],

and that providing this feedback can help improve the quality

of their work [9]. In this study, we aim to identify whether

our algorithm can assist TAs in providing students with this

higher-quality feedback.

IV. CONTRIBUTIONS ALGORITHM & AUTOVCS

To identify whether automated contributions summaries can

support grading, we developed an algorithm that uses commit

histories and program analysis to summarise individual students’

code contributions to team-based assignments. We then built

a reference implementation, AutoVCS, which operates on

assignments hosted on GitHub and written in Java. Our

algorithm features three main steps; a full implementation

is available in our GitHub repository [56].

1) Metadata Extraction: Metadata is extracted for each

repository, storing commit hashes, dates and times for each

commit, commit author, and a list of the files changed

on each commit. This step is performed on Line 2 of

Algorithm 1. While this information could be extracted

from Git directly as part of the next step, AutoVCS extracts

this information using the GitHub API and stores it locally

in a database to improve the performance of subsequent

steps and support user deduplication.1

2) Change Extraction: Similar to work done by Feist et

al. [16], this step extracts changes made on each commit.

It does so by traversing Git history to identify changed

1We have observed, similarly to Feist at al. [16], that many students
will commit their work under multiple aliases, which otherwise impedes
gaining a full picture of their contributions. Deduplicating aliases allows us to
combine contributions made across aliases, and using a local database allows
deduplicating these aliases much more efficiently than rewriting Git history.

261

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 14,2025 at 14:02:03 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Contribution Summary Algorithm

1: procedure SUMMARISECONTRIBUTIONS(repo,[. . .]) � Computes
a contributions summary for a Git repository, optionally within a
time window, showing the contributions of each user

2: RepoMetadata←initRepository(repo) � Extract
metadata, and optionally deduplicate users manually

3: R1← clone(repo)
4: R2← clone(repo)
5: ContribsByCommit← {}
6: for commit C in RepoMetadata do
7: if C.parent is null or C.isMergeCommit or
C.isOutOfTimeWindow then

8: continue
9: end if

10:

11: ContribsForCommit← {}
12: Check out R1 to C
13: Check out R2 to C.parent
14: for ChangedFile in C.ChangedFiles do
15: AstNew ← buildAST(R1.ChangedFile) �

Build an AST representing the new version of the file
16: AstOld← buildAST(R2.ChangedFile) �

Build an AST representing the old version of the file
17: ContribsForF ile ← diff(AstNew, AstOld)

� Compute an edit script between ASTs to identify contributions
18: ContribsForCommit.insert(

ContribsForFile)
19: end for
20:

21: ContribsByCommit.insert(C,
ContribsForCommit) � Map each commit to the changes
made as part of it

22: end for
23: ByUser ← summarise(ContribsByCommit) �

Summarise changes per-user, to show changes across files and
commits

24: return ContribsByUser
25: end procedure

files, and then building ASTs from adjacent file revisions

and computing an edit script between them. This step is

shown in Algorithm 1 from lines 6 to 22. AutoVCS uses

our improved version of ChangeDistiller [48] to build and

difference ASTs for each file.

3) Contributions Summaries: Detailed edit scripts for each

file on each commit are aggregated to present higher-level

summaries for each user; this is shown in Algorithm 1

on line 23, with more details shown in Algorithm 2.

The resulting summaries are shown in Figure 1. Sum-

maries are computed with three levels of granularity: I© a

weighted [57] sum of all contributions; II© a summary of

changes made across all files; and III© a summary of changes

made to each file. Additionally, to allow for grading non-

code contributions, a full list of commits can be shown

(IV©). For the Java code supported by AutoVCS, II© and
III© use a condensed version of the change types proposed

by Gall et al. [57]; I© is a weighted combination of these

changes. Option I© also uses the weighted contribution

scores to compute a percentage contribution for each

member. Individual code changes are summarised into four

Algorithm 2 Summarise Changes By User Algorithm

1: procedure SUMMARISEBYUSER(ContribsByCommit) �
For a group of commits and associated fine-grained

changes, presents a summary per user and a contribution

score per user

2: ContribsPerUser ← {}
3: for (Commit, Contribs) in
4: ContribsByCommit do � For each user, combine

contributions

5: if Commit.author not in ContribsPerUser
then

6: ContribsPerUser.insert(
Commit.author, {})

7: end if
8: ContribsPerUser.insert(
Commit.author, Contribs) � Add contributions

from this commit to the running tally of contributions for

this user

9: end for
10:

11: SummarisedContribs ← {}
12: for User, Contribs in ContribsPerUser

do � Summarise and weight contributions for each user

13: UserContribScore ← 0
14: UserContribSummary ← {}
15: for Contrib in Contribs do
16: UserContribSummary.insert(

label(Contrib.type), existingCount+1)
� Summarises detailed edit operations into higher-level

contribution type

17: UserContribScore +=
weight(Contrib.type) � Computes weighted score

for user based on type of contribution

18: end for
19:

20: SummarisedContribs.insert(User,
{UserContribScore, UserContribSummary})

21: end for
22:

23: return SummarisedContribs
24: end procedure

categories: 1) changes to classes, 2) changes to methods, 3)

changes to documentation, and 4) all other changes. These

are shown in II© in Figure 1.

Prior work has shown that LOC represents the best, although

still not particularly good, predictor for team grades [17].

We hypothesise that part of the problem is that not all LOC

changes are equal: languages such as Java contain substantial

“boilerplate” code that is often auto-generated and thus does not

represent a meaningful contribution. To address this, AutoVCS

recognises four common boilerplate methods [58], [59] in

Java code: hashCode(), equals(), getters, and setters.

262

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 14,2025 at 14:02:03 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: A trimmed contributions summary produced by AutoVCS. All
four types of summaries can be toggled on and off independently; two
are enabled. For brevity, details for student B and all contributions
for student C are not shown.

Changes to these methods are skipped so that contributions

are not artificially increased by autogenerated code. In our

course context, GUI files are provided by the teaching staff, so

AutoVCS has a toggleable option to skip them. We hypothesise

that these options, combined with that AST differencing

implicitly ignores formatting changes, may offer better insights

than just changed LOC or number of commits.

AutoVCS is a web application, and can be run in interactive

mode and batch mode. In interactive mode, the user selects a

single repository and time window and summaries are computed

live and displayed. Batch mode instead runs from a JSON

configuration file, and produces an HTML summary page for

each repository specified. In this mode, the summary pages are

self contained and do not depend upon AutoVCS’ application

server, and thus can be used externally (for example, hosted on

GitHub Pages). On a Xeon E5-2670 with 16GB RAM and an

SSD, analysis takes about two minutes for a repository with

100 commits. Batch mode also supports creating summaries

for multiple repositories in parallel to improve performance;

details are in our GitHub repository [56].

V. STUDY

To answer our research questions, we designed and con-

ducted a two-part controlled experimental study with 13

participants to evaluate whether our algorithm, as implemented

in AutoVCS, can help TAs grade more effectively (RQ1 &

RQ2), make grading less frustrating (RQ3), or provide better

feedback (RQ4). The study outline and research questions

answered in each part of the study are shown in Figure 2.

We recruited participants from two groups: a) 44 students

who have served as TAs for two team-based undergraduate

software engineering courses (CS1.5 and a third-year advanced

software engineering course) within the past two years, and b)

all CS PhD students at NC State University with TA experience.

Nine students from group a) and four students from group b)

Fig. 2: Study Outline, showing the parts of the study, the approximate
time spent on each part, and what RQs were answered by each.

participated. The participants had an average of 6.6 years

of experience with Java (median: 6) and 4 semesters of TA

experience (median: 4). Four participants identified as female,

and five as members of a minority racial group.

This study was conducted in four, two-hour lab sessions,

held physically in a computer lab. We provided snacks, but

participants were not otherwise compensated. All sessions

followed the same procedures, and participants attended only

one session. An outline of the study is shown in Figure 2.

A brief introduction was provided to all participants before

Part 1, explaining both parts of the study, the format of the

tasks, and how to use the automated contributions summaries.

In Part 1 (Section V-B), participants graded lab assignments

from a recent offering of our CS1.5 course. Some assignments

were graded without automated assistance (the control group)

and some with summaries from our algorithm and AutoVCS

(the experimental group). In Part 2 (Section V-C), participants

evaluated feedback from other participants in the study. Finally,

at the end of the study, participants completed a brief reflection

(Section V-D).

A. Terminology

We refer to the individual students whose assignments were

graded as subjects. We refer to the 13 TAs who participated in

our study as participants or raters, depending on context. We

refer to the grades assigned by raters to subjects as ratings. We

refer to rating subjects when referring to individual students, or

grading assignments when referring to the entire three-person

team.

B. Part 1: Grading

In Part 1, participants were tasked with grading 17 lab

assignments from a recent offering of our CS1.5 course. We

provided each participant a Google Sheets spreadsheet, where

each assignment to grade was on a separate row (Figure 3).

A random subset of nine assignments had summaries from

AutoVCS (the experimental group); the other eight had no

summaries available (the control group). For each assignment,

the spreadsheet contained a) a link to the GitHub repository

with the code, b) a reminder of the time interval to grade, and

c) where applicable, a link to the contributions summary from

AutoVCS. The order of the 17 tasks was randomised for each

participant. For each subject on each team, raters provided a) a

contribution score (0, 5, or 10, as discussed in Section III), b)

if the score was not a 10, a comment to the subject explaining

what to do differently to receive more points, and c) a comment,

not shared with the subject, giving the rationale for the score.

We instrumented the spreadsheet to reveal tasks one at a time

and capture start times and end times for each task. An excerpt

263

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 14,2025 at 14:02:03 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Excerpt from the spreadsheet used for Part 1, showing grades (I©), comments (II©), and rationale (III©). Feedback for students B and
C is not shown.

from the spreadsheet used, showing grades and comments for

several students, is shown in Figure 3.

The assignments to grade were prepared by anonymising

18 weekly lab assignments from a recent offering of our

CS1.5 course, replacing authors in Git commits and code with

pseudonyms.2 These anonymised assignments were hosted on

GitHub Enterprise to mirror normal grading practises. One

assignment was used as an example to demonstrate the tasks

and the contributions summaries; the other 17 were used as

tasks for the study.

C. Part 2: Evaluating Feedback

In Part 2, participants were asked to put themselves in

the mindset of a student receiving feedback and evaluate its

actionability. We provided participants with ten pairs of grades

and comments from other participants in the study and asked

them to choose which comment from each pair is “more helpful
in letting you know what to improve upon”, or Either (no
difference) as appropriate. One grade and comment in each

pair came from an assignment from the control group, and

one came from the experimental group. This label was not

shown, and the order of the two comments was randomised.

An example of the spreadsheet used is shown in Figure 4.

D. Reflection Survey

Finally, we asked participants to complete a brief reflection

on the grading experience. The reflection asked participants

how they used the automated summaries; how helpful they

found each of the main features (shown in Figure 1); how

they would improve the summaries; and whether they would

choose to use them again. We also collected basic demographic

information.

2Rewriting files in Git while keeping the history (commit author and
timestamps) is not officially supported, and could not be performed on
repositories where students introduced merge conflicts. Eighteen assignments
could be completely anonymised.

Fig. 4: Excerpt from the spreadsheet used for Part 2, showing several
pairs of comments alongside corresponding votes.

E. Data Description

1) Survey Responses: We converted the text Likert scale to

numbers, and treat them as interval-scaled data [60], where 1

maps to the lowest score (e.g., “Not at all helpful” and “Never”),

and 5 maps to the highest score (e.g., “Extremely helpful” and

“Always”). We qualitatively analysed the open-ended questions.

All 13 participants completed the reflection survey.

2) Data Details: In Part 1, we tasked 13 participants with

grading 17 assignments. Some participants graded more slowly

than others, and consequently not all participants finished

grading all assignments. The 13 participants in our study graded

a total of 204 assignments, providing 610 ratings for individual

students.3

In Part 2, we provided each participant with ten pairs of

grades and comments and asked them to choose which comment

from each pair was more actionable. The 13 participants chose

comments from the experimental group 60 times, comments

from the control group 43 times, and expressed no preference

27 times.

3) Analysis: To answer RQ1 we compared grading times

for assignments from the control and experimental groups. The

3Note this is not an exact multiple of 3, as two participants each missed
rating one subject. If all participants had graded all assignments, there would
have been 663 ratings (13 participants * 17 assignments * 3 students per
assignment = 663 ratings).

264

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 14,2025 at 14:02:03 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Grading time, in minutes, for assignments that

were graded manually (Control) or with automated summaries

(Experimental). Times are split into the first eight assignments

(first half) and second nine assignments (second half) graded

by each participant.

First Half Second Half Overall
Mean Median Mean Median Mean Median

Control 7.57 7.13 4.36 4.02 5.85 5.31
Experimental 7.88 6.79 4.66 4.10 6.35 5.44

distribution of the elapsed times is skewed right; consequently,

we chose a Mann-Whitney U test, a non-parametric test.

To answer RQ2, we computed inter-rated reliability (IRR)

for the control and experimental groups. Raters provided three

grades for each assignment (one for each of the three students

on the team); thus each student is a unique subject rated by up

to 13 raters. We use Krippendorff’s Alpha [61] for computing

IRR, as it handles a different number of ratings per subject.

As suggested by Zapf et al. [62] we calculated confidence

intervals for both groups and identified the q-value where they

are disjoint.

To answer RQ3, we read through responses to the reflection

to understand how participants used the summaries and whether

they would choose to use them again.

We answered RQ4 with two different metrics. To identify if

automated summaries help participants provide better feedback

we performed Fisher’s Exact Test on the preferences from

Part 2. To understand if automated summaries help TAs see

nuance and discern between partial and full contributions, we

performed a test of two proportions on the rates of partial

credit for each of the two groups.

VI. RESULTS

In this section we present results for whether automated

contributions summaries can enable faster (Section VI-A) or

more consistent (Section VI-B) grading. We also consider

impacts on the grading experience (Section VI-C) and feedback

to students (Section VI-D).

A. RQ1: Grading Speed

We find no significant difference in grading speed from

automated summaries. As shown in Table I, participants graded

assignments in the control group in an average of 5.85 minutes.

Participants graded assignments in the experimental group in

an average of 6.35 minutes. A Mann-Whitney U Test confirmed

that the difference was not significant (p = .677).

We observe a learning curve as participants get more com-

fortable with, and consequently faster at, grading assignments.

To evaluate a learning curve, we compared times taken to

grade the first half and second half of the assignments within

the control and experimental groups using Mann-Whitney U

tests. We observed learning effects in both groups, showing

that regardless of how participants graded assignments, they

got faster over time (p < .001 for both groups).

We observe that grading may feel faster when using auto-

mated summaries. One participant reflected “it definitely felt

faster to grade” with the automated summaries. While the

numbers do not back this up, if the process feels faster, TAs

may consider it less of a burden.

RQ1: Automated summaries do not impact grading speed.

B. RQ2: Grading Consistency

We find that automated summaries can help TAs grade more

consistently. We calculated Krippendorff’s Alpha (α) separately

for the control and experimental groups to identify how

consistently the raters of each subject agreed with each other.

We find α = 0.286 for the control group, and α = 0.609 for

the experimental group. At q = .0214, the confidence intervals

are disjoint, showing that automated summaries significantly

improve grading consistency.

We note, however, that even though automated summaries

help TAs grade more consistently, α = 0.609 still indicates a

relatively low level of agreement. Krippendorff argues that “it
is customary to require α ≥ .800” [65], which participants in

our study did not meet. We discuss possible causes of this and

implications in Section VII-B.

RQ2: TAs grade assignments more consistently using
automated summaries than without them.

C. RQ3: Grading Preferences

We find that TAs have a strong preference for grading with

automated summaries. All 13 participants said that they would

prefer to use automated summaries for grading in the future,

with 11 participants saying they would strongly prefer them.

Participants gave the automated summaries an average rating of

4.85 out of 5. One participant said “I think the tool was a huge
help” and rated it 5 out of 5. Another participant, who rated

the summaries 4 out of 5, said they were “very straightforward
to use”.

As shown in Figure 5, participants find all of the features

of the contributions summaries to be useful. As discussed

in Section V-E1, we calculated the average score given to

each feature. Participants found the List of commits for each
user (IV© in Figure 1) to be the most useful feature, rating it

4.46/5 (halfway between Very Helpful and Extremely Helpful).
Percentage Contribution to Team (part of I© in Figure 1)

was rated as the second most useful, with a score of 3.92/5

(corresponding to Very Helpful). All features received a rating

of 5 from at least one participant, and received an average rating

of at least 3.4/5, approximately halfway between Moderately
Helpful and Very Helpful. Our results thus show that both

summaries of commit history and more advanced program

analysis can assist with grading.

RQ3: TAs strongly prefer grading with summaries from
AutoVCS and find all of the features helpful.

4Krippendorff’s α uses q-values as opposed to p-values as they provide
improved resilience when performing multiple comparisons. q-values are
interpreted the same way as p-values [63], [64].

265

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 14,2025 at 14:02:03 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Ratings from the participants in our study for each of the main features of our contributions summaries algorithm and

AutoVCS.

D. RQ4: Feedback Quality

TAs consider feedback from assignments graded with

automated summaries to be more actionable than assignments

graded manually. As described in Section V-C, we asked

participants to choose between pairs of comments from other

participants in the study to choose which one makes it clearer

“what to improve upon”. A Fisher Exact Test confirmed

(p = .0311) a preference for comments from the experimental
group, thus showing that TAs consider feedback from their

peers more useful when it came from assignments graded with

automated summaries.

We also observe that the quantity of feedback is impacted by

automated summaries. We compared the rate at which partial

credit was assigned in both groups, and find TAs award partial

credit to 17.1% of subjects in the control group, and 24.9% of

subjects in the experimental group. A test of two proportions

shows that this difference is significant (p = .018). TAs are

expected to provide feedback on where to improve alongside

partial credit, but are not required to do so for full credit. By

giving more partial credit, this may help TAs provide students

with more feedback and thus improve learning outcomes [31],

[9].

One participant reflected that “I was terrified at how much
[the automated summaries] made me reconsider some of
my initial grading thoughts”. We thus see evidence that our

contributions summary algorithm may be able to help TAs

grade more carefully, and thus provide better feedback and

improved learning outcomes [31], [9]. We expand further on

this in Section VII-A.

RQ4: TAs consider feedback from assignments graded with
automated summaries to be more helpful than feedback from
assignments graded without them, and automated summaries
help TAs see nuance and provide partial credit more often.

VII. DISCUSSION

In this section, we consider how TAs used the automated

summaries when grading (Section VII-A), probe grading

inconsistencies (Section VII-B), discuss threats to validity

(Section VII-C) and explore future work (Section VII-D).

A. TA Use of Automated Summaries

Prior work has shown that, paradoxically, improving the

quality of an AI or machine learning algorithm may result

in a net negative overall performance impact, as the humans

responsible for reviewing the output instead choose to defer to

the machine over offering their own judgement [66], [67]. We

were curious to see if the high-level contributions scores, and

corresponding percentage contributions (I© in Figure 1), would

have a similar impact on our participants: TAs who might see

a high (or low) overall contributions score, and look no further

before deciding what grade to give. Our results suggest that this

did not happen. We observed that TAs spent the same amount

of time grading assignments when they had the automated

contributions summaries to support them as they did grading

266

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 14,2025 at 14:02:03 UTC from IEEE Xplore. Restrictions apply.

assignments without the automated summaries. Although we

expected, and observed, a learning curve as TAs learn how to

use the automated summaries and more broadly gain familiarity

with the study tasks, we observed no statistically-significant

difference in the learning effect between groups: grading times

in the control and experimental groups improved at the same

rate. This matches against our results in Section VI-D, namely

by showing that the automated summaries helped TAs see

nuance between different students’ submissions and award

more partial credit rather than less. This confirms that the

improved consistency seen in Section VI-B was not a result of

giving more subjects no credit, or full credit. Thus, our results

suggest that there was not an over-reliance on the automated

summaries, and the TAs used them to guide their grading rather

than serving as a rubber stamp upon the numbers produced by

our algorithm and our tool.

B. Improving Grading Consistency

In Section VI-B, we found that automated summaries

improve grading consistency, but that consistency remains an

issue. To probe this further, we focused on the most extreme

cases: subjects who were given full credit (10) and no credit

(0) by different raters. We found seven of these subjects

within each of the control (manual grading) and experimental
(automated summaries) groups. To understand these ratings,

we read through the comments and rationale from each rater

for these subjects.

We find that while the number of these disagreements does

not differ across both groups, the causes do. In the control
group, four of the seven disagreements came from issues

identifying individual contributions. In two cases, a rater gave

credit even when the subject had made no contributions. In an

additional case, a rater gave credit for work done outside of the

time window (work for a different lab, which used the same

repository) and in a final case, a rater missed contributions that

were made by the subject. By contrast, in the experimental
group, we saw only two issues with identifying contributions. In

one case, the rater gave credit for contributions outside the time

window; in the second, the rater appeared to miss contributions

within the time window5. The remaining cases (3 from the

control group, 5 from the experimental group) were caused by

disagreements over what contributions deserved credit (non-

code contributions, such as system testing and documentation)

and cases of pair programming. The sample size is small,

but these results suggest that automated summaries may help

TAs more accurately identify individual students’ contributions;

work remains to ensure that students are credited equitably for

these contributions.

C. Threats to Validity

Conclusion: To combat any impacts of multiple study

sessions, we used a script to introduce the study procedures and

ensure that the experience was comparable for all participants.

5As discussed in more detail in Section VII-D, participants appeared to
struggle the most with identifying non-code contributions, such as project
management tasks and system testing.

Differences in elapsed times between groups were calculated

with nonparametric tests to handle skewed data. Grading

consistency, or inter-rater reliability, was calculated using

Krippendorff’s Alpha, which handles missing data [61].

Internal: To counter learning effects, the order of tasks for

each participant was randomised.

Participants knew that their behaviour was being studied,

and thus may have graded more carefully than they would

otherwise do. However, this applies to participants in both

the control and experimental groups equally, and a significant

improvement was still observed.

Construct: We measure consistency by calculating inter-rater

reliability, evaluating whether TAs’ ratings agree with each

other. We do not consider whether the ratings agree with an

expert, such as a course instructor. However, our evaluation

matches typical grading practises.

External: We conducted Part 1 of study using Google Sheets,

and participants graded student labs from a recent semester.

Both the study tasks and format emulate the normal grading

experience. However, all assignments came from a single

semester of a single course. We suggest future work to consider

broader course contexts.

All participants in the study were current or former TAs for

team-based computer science courses and have experience with

evaluating individual contributions. However, some but not all

of the TAs have worked on CS1.5 and thus are more familiar

with the specific tasks in this study. Additionally, all participants

volunteered to take part in the study, and thus may be more

interested in evaluating tools that could improve their workflow,

and more inclined to do a careful job, than the average TA.

Busy graduate students who are less enthusiastic about their TA

duties may grade assignments differently, possibly including

relying more heavily on the automated summaries, than we

observed.

As students, the participants are also familiar with interpret-

ing feedback; however, all are graduate students or upper-level

undergraduates, and consequently may do so differently from

CS1.5 students.

D. Future Work

As discussed in Section VI-B, our results show that auto-

mated summaries can help TAs rate subjects significantly more

consistently, but consistency is still relatively poor. Rubrics

have been widely used to improve grading consistency and

fairness [68], [69]; however, to the best of our knowledge, no

prior work has evaluated their impact on assessing individual

contributions. We propose evaluating whether rubrics can be

used to help grade individual contributions more consistently.

We find that participants particularly struggled with grading

pair programming. Pair programming is encouraged, as prior

work has demonstrated its pedagogical benefits [70]; however,

contributions in Git appear only under the name of the

student who committed the code. While we instruct students

to document pair programming via commit messages, it

is not clear how often they do so. Unfortunately, students

regularly forget to add @author tags to their Javadoc, which

267

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 14,2025 at 14:02:03 UTC from IEEE Xplore. Restrictions apply.

means we lack a ground truth for a post-hoc analysis of

which contributions resulted from pair programming, and thus

for evaluating how effectively pair work was documented

and assessed. Future work remains in studying how best to

encourage students to document collaborative work, and then

ensure that pair programming is graded fairly.

Much work remains to be done in account for non-code

contributions. We found several participants who missed

students’ project management or system testing contributions,

which are done in text or PDF documents instead of Java

code. Prior work suggests automatically crediting non-code

contributions is an open problem [19], [40]. We propose

future work to support grading with automation in this area,

particularly in semi-structured formats such as GitHub Issues

or Pull Requests.

In Section VI-D we found that TAs consider feedback

from assignments that were graded with automated summaries

to be more actionable than feedback from manually-graded

assignments. We suggest future work to evaluate learning gains

by putting the feedback directly in front of students in the

target course to evaluate whether these benefits transfer to an

undergraduate student population.

In Section VII-A, we observed that TAs use the information

provided in the automated summaries to get a more nuanced

look at the student assignments, giving better feedback and

more partial credit (Section VI-B and Section VI-D) than

the control group. We propose future work to study the TAs’

feedback in more detail, to determine how closely linked the

feedback is to the automated summaries themselves. This work

could inform further improvements to the automated summaries,

to better help the TAs in finding the information they need for

grading assignments, or potentially open up the possibility for

auto-generating some or all of the feedback that is provided

to students on their work.

In this paper, we performed a lab study to evaluate whether

contributions summaries from our algorithm, as implemented

in AutoVCS, can help TAs grade assignments more consis-

tently and provide students with better feedback. While our

results show a statistically significant improvement in grading

consistency, we suggest future work to evaluate whether these

benefits transfer to a larger set of assignments in a full course.

As described in Section V-B, all grading was performed in

Google Sheets spreadsheets. This was done to mimic normal

grading processes for the course. We propose future work to

study how to support different grading workflows, including

integrating contributions summaries into LMS platforms such

as Moodle and Canvas.

VIII. CONCLUSION

In this work, we developed an algorithm for summarising

individual students’ code contributions to team assignments

using Git commit history and AST analysis. We built a tool,

AutoVCS, that implements our algorithm, and evaluated it

with a controlled, A/B experimental study with 13 TAs, who

graded some assignments with automated summaries and

some assignments without them. We found that automated

summaries help TAs grade assignments more consistently and

provide students with feedback that is possibly more actionable.

Additionally, although the contributions summaries do not

help TAs grade assignments more rapidly, TAs nonetheless

strongly prefer to grade assignments using them and would

choose to use them again. Finally, we reflect on ways to

further improve grading consistency with the use of rubrics,

and suggest future work to explore the use language-agnostic

contributions analysis and automated support for evaluating

non-code contributions.

ACKNOWLEDGMENTS

This work was supported in part by NSF SHF grants

#1749936 and #1525173. We would like to thank the students

of NC State University’s Software Development Fundamentals

course for allowing us to use their data for analysis, and the

teaching assistants who volunteered their time and participated

in our study. Finally, we would like to thank Dr. Dan Harris

for providing his statistical expertise.

DATA AVAILABILITY

AutoVCS is open-source and is available with documentation

and setup instructions on GitHub [56].

REFERENCES

[1] I. Richardson, V. Casey, F. McCaffery, J. Burton, and S. Beecham, “A
process framework for global software engineering teams,” Information
and Software Technology, vol. 54, no. 11, pp. 1175 – 1191, 2012.

[2] R. Bates, J. Hardwick, G. Salivia, and L. Chase, “A project-based
curriculum for computer science situated to serve underrepresented
populations,” in Proceedings of the 53rd ACM Technical Symposium
on Computer Science Education, ser. SIGCSE 2022. ACM, 2022, p.
585–591.

[3] J. E. Sims-Knight, R. L. Upchurch, T. A. Powers, S. Haden, and R. Topciu,
“Teams in software engineering education,” in 32nd Frontiers in Edu.,
vol. 3, 2002.

[4] C. Iacob and S. Faily, “The impact of undergraduate mentorship on
student satisfaction and engagement, teamwork performance, and team
dysfunction in a software engineering group project,” in Proceedings of
the 51st ACM SIGCSE, ser. SIGCSE ’20. ACM, 2020, p. 128–134.

[5] D. Hall and S. Buzwell, “The problem of free-riding in group projects:
Looking beyond social loafing as reason for non-contribution,” Active
Learning in Higher Education, vol. 14, no. 1, pp. 37–49, 2013.

[6] K. Presler-Marshall, S. Heckman, and K. T. Stolee, “What makes team[s]
work? a study of team characteristics in software engineering projects,”
in Proceedings of the 2022 ACM Conference on International Computing
Education Research - Volume 1, ser. ICER ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 177–188.

[7] A. Tafliovich, A. Petersen, and J. Campbell, “On the evaluation of student
team software development projects,” in Proceedings of the 46th ACM
Technical Symposium on Computer Science Education, ser. SIGCSE ’15.
ACM, 2015, p. 494–499.

[8] P. Black and D. Wiliam, “Inside the black box raising standards through
classroom assessment,” vol. 80, 09 2010.

[9] B. Wisniewski, K. Zierer, and J. Hattie, “The power of feedback
revisited: A meta-analysis of educational feedback research,” Frontiers
in Psychology, vol. 10, 2020.

[10] D. L. Butler and P. H. Winne, “Feedback and self-regulated learning: A
theoretical synthesis,” Review of Educational Research, vol. 65, no. 3,
pp. 245–281, 1995.

[11] N. Glazer, “Formative plus summative assessment in large undergraduate
courses: Why both?” The International Journal of Teaching & Learning
in Higher Education, vol. 2014, pp. 276–286, 03 2015.

[12] J. Hayes, T. Lethbridge, and D. Port, “Evaluating individual contribution
toward group software engineering projects,” in 25th International
Conference on Software Engineering, 2003. Proceedings., 2003, pp.
622–627.

268

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 14,2025 at 14:02:03 UTC from IEEE Xplore. Restrictions apply.

[13] A. Jonsson and G. Svingby, “The use of scoring rubrics: Reliability,
validity and educational consequences,” Educational Research Review,
vol. 2, no. 2, pp. 130–144, 2007.

[14] I. Albluwi, “A closer look at the differences between graders in
introductory computer science exams,” IEEE Transactions on Education,
vol. 61, no. 3, pp. 253–260, 2018.

[15] K. Raman and T. Joachims, “Methods for ordinal peer grading,” in
Proceedings of the 20th ACM SIGKDD, ser. KDD ’14, 2014, p.
1037–1046.

[16] M. D. Feist, E. A. Santos, I. Watts, and A. Hindle, “Visualizing project
evolution through abstract syntax tree analysis,” in 2016 IEEE Working
Conference on Software Visualization (VISSOFT), 2016, pp. 11–20.

[17] K. Mierle, K. Laven, S. Roweis, and G. Wilson, “Mining student cvs
repositories for performance indicators,” in Proceedings of the 2005
International Workshop on Mining Software Repositories, ser. MSR ’05.
ACM, 2005, p. 1–5.

[18] R. M. Parizi, P. Spoletini, and A. Singh, “Measuring team members’
contributions in software engineering projects using git-driven technology,”
in 2018 IEEE Frontiers in Education (FiE), 2018, pp. 1–5.

[19] F. Ramin, C. Matthies, and R. Teusner, “More than code: Contributions
in scrum software engineering teams,” in Proceedings of the IEEE/ACM
42nd International. Conference on Software Engineering Workshops, ser.
ICSEW’20. ACM, 2020, p. 137–140.

[20] “Criteria for accrediting engineering programs,
2021 – 2022,” Oct 2020. [Online]. Available:
https://www.abet.org/accreditation/accreditation-criteria/
criteria-for-accrediting-computing-programs-2021-2022/

[21] J. Khakurel and J. Porras, “The effect of real-world capstone project in
an acquisition of soft skills among software engineering students,” in
2020 IEEE 32nd Conference on Software Engineering Education and
Training (CSEE&T), 2020, pp. 1–9.

[22] C. Hundhausen, A. Carter, P. Conrad, A. Tariq, and O. Adesope, “Eval-
uating commit, issue and product quality in team software development
projects,” in Proceedings of the 52nd ACM Technical Symposium on
Computer Science Education. ACM, 2021, p. 108–114.

[23] X. Lin, J. Connors, C. Lim, and J. Hott, How Do Students Collaborate?
Analyzing Group Choice in a Collaborative Learning Environment. ACM,
2021, p. 212–218.

[24] J. E. Burge, G. Gannod, M. Carter, A. Howard, B. Schultz, M. Vouk,
D. Wright, and P. Anderson, “Developing cs/se students’ communication
abilities through a program-wide framework,” in Proceedings of the
45th ACM Technical Symposium on Computer Science Education, ser.
SIGCSE ’14. ACM, 2014, p. 579–584.

[25] K. Presler-Marshall, S. Heckman, and K. Stolee, “Identifying struggling
teams in software engineering courses through weekly surveys,” Pro-
ceedings of the 53rd ACM Technical Symposium on Computer Science
Education, 2022.

[26] B. Oakley, R. Brent, R. Felder, and I. Elhajj, “Turning student groups
into effective teams,” Journal of Student Centered Learning, vol. 2, 01
2004.

[27] M. R. Marques, “Monitoring: An intervention to improve team results
in software engineering education,” in Proceedings of the 47th ACM
Technical Symposium on Computer Science Education, ser. SIGCSE ’16.
ACM, 2016, p. 724.

[28] M. Borrego, J. Karlin, L. D. McNair, and K. Beddoes, “Team effec-
tiveness theory from industrial and organizational psychology applied
to engineering student project teams: A research review,” Journal of
Engineering Education, vol. 102, no. 4, pp. 472–512, 2013.

[29] V. Pieterse and L. Thompson, “Academic alignment to reduce the presence
of ‘social loafers’ and ‘diligent isolates’ in student teams,” Teaching in
Higher Education, vol. 15, no. 4, pp. 355–367, 2010.

[30] D. R. Sadler, “Formative assessment and the design of instructional
systems,” Instructional science, vol. 18, no. 2, pp. 119–144, 1989.

[31] J. Hattie and H. Timperley, “The power of feedback,” Review of
educational research, vol. 77, no. 1, pp. 81–112, 2007.

[32] M. Marchisio, T. Margaria, and M. Sacchet, “Automatic formative
assessment in computer science: Guidance to model-driven design,”
in 2020 IEEE 44th Annual Computers, Software, and Applications
Conference (COMPSAC), 2020, pp. 201–206.

[33] L. Benotti, M. C. Martnez, and F. Schapachnik, “A tool for introducing
computer science with automatic formative assessment,” IEEE Transac-
tions on Learning Technology, vol. 11, no. 2, pp. 179–192, 2018.

[34] P. Belleville, S. A. Wolfman, S. Bradley, and C. Heeren, Inverted Two-
Stage Exams for Prospective Learning: Using an Initial Group Stage to
Incentivize Anticipation of Transfer. ACM, 2020, p. 720–738.

[35] S. MacNeil, C. Latulipe, and A. Yadav, “Learning in distributed low-
stakes teams,” in Proceedings of the Eleventh Annual International
Conference on International Computing Education Research, ser. ICER
’15. ACM, 2015, p. 227–236.

[36] H. Erdogmus, S. Gadgil, and C. Péraire, “Introducing low-stakes just-in-
time assessments to a flipped software engineering course,” 01 2019.

[37] M. C. Parker and Y. S. Kao, “How do you know if they don’t know?
the design of pre-tests in computing education research,” in Proceedings
of the 53rd ACM Technical Symposium on Computer Science Education,
ser. SIGCSE 2022. ACM, 2022, p. 1147.

[38] S. Reckinger and B. Hughes, Strategies for Implementing In-Class,
Active, Programming Assessments: A Multi-Level Model. ACM, 2020,
p. 454–460.

[39] H.-J. Lee and C. Lim, “Peer evaluation in blended team project-based
learning: What do students find important?” Educational Techology and
Society, 2012.

[40] J.-G. Young, A. Casari, K. McLaughlin, M. Z. Trujillo, L. Hébert-
Dufresne, and J. P. Bagrow, “Which contributions count? analysis of
attribution in open source,” in 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories (MSR), 2021, pp. 242–253.

[41] I. Kwan, A. Schroter, and D. Damian, “Does socio-technical congruence
have an effect on software build success? a study of coordination in a
software project,” IEEE ToSE, vol. 37, no. 3, pp. 307–324, 2011.

[42] A. Mauczka, F. Brosch, C. Schanes, and T. Grechenig, “Dataset of
developer-labeled commit messages,” in 2015 IEEE/ACM 12th Working
Conference on Mining Software Repositories, 2015, pp. 490–493.

[43] D. M. German, “An empirical study of fine-grained software modifica-
tions,” Empirical Software Engineering, vol. 11, no. 3, p. 369–393, sep
2006.

[44] N. Gitinabard, R. Okoilu, Y. Xu, S. Heckman, T. Barnes, and C. F.
Lynch, “Student teamwork on programming projects. what can github
logs show us?” in Proceedings of the 13th International Conference on
Educational Data Mining, EDM 2020. International Educational Data
Mining Society, 2020.

[45] L. Glassy, “Using version control to observe student software development
processes,” Journal of Computing Sciences in Colleges, vol. 21, no. 3, p.
99–106, feb 2006.

[46] C. M. Smith, “A toolset for mining github repositories in educational
software projects,” Ph.D. dissertation, 2018.

[47] C. Garcı́a, A. Guerrero, J. Zeitsoff, S. Korlakunta, P. Fernandez, A. Fox,
and A. Ruiz-Cortés, “Bluejay: A cross-tooling audit framework for agile
software teams,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering: Software Engineering Education and Training
(ICSE-SEET), 2021, pp. 283–288.

[48] B. Fluri, M. Würsch, M. Pinzger, and H. Gall, “Change distilling:
Tree differencing for fine-grained source code change extraction,” IEEE
Transactions on Software Engineering, vol. 33, no. 11, pp. 725–743,
2007.

[49] E. Spirin, E. Bogomolov, V. Kovalenko, and T. Bryksin, “Psiminer: A
tool for mining rich abstract syntax trees from code,” in 2021 IEEE/ACM
18th International Conference on Mining Software Repositories (MSR),
2021, pp. 13–17.

[50] N. Sviridov, M. Evtikhiev, and V. Kovalenko, “Tnm: A tool for mining
of socio-technical data from git repositories,” in 2021 18th ACM MSR,
2021.

[51] M. V. Bertoncello, G. Pinto, I. S. Wiese, and I. Steinmacher, “Pull
requests or commits? which method should we use to study contributors’
behavior?” in 2020 IEEE 27th SANER, 2020, pp. 592–601.

[52] B. Pérez and A. L. Rubio, “A project-based learning approach for
enhancing learning skills and motivation in software engineering,” in
Proceedings of the 51st ACM Technical Symposium on Computer Science
Education, ser. SIGCSE ’20, 2020, p. 309–315.

[53] S. Brutus and M. B. L. Donia, “Improving the effectiveness of students
in groups with a centralized peer evaluation system,” Academy of
Management Learning & Education, vol. 9, no. 4, pp. 652–662, 2010.

[54] S. Heckman and J. King, “Developing software engineering skills using
real tools for automated grading,” in Proceedings of the 49th ACM
Technical Symposium on Computer Science Education, ser. SIGCSE ’18.
New York, NY, USA: ACM, 2018, p. 794–799.

[55] J. Li and R. D. Luca, “Review of assessment feedback,” Studies in
Higher Education, vol. 39, no. 2, pp. 378–393, 2014.

269

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 14,2025 at 14:02:03 UTC from IEEE Xplore. Restrictions apply.

[56] K. Presler-Marshall, “Autovcs.” [Online]. Available: https://github.com/
AutoVCS/AutoVCS

[57] H. C. Gall, B. Fluri, and M. Pinzger, “Change analysis with evolizer
and changedistiller,” IEEE Software, vol. 26, no. 1, pp. 26–33, 2009.

[58] A. Kamalizade, “How to reduce java boilerplate code with lombok.”
[59] Changyi, “Java programming skills – boilerplate

code.” [Online]. Available: https://www.alibabacloud.com/blog/
java-programming-skills-boilerplate-code 598058

[60] S. E. Harpe, “How to analyze likert and other rating scale data,” Currents
in Pharmacy Teaching and Learning, vol. 7, no. 6, pp. 836–850, 2015.

[61] K. Krippendorff, “Computing krippendorff’s alpha-reliability,” 2011.
[62] A. Zapf, S. Castell, L. Morawietz, and A. Karch, “Measuring inter-rater

reliability for nominal data – which coefficients and confidence intervals
are appropriate?” BMC Medical Research Methodology, vol. 16, no. 1,
p. 93, Aug 2016.

[63] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate:
A practical and powerful approach to multiple testing,” Journal of the
Royal Statistical Society: Series B (Methodological), vol. 57, no. 1, pp.
289–300, 1995.

[64] J. D. Storey, “The positive false discovery rate: a Bayesian interpretation
and the q-value,” The Annals of Statistics, vol. 31, no. 6, pp. 2013 –
2035, 2003.

[65] K. Krippendorff, Content analysis: An introduction to its methodology.
SAGE, 2004.

[66] Z. Buçinca, M. B. Malaya, and K. Z. Gajos, “To trust or to think:
Cognitive forcing functions can reduce overreliance on ai in ai-assisted
decision-making,” Proceedings of the ACM on Human-Computer Inter-
action, vol. 5, no. CSCW1, apr 2021.

[67] V. Lai and C. Tan, “On human predictions with explanations and predic-
tions of machine learning models,” in Proceedings of the Conference on
Fairness, Accountability, and Transparency. ACM, jan 2019.

[68] J. Feldman, Grading for Equity: What It Is, Why It Matters, and How It
Can Transform Schools and Classrooms. SAGE Publications, 2018.

[69] K. Ragupathi and A. Lee, “Beyond fairness and consistency in grading:
The role of rubrics in higher education,” in Diversity and inclusion in
global higher education. Palgrave Macmillan, Singapore, 2020, pp.
73–95.

[70] L. A. Williams and R. R. Kessler, “Experiments with industry’s “pair-
programming” model in the computer science classroom,” Computer
Science Education, vol. 11, no. 1, pp. 7–20, 2001.

270

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 14,2025 at 14:02:03 UTC from IEEE Xplore. Restrictions apply.

