
Barriers for Students During Code Change Comprehension
Justin Middleton

Department of Computer Science
North Carolina State University

USA
jamiddl2@ncsu.edu

John-Paul Ore
Department of Computer Science
North Carolina State University

USA
jwore@ncsu.edu

Kathryn T. Stolee
Department of Computer Science
North Carolina State University

USA
ktstolee@ncsu.edu

ABSTRACT
Modern code review (MCR) is a key practice for many software
engineering organizations, so undergraduate software engineering
courses often teach some form of it to prepare students. However,
research on MCR describes how many its professional implementa-
tions can fail, to say nothing on how these barriers manifest under
students’ particular contexts. To uncover barriers students face
when evaluating code changes during review, we combine inter-
views and surveys with an observational study. In a junior-level
software engineering course, we first interviewed 29 undergrad-
uate students about their experiences in code review. Next, we
performed an observational study that presented 44 students from
the same course with eight code change comprehension activities.
These activities provided students with pull requests of potential
refactorings in a familiar code base, collecting feedback on accuracy
and challenges. This was followed by a reflection survey.

Building on these methods, we combine (1) a qualitative analy-
sis of the interview transcripts, activity comments, and reflection
survey with (2) a quantitative assessment of their performance
in identifying behavioral changes in order to outline the barriers
that students face during code change comprehension. Our results
reveal that students struggle with a number of facets around a
program: the context for review, the review tools, the code itself,
and the implications of the code changes. These findings – along
with our result that student developers tend to overestimate be-
havioral similarity during code comparison – have implications
for future support to help student developers have smoother code
review experiences. We motivate a need for several interventions,
including sentiment analysis on pull request comments to flag tox-
icity, scaffolding for code comprehension while reviewing large
changes, and behavioral diffing to contrast the evolution of syntax
and semantics.

CCS CONCEPTS
• Software and its engineering → Software evolution; Software
development process management; • General and reference
→ Empirical studies.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0217-4/24/04
https://doi.org/10.1145/3597503.3639227

ACM Reference Format:
Justin Middleton, John-Paul Ore, and Kathryn T. Stolee. 2024. Barriers for
Students During Code Change Comprehension. In 2024 IEEE/ACM 46th
International Conference on Software Engineering (ICSE ’24), April 14–20,
2024, Lisbon, Portugal. ACM, New York, NY, USA, 13 pages. https://doi.org/
10.1145/3597503.3639227

1 INTRODUCTION
Code review is a useful and popular software engineering practice
wherein team members manually inspect each other’s new code
to verify that it meets expectations before integrating it into the
official product [4]. Not only does code review improve quality
by catching bugs early [41], but it also promotes organizational
cohesion by spreading project knowledge throughout the team [11].
To attain these benefits, code review requires comprehending the
differences between the current program version and the new pro-
posal. However, isolating the behavioral differences underlying
syntactic differences is an error-prone process for professionals and
students alike [33], and obstacles in the review process can trickle
into the project’s health altogether. For example, prior work finds
that professional programmers experience confusion during code
review when the code is unfamiliar or they are provided no ratio-
nale for the change, and these deficiencies delay development [12].

Therefore, because of review’s centrality to professional soft-
ware process and the variety of ways it can be poorly applied, many
software engineering education courses incorporate code review
to prepare students for industry practices [22, 24]. Students and
professionals respond to different pressures in different contexts,
and the prior literature is split on where and to what extent pro-
fessionals and students diverge. Some studies suggest they behave
differently when it comes to code review and code comprehen-
sion tasks. For example, a body of prior work finds that novices
investigate software with different or less effective patterns than
experts [9, 25, 28], but the impact of experience is not uniformly
underlined throughout contexts [39, 40]. Other studies suggest that
student and professional developers face similar challenges when
comparing similar algorithms, and both struggle to identify behav-
ioral differences [33]. These ambiguities make it more difficult to
identify effective interventions across contexts.

Regardless of whether there are differences between the popula-
tions, support code comprehension during code review is needed
across the board [11], especially when it comes to refactoring re-
view [3]. Research efforts at improving the expressiveness of pro-
grammatically generated reports of difference, or diffs, support
this notion, such as in their augmentation with runtime informa-
tion [14]. By studying student developers and the barriers they

1

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597503.3639227&domain=pdf&date_stamp=2024-04-12


ICSE ’24, April 14–20, 2024, Lisbon, Portugal Justin Middleton, John-Paul Ore, and Kathryn T. Stolee

encounter, we can compare their barriers to professional develop-
ers and, like the curb cut effect [23], unveil needs with solutions
that could bring benefit to all developers.

Our investigation focuses on junior-level undergraduate stu-
dents enrolled in a software engineering course. It involves inter-
views, tasks, and a post-activity survey aimed to understand what is
hard about understanding code changes. The interview focused on
identifying code review barriers that may not be immediately dis-
coverable through a prescribed activity. We designed code change
comprehension tasks as proposed refactorings through GitHub pull
requests, where participants judged if each refactoring was done
correctly (i.e., preserves behavior). This task design focuses on the
comprehension aspect of the code change and has a clear measure
of accuracy. Students then reflected on the experience in a post-
activity survey. We found four high-level categories of barriers
faced during code change comprehension—context, tool, code, and
comparative comprehension—comprising 13 barriers in all. Thus,
this work makes the following contributions:

• A data-driven characterization of code change comprehen-
sion as a challenging task for students, and

• Identification of 13 barriers students face when comprehend-
ing code changes during pull request review.

Despite differing contexts, we find some commonalities in the bar-
riers that students face when comprehending code changes with
those faced by professionals in an industrial context [12]. Using the
barriers as the outline of an underlying process, we also explore the
cognitive activities of comparison and opportunities for improving
student developers’ experience of it with additional tools.

2 RELATEDWORK
To motivate our work, we track developments in the practice of
peer code review and its integration into classrooms.
2.1 Code Review in Professional Settings
The term modern code review (MCR), was popularized by Bacchelli
and Bird. Through observations, interviews, and surveys at Mi-
crosoft, they highlight code reviews’ perceived benefits: to uncover
defects, improve code, propose alternative solutions, and dissemi-
nate knowledge [4]. Davila and colleagues [11] corroborate these
benefits with a systematic review of MCR, aggregating technical
factors (e.g., code patch features) and nontechnical factors (e.g.,
author and reviewer traits) that influence review outcomes.

MCR’s implementation can change with the context. Sadowski
and colleagues explore MCR at Google, mixing investigative meth-
ods to corroborate the generality of some traits of MCR (e.g. MCR is
tool-driven and lightweight) while finding areas of variability (e.g.
formatting consistency is an explicit priority in their context) [44].
Outside of corporate industry, Rigby and colleagues focus on open-
source software (OSS) projects, interviewing developers and com-
piling review policies and artifacts [42]. Convergent results include
two reviewers being sufficient; divergent results include the self-
selection process of reviewers; Rigby and Bird report additional
comparisons in their syntheses of industry and OSS alike [41].

Germane to our interest in behavioral preservation, AlOmar and
colleagues performed a case study at Xerox to discover refactoring’s
place in MCR [2]. In their assessment, refactoring often copes with
issues in design and style but often occurs alongside functional

changes, too. They find that refactoring documentation is often
insufficient and propose a framework of three I’s (Intent, Instruction,
and Impact) to mitigate challenges in industrial refactoring.

Our methodology borrows from prior work in industry through
use of interviews and surveys, but we add code change compre-
hension tasks instead of direct observation, allowing us to better
explore the accuracy with which code changes are understood.

2.2 Code Reviews Barriers
Kononenko and colleagues identify two categories of review barri-
ers: technical and social. The former includes code unfamiliarity,
size, and complexity; the latter, time management and task switch-
ing [27]. The barrier of large changes is also present in Baum and
Schneider’s call for novel review tools, which recommends interven-
tions such as reducing changeset sizes and supporting or obsoleting
complete code comprehension [6]. Pascarella and colleague’s inter-
views and assessment of code review comments highlight seven
categories of review-relevant information needs, including alterna-
tive solutions, rationale, and whether the review is decomposable
into smaller changes [36], suggesting that the lack of meeting those
information needs could create a barrier.

Building on their aforementioned industrial case studies, AlOmar
and colleagues also contrast code review with refactoring review
in open-source projects. They detail new categories of obstacles
for refactoring review, such as confirming behavioral preservation
or otherwise untangling refactorings from intentional behavioral
changes [3]. Likewise, they quantitatively corroborate that refac-
toring reviews generate more comments and code churn than re-
views otherwise . These results suggest that refactoring review may
present unique challenges.

Ebert and colleagues combine OSS developer surveys with the
mining of code reviews to categorize sources of confusion like in-
adequate rational or familiarity [12]. This methodology in the OSS
sphere reflects our interests within a student population, and dis-
covering overlap and distinction can resolve the debate on whether
and where novice and professional populations diverge.

2.3 Code Review in Education
Given code review’s value to professional practice, it draws at-
tention in education research. For example, Trytten experimented
with a class review activity and reported successes like exposure
to new algorithmic approaches, as well as challenges like hostile
discussions [50]. Song and colleague’s pcr is a web-based tool to
assist student reviewers with code rubrics, and they find that stu-
dent participants value the ability to see alternative solutions to
familiar problems [47]. On the other hand, Chong and colleagues
experiment with having students develop their own code review
checklists, which is an activity that could supplement instructors
with more insight into how students scaffold the review process
than measuring defect detection alone [10]. They report that a ma-
jority of the checklist questions that students generate are useful
for reviews, and those questions that are not often struggle with
clarity or independence from specific testing or analysis tools.

From a refactoring-specific perspective, Keuning and colleague’s
experimented with a web-based tutoring system and found varying

2



Barriers for Students During Code Change Comprehension ICSE ’24, April 14–20, 2024, Lisbon, Portugal

success over six refactoring exercises [26]. However, to our knowl-
edge, code review of refactorings, as we do in this study, has not
been studied in a student population.

Indriasari and colleagues frame code review as a field-specific
implementation of peer review, and summarize the literature that
explores classroom implementations of it [24]. On the one hand,
they corroborate peer review to be an effective supplement in class-
rooms for encouraging coding standards, constructive communica-
tion, and time management. On the other hand, the authors report
common, general barriers to review efficacy, such as the lack of
knowledge, low engagement, low review quality, and ineffective ad-
ministration and review processes. Our research shares a common
concern with the barriers to review; we supplement this literature,
however, by probing the comprehension process in particular in
addition to probing students’ experiences outside the classroom.

2.4 Comparative Comprehension
Code review and refactoring both involve the contrast between ver-
sions of code: the original version and the updated version. Hence,
they are acts of comparative code change comprehension. Tao and
colleagues’ survey highlights that developers and test engineers
practice change understanding several times a day, whether for
reviews or feature additions and bug fixes [48]. Likewise, one of
AlOmar’s refactoring review challenges is the distinction of refac-
toring changes from non-refactoring changes [3]. These studies
highlight the challenge of tracking code behavior while compre-
hending code changes, and so we want to bring that into focus with
our observational study.

The frame of review as comparison also takes special meaning
in educational situations. One benefit of code review is to see alter-
native methods for solving a problem [36, 47, 50], illustrating that
witnessing and comparing alternative solutions may have educa-
tional benefits. This notion is corroborated by studies like Patitsas
and colleagues [37], which find that studying alternative algorithms
in parallel can improve students’ knowledge and flexibility. Studies
that find explicit benefit in this practice suggest that there is some-
thing unique occurring in comparative comprehension in contrast
to other kinds of software comprehension.

In prior work by two of the authors of this research, Middleton
and Stolee [33] measured the accuracy with which student and
professional developers identify code clones. They also interviewed
participants about the practical situations inwhich code comparison
arises; refactoring and code review emerged as primary contexts. In
this work, we also look at the accuracy of comparison but in context,
through a refactoring lens, andwith students only. Further, we focus
on the barriers they face, as these can lead to future interventions.

3 METHODOLOGY
The primary goal of this study is to understand the challenges
that student developers (hereafter just “students”) endure when
comparing versions of a program during code review. In this frame,
we ask two research questions. The first is this:
RQ1 What barriers do student developers face when com-

prehending code changes?
To answer this question from multiple perspectives, we consoli-
date three sources of qualitative data. First, in interviews, we ask

students to explicitly discuss their negative experiences in code
review, or explicitly discuss their ideal workflow. Second, we elicit
in-situ reflections during a code change comprehension activity
where participants examine specific proposed refactorings. Third,
we distribute a post-activity reflection survey so that students can
combine their specific experiences in the activity with their general
experience otherwise.1

While the initial interviews can elicit topics from the complete
process of peer review, the change comprehension activity and
reflection survey do not in themselves replicate the end-to-end
process of code review, which is collaborative, team-based, and long-
term. Rather, we focus on an essential step within code review—the
examination of self-contained code changes—delivered via pull
request in a familiar code base by students.

For our second research question, our focus is to assess the
potential impact of barriers. After all, barriers can have negative
downstream effects on developer performance: prior work suggests
that professionals experience delays, decreased code quality, and
negative emotion when barriers in review emerge [12]. Given the
limited time scale of our activity, we can focus on one of the most
immediate of consequences: correctness in judgment. That is, prior
work also shows that developers struggle to identify behavioral
differences in similar algorithms [33]. Thus, we operationalize our
construct of comparative comprehension in this research as the ac-
curacy with which a developer detects behavioral differences resulting
from a code change. Therefore, to measure the potential impact of
such barriers unveiled by RQ1, we pose another question:

RQ2 How accurately do student developers recognize be-
havioral impact in code review tasks?

For answering RQ2, we use the code change comprehension task to
measure participants’ accuracy in identifying refactorings (behavior
preserving) and non-refactorings (behavior non-preserving).

3.1 Study Context
We designed this study for a junior-level undergraduate Software
Engineering course at North Carolina State University. When we
administered the study in Fall 2021, the course had 130 students.
This course required all students to have experience in the funda-
mentals of computer science and Java. Furthermore, this course
incorporated code review using GitHub with Git branches, pull
requests, and automated testing during a team-based course project
that spanned the last eight weeks of the term.

Specifically, the course project centered on a web portal pro-
totype called iTrust v2 [32]. The project repository contains 287
HTML files, 149 Java files, and many other auxiliary files. Each
team of three to four students wrote, integrated, and tested a signif-
icant new feature to the project. Each team submitted and merged
32-35 pull requests, demonstrating sufficient experience with the
pull request interface and process. Given that this course project
preceded our study’s interviews and class activity, all students had
familiarity with team-driven code review and the code.

1This work is IRB approved under NCSU 24542. Per this approval, anony-
mous participant quotes can be published but raw data and transcripts can-
not be released. However, study artifacts are available to facilitate replication:
https://zenodo.org/records/10145856.

3



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Justin Middleton, John-Paul Ore, and Kathryn T. Stolee

(1) Background questions (repeated in post-activity survey):
(a) Are you familiar with the concepts of code refactoring?→

Please define in your own words.
(b) And code review, especially with a team? → Please define in

your own words.
(c) What have been your experiences in receiving code reviews?
(d) What experiences have you had outside of class?

(2) Review Techniques questions:
(a) When doing code review on new or changed behavior, what

tools and techniques did you have to determine behavior?
(b) Are those techniques good enough, or do you wish you had a

better way?
(c) Do you typically get to see both versions of the code at the

same time?
(3) Quality & Refactoring Questions

(a) Have you made suggestions during code review to improve
code quality without changing the overall behavior?

(b) How do you define code quality in these situations?
(c) What techniques did you have to determine quality?
(d) What techniques did you have to determine if behavior has

been maintained?
(e) Do those techniques typically work as intended and in a timely

manner, or could they be better?
(4) Speculative Questions

(a) If you had access to any information or tool you’d like, what
would be your ideal way of examining, comparing, and review-
ing code?

(b) What are your biggest sources of frustration?
(c) What are other times you compare code, beyond review?

Figure 1: Semi-Structured Interview Questions for RQ1

Toward the end of the semester, we announced an upcoming
class activity and directed students to an online consent form. All
students would participate in the activity during class, but their
consent determined if we could analyze their responses. We also
invited them to participate in 15-minute interviews before the class
activity in exchange for extra course credit.

3.2 Interviews
We conducted the one-on-one interviews over Zoom, which auto-
mated the first draft of transcription. Each interview lasted up to
20 minutes. Our interview questions are in Figure 1, but the execu-
tion was semi-structured: we reordered major topics and created
follow-up questions in response to the flow of conversation. Ourma-
jor topics involved their understandings of refactoring and review
(#1-2), the processes they had experienced for reviewing code or
assessing code quality (#3), and their biggest frustrations and most
desired changes for those processes (#4). Interview participants
received one extra percentage point of class credit.

3.3 Code Change Comprehension Activity
To create the tasks, we forked the iTrust v2 [32] repository and
manually explored it for refactorings opportunities from Fowler’s
text [17] and Murphy-Hill and colleagues’ study of professional
refactoring [34]. Given that many reviews in professional practice
do not perfectly separate small changes into separate commits [35],
we included more than one refactoring in many examples. We split

Figure 2: An example of the interface which students used to
review refactorings. The top half shows a basic pull request
description. The bottom half shows the changed code.

the tasks into two groups, one with real refactorings, and one with
behavioral changes, corroborating both with the project test suite.
Thus, we created refactorings in 11 non-overlapping areas in iTrust
v2, using Eclipse’s automated refactoring tools when possible.

Table 1 lists all tasks, noting which were refactorings (white
background rows) and behavioral changes (grey background rows).
The first three,A, B, and C, were Introductory examples that were
walked through as part of the introduction. For example, task C
introduces a behavioral change by replacing Stream.findAnywith
Stream.findFirst. The change involves one file (# FILES); +9 lines
are added and -3 lines are removed. Three tasks were refactorings
(tasks 3, 5, and 6) and three were not (tasks 2, 4, and 7); these six
Primary tasks answer RQ2. We intended the remaining two tasks
to be refactorings, but after conducting the activity, we discovered
ways that these changes impacted behavior that was not covered by
existing tests. Rather than throwing these tasks out altogether, we
therefore labeled these exercises as Open-Ended and we removed
the correctness scores (tasks 1 and 8).

We presented the code change comprehension tasks to students
using the pull request review interface on GitHub. The overall task
instructions framed each code change as a potential refactoring, and
we designed the pull request description to briefly describe the area
of change without revealing the ground truth. Figure 2 provides an
example of what the participant would see. The change proposal is
captured in Pull Requests with a “Files Changed” page. Obsolete
code is highlighted in red, and updated code is highlighted in green.
This corresponds to Task 2 in Table 1. For each of the eight tasks,
participants responded to four comprehension questions shown in
Figure 3; all questions were optional.

After the code comprehension activity, students completed a
reflection survey, designed to elicit reflections from the activity
they had just completed. The questions are shown in Figure 4.

3.4 Study Execution
After announcing the upcoming class activity and distributing con-
sent material, we interviewed 35 student developers over four days,

4



Barriers for Students During Code Change Comprehension ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 1: Details of the Code Change Comprehension Activity.
Shaded rows are non-refactorings (code edits that change behavior). “DK" means “I do not know." “%Correct” excludes “I do not
know” responses. An arrow (‘→’) in a refactoring implies that “Program Structure 1 was converted into Program Structure 2.”

TASK CODE CHANGES IS REFACTORING? #FILES #LINES # Y N DK %CORRECT

Introductory

A Rename Variable (x2) Yes 1 +5 -5
B Exception→ Precheck Yes 1 +2 -11
C Stream.findAny→ Stream.findFirst No: new code ensures determinis-

tic behavior.
1 +9 -3

Primary

2 for loop→ for each loop (x2) No, new code maintains references
to an obsolete variable.

2 +3 -5 42 35 7 0 16.7%

3 Loop→ Pipeline Yes 1 +6 -7 43 34 2 7 94.4%
4 Consolidate Conditional

Extract Variable (x4)
No: behavior differs when compar-
ing two null values.

1 +10 -40 44 38 5 1 11.6%

5 Consolidate Conditional
Extract + Move Function

Yes 2 +35 -22 44 31 10 3 75.6%

6 Replace Magic Literal (x4)
Stream.collect.size→ Stream.count (x4)

Yes 1 +21 -13 38 27 4 7 87.1%

7 Extract Function (x2)
Slide Statement

No: the extracted methods contain
early return statements.

1 +110 -102 31 22 2 7 8.3%

Open-Ended

1 Extract Variable
Rename Variable (x2)

No issues when run alone, but is-
sues in a surrounding framework
that depends on parameter names.

1 +12 -10 43 41 2 0

8 Exception→ Precheck
Extract Function
Extract Variable (x4)
Inline Variable (x2)
Loop→ Pipeline
Slide Statement

For some cases of invalid input, the
order in which errors are raised
may change, but this is compen-
sated for in other files.

1 +30 -37 29 21 3 5

(1) Is this code change a refactoring (i.e. it does not change the
external behavior)? {"Yes", "No", "I do not know"}

(2) What impact does this code change have? If it is a refactoring,
does the refactoring improve the legibility, maintainability, or
something else? If it is not a refactoring, what behavior does this
pull request change? If you do not know, what feature of the code
are you unsure about?
{free text}

(3) What tools or strategies did you use to investigate the dif-
ferences in the code? Explain in a comment what strategies you
used in comparison. Did you use an IDE? Did you use the unified
or split view in GitHub? Did you run the test suite? All of the
above? None of the above? {free text}

(4) Was there anything difficult about comparing this code?
{free text}

Figure 3: Questions for each code change comprehension
task; (1) and (2) address RQ2; (3) and (4) address RQ1. Italicized
texts are the possible answers.

spending 10 to 20 minutes per participant. While the interviews
were conducted outside of the class time, the activities and reflec-
tions were conducted during class.

We began the 75-minute class with a lecture introducing techni-
cal debt, code smells, and refactoring (“semantics-preserving trans-
formations on source code”). After 25minutes, wemoved from lecture

(1) What was difficult about performing the code review in this study?
(2) What was easy about performing the code review in this study?
(3) What would have helped you perform the code review in this

study more effectively?
(4) How many years of programming experience do you have?
(5) Do you have experience in professional software environments?

With code review? With refactoring?
(6) What is your gender identity? [male/female/non-binary/prefer not

to disclose]

Figure 4: Reflection survey questions answered at the end of
the study; used to answer RQ1.

to the walkthrough of the three introductory tasks, A, B, and C.
Because we performed these tasks as a class, tasks A, B, and C are
not included in the results.

After 10 minutes talking through the exercises, we directed the
class to a Google form which linked to the other statically ordered
tasks 1–8 on our iTrust v2 fork on our university enterprise GitHub.
Participants had 30 minutes to work through as many tasks as their
pace allowed. All participants saw the same task ordering so that we
could collectively reflect on the first three tasks as an end-of-class
activity, although they could skip among questions.

At the end of class, we directed students to the reflection survey.
We allowed students to return to the form later if they wanted to

5



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Justin Middleton, John-Paul Ore, and Kathryn T. Stolee

Table 2: Demographics of participants. Interview participants
are a subset of task participants. For gender identification,
no students selected “non-binary” or opted out.

Interviews Tasks + Reflection
Sample Size 29 44

Gender
Male 19 31

Female 10 13

Programming Experience (Years)
Range 2 to 9 2 to 9
Mean 4.1 4.0

Median 4 4

Experiences in Professional Environments
Any 17 (58.6%) 23 (52.3%)

Review 12 (41.4%) 18 (40.9%)
Refactoring 11 (37.9%) 17 (38.6%)

complete more tasks on their own time. To account for the potential
effect of additional time, we marked the submission times as during
or after class.

3.5 Participants
Of the 35 interview participants, only 29 submitted their demo-
graphic information in the Reflection Survey at the end of data
collection. We summarize their details in Table 2 in the Interviews
column, which is a proper subset of the activity participants (Sec-
tion 3.3). The range of programming experience in years was be-
tween 2 and 9, with an average of 4.14. Over half of respondents
(17 of 29) reported experience in professional environments such as
internships and co-ops. We note that future work should consider
established instruments for measuring expertise to better under-
stand the role it plays in comparative code comprehension [15].

After the class activity, we distributed an online form to collect
four kinds of data: participants’ programming experience in years,
whether they had professional experience with code review, their
biggest challenges with the class activity, and their personal demo-
graphic information. Of the 130 students in the class, 75 students
consented to data analysis, 58 students submitted answers for the
class activity, and a separate but overlapping set of 61 students sub-
mitted demographic information. We had 44 usable class activity
records from participants who submitted all three. Their general
demographics are included in Table 2 and, when quoted, we refer
to them as P01 through P44 with random but consistent identities.

Because we allowed students to submit their forms after class,
we also analyzed whether these data would be comparable to those
in class. Of the 44 students, 9 submitted after class. The mean
number of correct tasks for in-class submissions was 2.40, and the
mean after-class was 2.44. A Welch’s t-test of these data does not
provide sufficient evidence for us to conclude that the scores were
significantly affected by this decision (p=0.88).

3.6 Data
For RQ1, the data come from three sources: the interviews before the
class activity (29 participants answering question in Figure 1), free-
text responses after every task (132 descriptions by 44 participants);

and the reflective survey after the class period (44 summaries by 44
participants).

For RQ2, from the 44 participants we received 314 total responses
to the code change comprehension tasks, an average of 7.14 from
each. Thirty responses were “I don’t know” for their respective
code change. We exclude responses to tasks 1, 2, and 3 from one
participant because their open-ended responses referred to the
three introductory tasks A, B, and C instead.

3.7 Analysis
For RQ1, the first author generated a set of categories an initial
open-card sort [29, 43] (i.e. no pre-existing categories) by doing
an initial pass over the full set of interviews, activity answers, and
class reflections. Another author then took these codes and applied
them to only the class reflections, noting places of disagreement.
We then convened, discussed new categories that could resolve dis-
agreements, and discussed the axial categories which could further
organize the codes. With the new codes, we applied them to the
rest of the data.

To measure interrater agreement after independent coding, we
use Cohen’s Kappa [31]. When one or both raters assigned multiple
codes to a single quote, we duplicated the quote into multiple obser-
vations, pairing shared codes with each other and unshared codes
likewise, to prevent one area of disagreement from overruling co-
occurring areas of agreement. After the initial, independent coding
of class reflections to establish the shared codebook, our kappa
value was 0.59. After deliberation and applying the codebook to the
full dataset, our kappa value was 0.67, representing a moderate to
substantial level of agreement. We deliberated over disagreements
until we resolved all of them.

For RQ2, we grade participant correctness—whether or not the
change preserves behavior, as described in Section 3.3—based on
our ground truths in Table 1. We handled “I do not know” responses
separately. We then aggregated responses in two ways: by partic-
ipant and by task. When aggregating by tasks, we can explore
whether there are differences between how participants perform
for refactorings against non-refactorings. Aggregating by partici-
pant, we can explore whether demographic information predicts
performance through statistical regression.

4 RESULTS
Here, we present the study results. For RQ1, we cover the challenges
that participants reported in their review and refactoring experi-
ences, for both this activity and in general. For RQ2, we quantify
how students performed when identifying the behavioral impacts
of proposed code changes.

4.1 RQ1: Challenges in Comparison
Our first research question focuses on the specific challenges that
students face during code comparison, considering interviews, code
change comprehension tasks, and reflection surveys. Through card
sorting described in Section 3.7, we identified 13 individual barriers,
which we sorted into the four larger categories in Table 3.

In discussing barriers henceforth, we print categories as bolded
and individual barriers italicized. For example, in the category of
Tool Barriers, there were three individual barriers, lack of tests,
limited or misaligned view, and toolchain issues. In the interviews,

6



Barriers for Students During Code Change Comprehension ICSE ’24, April 14–20, 2024, Lisbon, Portugal

8 of the 29 participants (28%) gave responses that suggested lim-
ited or misaligned views is a barrier for code comprehension. This
barrier came up for 17 of the 44 participants in the class activity
(39%) and seven of the 44 participants in the post-activity reflection
(16%). All categories were nearly equal in being evoked throughout
the interviews (either 12 or 13 out of 29 per each), but the Code
Barriers dominate the comment themes in the class activity and its
reflections. For each quote from a participant, we denote the source
(activity, interview, or reflection) with a subscript—i.e., P44𝐴 means
the quote was from the activity, P20𝑅 comes from the reflection
survey, and P23𝐼 comes from an interview.

4.1.1 Context Barriers. We use “context” to mean the circum-
stances outside of the code that determine a developers’ relationship
and responsibilities to the code. Here, three difficulties emerged:
Lack of Time, Social Friction, and Self-Doubt.

Context Barrier 1: Lack of Time Comprehending code takes time,
and time is a limited resource. This barrier hinders students from
comprehensively exploring the entirety of each code change. In our
datasets, students raised this issue primarily in the class reflections,
wherein ten participants there explicitly stated that the 30 minutes
was insufficient to address all tasks to their satisfaction. Neverthe-
less, two participants discuss it in interviews, supporting that the
barrier is not merely a consequence of experimental design.

Context Barrier 2: Social Friction Some students remark that re-
view and refactoring are often team activities, and there are two
primary ways conflict manifests in team contexts. First, the stu-
dent needs something from someone else but is unable to acquire:
clear explanations about what a file does, for example, or P31𝐼 ’s
frustration with “people not doing what they’re supposed to do” in
their responsibilities. Second, friction manifests by what the other
party provides that the student does not want. For example, P43𝐼
claims: “I would say my biggest frustration is some group members
always think that they’re right.”, which is similar to the "pushback"
experienced in code review by developers in industry [13]. Their
teammates’ attitude thus hampers reviews by stifling the flow of
information. Given that the class activity was individual, the latter
form of this barrier comes exclusively from the interviews about
general experience, whereas the first form, the lack of social support,
was invoked in the reflections as well.

Context Barrier 3: Self-Doubt Even when a student comes to a
conclusion about a code change, they may not have confidence to
act effectively. Uncertainties can stem from many sources: P03𝐼
discusses how their lack of experience with GitHub tooling raises
doubts about their efficacy. Responses to the class activity cite in-
experience with languages or refactoring. Nevertheless, self-doubt
may impact the manner in which student developers make claims
about code. Furthermore, this barrier is present in prior work on
sources of confusion in code review among professional developers,
attesting that this is not merely an issue of being a student [12].

4.1.2 Tool Barriers. Though developer tools intend to expedite
workflows, incorporating them into a student developer’s habits can
come with new problems. In this category, three barriers emerged:
Lack of Tests, Limited or Misaligned Views, and Toolchain Issues.

Tool Barrier 1: Lack of Tests For verifying behavioral equiva-
lence, a test suite is a valued, time-saving tool. In this study, we

intentionally left tests out as we wanted to study the students’ com-
prehension practices in reading code. Nevertheless, participants
noticed their lack, and in four of 44 reflections, test suites & debug-
gers were the most desired addition to the activity.

Tool Barrier 2: Limited or Misaligned View The way the interface
visualizes code changes can both help and hinder comparative
comprehension. Within this barrier, we note three patterns. First,
the capacity of the view may be too small. Some students express
frustration when relevant information is elsewhere in the program
and they must search for it, as opposed to that information being
readily available in their current view. As P12𝐴 put it for task 7, “This
change was immediately more annoying to look at, given its size in
the diff viewer.” This issue corresponds with the Large Scope barrier
(described later). This barrier is also seen in the search behavior
of professional programmers; they frequently use code search to
assist their code comprehension during code review tasks [45].

Second, students mentioned that it became more difficult to
compare code when it was not positioned well. This happened to
them in some cases with large change blocks: “(P37𝐴) The new and
old version were simply split into two large chunks and not displayed
side by side.” It also affected students when functions are moved,
especially between files. For Task 4, P24𝐴 noted: “The changes were
on two different files, which made it a bit trickier to compare them.”

Third, an interface’s use of highlighting can be too coarse to
effectively pinpoint the code a developer should attend to. Red and
green highlighting, as in Figure 2, is a tool by which GitHub focuses
a developer’s attention on changes. However, some students discuss
how the highlighting algorithm can be distracted by irrelevant
changes. For example, P33𝐼 states, “So it’s been a lot of time trying
to figure out what logic is changed, just when you realize that there
wasn’t a significant change, it was just a little formatting different.”

Tool Barrier 3: Toolchain Issues Several students discuss the chal-
lenge of coordinating multiple tools during review. For example, in
the interview, P02𝐼 talks about their experiences in reviewing code:
“The process of having to change branches, having to stop the program
and then restart the program if you’re testing this, it’s a little tedious.”
This barrier becomes a comprehension barrier when the relevant
code is hidden behind several layers of tool coordination, and an-
swering the core question—did this behavior change?—requires
switching contexts. Other toolchain pain points include pull re-
quests, continuous integration, and poor code interactivity.

4.1.3 Code Barriers. Unlike the previous categories which em-
phasize the conditions that a student may experience for any code,
this category concerns the difficulties rising from the code itself.
Participants discussed three types of barriers: the Large Scope of
code to review, Unfamiliar code, and poor code Comprehension.

Code Barrier 1: Large Scope Changes that impact a large volume
of codemay require more effort to comprehend. This was the case in
our Task 7, as P27𝐴 notes the distress: “Given that there were a huge
change, at first it was overwhelming to read all of the code. For the
same task, P12𝐴 identifies a potential solution—“This [pull request]
could be improved by separating smaller changes into more commits,
but that doesn’t appear possible in this example.” From prior work,
long and complex changes are a common barrier during code review
for professional developers [12]. For example, defects that appear in
files presented later in a pull request more often go undetected [18].

7



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Justin Middleton, John-Paul Ore, and Kathryn T. Stolee

Table 3: Barriers reported by unique student participants in the class activities and interviews.
Totals include unique participants per category. For example, consider the Context Barriers. In interviews, 12 participants
described social friction, 2 limited time, and 1 self-doubt. With overlap, this is 13 unique interviewees, or 45% of the sample.

Interview Activity Reflection
Title Description n=29 n=44 n=44


Context Barriers

Limited Time Insufficient time to perform the task to the developer’s satisfaction. 2 (7%) 4 (9%) 10 (23%)
Social Friction Dysfunctions or a lack of response from other developers. 12 (41%) 0 (0%) 2 (5%)

Self-Doubt Difficulty because of lack of experience or lack of self-confidence. 1 (3%) 3 (7%) 1 (2%)

All Context Barriers 13 (45%) 6 (14%) 13 (30%)

r
Tool Barriers

Lack of Tests Insufficient automatic verification of the codebase. 4 (14%) 3 (7%) 4 (9%)
Limited or Misaligned View Cannot focus on all relevant code at once; limited screen space. 8 (28%) 17 (39%) 7 (16%)

Toolchain Issues Dysfunctions in coordination of tools. 7 (24%) 1 (2%) 1 (2%)

All Tool Barriers 13 (45%) 18 (41%) 12 (27%)


Code Barriers

Large Scope Large volume of code to comprehend. 8 (28%) 11 (25%) 8 (18%)
Unfamiliar Code Code is unfamiliar or uses unfamiliar features. 1 (3%) 21 (48%) 10 (23%)
Comprehension Code is difficult to understand. 8 (28%) 21 (48%) 6 (14%)

All Code Barriers 12 (41%) 32 (73%) 23 (52%)

6

Comparative Comprehension Barriers
Unclear Motivation The developer does not know why code was written or changed. 10 (34%) 3 (7%) 2 (5%)

Deep Changes New version of code looks very different. 0 (0%) 7 (16%) 2 (5%)
Merge Conflicts Dysfunctions in deciding the authoritative versions. 3 (10%) 0 (0%) 0 (0%)

Delta Comprehension The changes between code versions are difficult to understand. 1 (3%) 15 (34%) 4 (9%)

All Comparative Comprehension Barriers 13 (45%) 18 (41%) 8 (18%)

Code Barrier 2: Unfamiliar Code Students noted the difficulty of
making accurate judgments when a change included algorithms or
APIs they had not seen before. In the class activity, this happened
acutely at Task 3, in which a for loop was converted to use the Java
stream API. Numerous students responded that this inhibited their
ability to make an accurate comparison. As P08𝐴 says, “This was a
bit more difficult as I am not experienced in using array streams.”

Furthermore, even thoughwe selected iTrust v2 because students
had experience with it, students were not uniformly familiar with
every part of it. Students remarked on the difficulty of making
decisions in functions they had never seen before. As P32𝐴 says
in the class activity: “I did not know what the code’s purpose was,
so I had to look at the entire file...Only looking at the change lines
was difficult.” This barrier is similar to the lack of familiarity with
existing code barrier that appears commonly among professional
programmers during code review [12, 27].

Code Barrier 3: Comprehension Code that is awkwardly written
is difficult to comprehend. This difficulty therefore interferes with
their ability to evaluate behavioral equivalence. In the class activity,
students noted this most often on Task 3, the consolidation of
multiple large conditionals. The old code was bad (P21𝐴: “The old
code was kind of a pain to read”), but some said the new code was
not much better (P25𝐴: “the new boolean statements were somewhat
tricky to parse”). This barrier (called lack of knowledge or ability)
is echoed in prior work as a barrier to adoption of code review
practices in educational settings [24].

4.1.4 Comparative Comprehension Barriers. Like the previ-
ous category, these barriers relate directly to code but are unique to
situations with more than one version. This category occurs indi-
rectly in the literature, such as the Behavior category that emerged
from an exploratory industrial case study focused on understanding
code changes [48]. Four barriers emerged: Unclear Motivation for
proposing changes, Deep Changes to code structure,Merge Conflicts,
and Delta Comprehension for understanding a change.

Comparative Comprehension Barrier 1: Unclear Motivation Stu-
dents look for natural-language documentation about what features
the new code has in relation to the old code. Although the descrip-
tions in the class activity were intentionally sparse to draw focus to
the code, this barrier primarily emerged through the interviews. As
P23𝐼 says, “When I don’t have documentation, that definitely slows
down the process of me being able to understand and interpret what
their code is doing.” In this quote, “documentation” refers to change
documentation, not merely code explanations. This barrier is also
found among professional populations when the code has unclear
rationale [12, 41], as the purpose of a change is among the features
developers desire during code review [48].

Comparative Comprehension Barrier 2: Deep Changes By deep
changes, we mean when a contiguous segment of code is restruc-
tured so thoroughly that there remains little semblance between
the old and new versions. For some students, this was the case for
Task 4, where multiple conditionals were consolidated into inline
variables. Concisely put by P18𝐴 , “When the code is very different in
format, it is harder to keep track of logic in old and new cases.”

8



Barriers for Students During Code Change Comprehension ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Comparative Comprehension Barrier 3: Merge Conflicts When
discussing tools during interviews, some students raised the frustra-
tions for merge conflicts. These are issues where separate proposals
for code changes affect the same part of the original code, leading to
ambiguity about version change to keep. These situations may bring
up a cocktail of different barriers—unclear motivation and unfamil-
iar code in how other branches have developed—and complicate a
student’s understanding of the project direction altogether.

Comparative Comprehension Barrier 4: Delta Comprehension In
some cases, students remarked on the difficulty of comparison as its
own cognitively demanding activity beyond understanding a single
piece of code (i.e., different from Code Barrier 3: Comprehension). It
requires coordinating multiple levels of thought: not only tracking
superficial changes of the text but also how it represents its implicit
logic. P34𝐴 refers to this when responding to the difficulty of “hav-
ing to parse through the removed code to piece together the bits in the
new code.” Additionally, it requires thinking not only about what
is shown but what is not shown, as P20𝑅 reflects the difficulty of
“figuring out the difference cases covered by each version and ensuring
no functionality was lost.”

RQ1: Comparing code effectively requires the coordination of
many tools and cognitive activities, and as a result, student
developers report a variety of barriers across their contexts,
tools, and the comprehension of code and differing versions.

4.2 RQ2: Accuracy of Refactoring Review
Table 1 shows the number of responses per task, the number of
"Yes" responses in the Y column, the number of "No" responses in
the N column, the number of "I do not know" questions in the DK
column, and for tasks 2–7 only, the percentage of correct responses
in the % CORRECT column. The correct response for each of tasks
2–7 is underlined (i.e., "No" is correct for Task 2, and there were
7 "No" responses, representing 17% correctness). The correctness
calculation excludes blank and "I do not know" responses.

4.2.1 Aggregation by Task. Students identified true refactorings
correctly between 76% and 94% of the time but correctly identified
behavioral changes between 8% and 17% of the time. In other words,
our participants tended to identify most changes as refactorings
regardless of the ground truth. One explanation is that participants
misunderstand the definition of refactoring despite our introduction.
To test this explanation, we can compare what participants said the
change’s impact was (question 2 in Section 3.3) against whether they
label it as a refactoring (question 1 in Section 3.3). For consistency in
the responses, tasks labeled as refactorings should not be described
with behavioral changes, and vice versa.

Table 4 shows how often label and description match. The rows
represent responses to Question 1 (omitting "I do not know") and
the columns represent responses to Question 2. Cells in red repre-
sent discrepancies. Overall, we found high agreement between the
responses to the questions. Only 13 out of 284 responses (4.5%) from
10 of 44 (22.7%) unique participants had disagreement. Only one
label claimed a refactoring that changes behavior—one participant
correctly identifying the bug in Task 2 but calling it a refactoring
anyway. Of the other 12 discrepant labels from 9 unique partic-
ipants, eight reason from changes to the control flow, behavior

Table 4: Discrepancies between how students label code
changes and how they describe the content of the change. Q1
and Q2 are shown in Figure 3 and discussed in Section 3.3.

Q2

Labeled as ↓
Says Behavior
Changes

Says Behavior
Does Not Change Total

Q1 Refactoring 1 248 249
Non-Refactoring 23 12 35

Total 24 260 284

Figure 5: A histogram of individual participant scores. The
probability density plot from our Conway-Maxwell-Poisson
distribution (𝜆=2.84±0.73, 𝜈=1.07±0.22, both highly statisti-
cally significant with p<.001) is scaled and overlaid.

notwithstanding. For example, one participant says of Task 5, “It
moves the decision-making regarding validation from the service class
to the object class.” This statement is accurate but does not disqualify
the case as a refactoring.

4.2.2 Aggregation by Participant. Figure 5 also aggregates perfor-
mance by individual. For the six primary tasks, the maximum score
was four and the minimum zero. The mean number of tasks correct
was 2.41 (standard deviation of 0.92), and the median and mode
both 3 (20 participants). The mode of 3 may reflect the expected
score when overestimating behavioral similarity for all tasks.

From our demography, we hypothesized factors which explain
why some participants score higher: whether the participant had
experience in professional environments, and whether they used
time after class to reassess and submit (true for nine of 44 sub-
missions). We encoded both factors as binary effects. Because our
performance data is a discrete value with a range between 0 and
6, we modeled this distribution with a Conway-Maxwell-Poisson
distribution to account for the difference between our data’s mean
and variance, which, in a basic Poisson distribution, should be
equal [46]. The estimated probability mass function is overlaid onto
Figure 5 and scaled according to the overall sample size. Though
visual inspection suggests a slight difference in scoring rates per
professional experience, neither experience nor time submitted had
a statistically significant effect (for entries submitted late, p=0.77;
for students with professional experience, p=0.58).

RQ2: Per-participant data corroborate that student developers
generally struggle to comprehend code changes and identify
behavioral differences, with tendencies to overlook behavioral
differences among syntactic differences.

9



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Justin Middleton, John-Paul Ore, and Kathryn T. Stolee

5 DISCUSSION
The results in Table 3 provide additional context for the barriers
observed as part of RQ1. The combination of areas affected suggests
several opportunities and actionable insights for paths forward.

5.1 Collaboration
The Social Friction barrier was present in 41% of the interviews,
more than any other barrier in the interviews. This suggests that
the collaborative aspect of code review presents some of most
notable challenges for students, especially for the diversity of ways
that friction manifests—from navigating fuzzy behavioral questions
(“I don’t like giving people negative feedback” (P12𝐼 )) to conflict
negotiation (“group members that always think they’re right” (P43𝐼 ))
to human coordination (“gap time between me pushing a change and
the next person actually reviewing it” (P37𝐼 )).

Code review challenges related to social friction are not lim-
ited to student populations. Social Friction appears, for example,
as breakdowns in Social Interactions in Sadowski and colleagues’
industrial case study of exclusively professional developers [44].
They highlight tone and power as two primary forms in which these
barriers manifest; tone is resonant with some of the issues students
discuss with problematic teammates, but power in student contexts
deals with different circumstances than in professional spaces. Ex-
panding on the concept of tone, negative sentiment emerged as a
factor that decreases the usefulness of review comments in Bosu
and colleague’s analysis of interactions at Microsoft [7]. In mixed
populations with student, professional, and open source developers,
prior work shows that toxicity and negativity are common in code
review comments, and it can be particularly problematic for women
in professional environments [21][38].

These observations motivate future work that can ease the social
tension at all levels. For example, for bridging transitions through-
out the classroom and into broader software development spaces,
we can learn from Ford and colleague’s work on mentorship in
online platforms [16]. Explicit instruction on tone in code review
comments and other aspects of code review interactions can be
essential to facilitate better inclusion over time.

5.2 Comparative Comprehension
In the class activity specifically, the dominant barriers in our frame-
work wereCode: in particular, Unfamiliar Code and Comprehension.
This resonates with prior literature, from Bacchelli and Bird’s fram-
ing of MCR as a comprehension task in essence [4] to the compiled
summary in Davila and colleagues’ systematic literature review of
modern code review [11].

The results for RQ2 corroborate that student developers struggle
to identify behavioral differences in the code changes. Our prior
work on comparative comprehension also examines the accuracy
in identifying behavioral similarity in similar code [33]. There, the
population included 68 graduate students, 17 professional software
developers, and 10 people with other roles. With that more expe-
rienced population as compared to ours, they reported only 43%
accuracy on identifying behavioral differences in non-clones. This
result is still higher accuracy than we find for identifying behavioral
changes (8% to 17% per Section 4.2), but all these results indicate
correct responses in under half the instances.

We can propose explanations of this difference—the refactorings
in the tasks were more complex, the population was less experi-
enced, and the tasks were performed under time pressure, for exam-
ple. Even if we adjusted the methodology to account for these expla-
nations, however, some circumstances would persist in real-world
environments to varying degrees—insecurities about familiarity,
experience, and a lack of time plague more experienced developers
in industry, too [12]. Nevertheless, these results raise questions
about the underlying process of comparative code comprehension.

The low correctness rate on non-refactorings specifically could
also be a form of the anchoring effect. The anchoring effect is a
form of cognitive bias in which a person tends toward answers
that are close to some provided starting point for their inquiry [19].
It has been observed elsewhere in software engineering, such as
in how displaying metrics of code comprehensibility influences
developers’ own assessments of it [51]. In our case, participants
may start the task primed to think in terms of similarity rather than
dissimilarity, using behavioral identicality as a default hypothesis
and responding with “no” only if they can discover evidence.

For the barriers that exist because of how developers are able to
interact with code, scaffolding to assist comparative comprehen-
sion may help student developers, and it could take a number of
forms. One form could be behavioral differencing. For example,
some prior work explicitly reveals the program state and show de-
velopers which variables change for a particular test [14]. Another
approach to combat the Large Scope barrier directly could be decom-
posing pull requests into small pull requests, each containing atomic
changes. Prior work has also identified this as a need [5, 6, 49]. For
example, Tao and Kim analyzed 453 code revisions in OSS projects
to deduce that 17% of that sample mixes multiple changes into a
single pack, and they reduced the burden on reviewers by slicing
these composite changes into smaller cohesive ones [49].

Yet another approach could be to add comprehension informa-
tion to both the old and new versions of code. For example, code
summarization could be added to the pull request interface, such as
that explored by Buse andWeimar for program changes [8], to com-
bat issues related to Limited or Misaligned Views, comprehending
changes in Unfamiliar code, or comprehending changes with Large
Scope. Refactoring-aware review [20] or semantic code clone detec-
tion [30] can be deployed to reduce the cognitive work required
of developers to compare code. In essence, automated semantic
annotations that explain the context of a code change would sub-
stantially reduce the cognitive load of comparative comprehension.
While it is not clear how much of this scaffolding would be retained
as students gain more experience in their careers, the immediate
frustrations could be alleviated in the meantime.

5.3 Comparison is a Process in Context
From our discussions with participants, we find that “comparison”
is not monolithic but a process comprising smaller activities. In
the practice of code review, comparison is not merely having two
algorithms neatly presented and free of noise. Rather, it involves
noticing differences, navigating between them, and making deci-
sions from them. This observation resonates with literature of how
students learn from comparing and analogizing between concepts
in general. For example, Alfieri and colleagues survey literature on

10



Barriers for Students During Code Change Comprehension ICSE ’24, April 14–20, 2024, Lisbon, Portugal

how students may learn and transfer new concepts through analo-
gizing, pointing specifically to constituent activities like searching
and aligning concepts [1]. Patitsas and colleagues apply the premise
explicitly to computer science by experimenting with presenting
alternative algorithms, seeing learning benefits in students who
studied algorithms side-by-side rather than sequentially [37].

In our case, we can envision elements of comparison that may
contribute to a developer approving or rejecting a proposed code
change, such as the following:
• Establishing Syntactic Difference: The developer perceives where
differences occur in the text or style of code.

• Comprehending...
– ...One Alternative: The developer manually investigates what
each version does independently of the other.

– ...Semantic Differences: The developer reasons about what each
version does to build up to what they may do differently.

• Mapping Corresponding Semantic Features: Under the assumption
of behavioral equivalence, the developer associates elements of
code to compare. If the assumption does not exist, this activity is
de-emphasized.

Decomposing a process into steps like these also helps us identify
opportunities for intervention at specific moments. Some existing
tools in the GitHub interface reflect steps in the process—difference
highlighting, for example, focuses on expediting establishing syn-
tactic difference by narrowing the amount of code developers must
inspect before finding the divergence. Test suites, likewise, offload
the cognitive work of comprehending one alternative or differences
by automating behavior verification and communicating intended
code behavior. Thinking forward in this process can motivate re-
search and industry to augment the semantics-related elements of
the process.

6 THREATS TO VALIDITY
In this section, we discuss the weaknesses in our research. We orga-
nize them into three categories: construct threats for the concepts
we used, internal threats in how we enacted methods and inter-
preted findings, and external threats in how our findings generalize
to the broader landscape of software engineering.

Construct Validity. First, we operationalize code change com-
prehension through yes-or-no questions about behavior, but this
has limitations. A binary response for a complex phenomenon like
comprehension may give false signals that a student understands
the change when answering correctly by chance. Developers envi-
sion code comprehension as a spectrum, and tasks can be completed
successfully at different levels of comprehension [4]. Therefore, fu-
ture work could focus on more expansive observations of developer
behavior to measure comparative comprehension.

Second, code review and refactoring have established definitions
in the software engineering community but can vary in practice.
Hence, accurately identifying something as a refactoring depends
on what you accept as the definition. For a classroom study never-
theless, the concise definitions of refactoring—semantics-preserving
changes—have value for introducing the practice.

Internal Validity All of our sources of data—interviews, task
reflections, and post-activity surveys—are approximations of a stu-
dent’s challenges. In interviews, the students may misunderstand

the topic, although we mitigated this threat by asking them to de-
fine their understanding of our concepts “review” and “refactoring”
so we could adjust appropriately. Additionally, they are drawing
on their memories extemporaneously, and they may not be able to
recall all relevant experiences during the interview itself.

The class activity was time-limited because the lecture period
lasts only 75 minutes. As a result, participants may have felt pres-
sured to submit responses before they wanted. This constraint may
explain the results if students begin with a hypothesis that the
changes are refactorings, and it takes effort to discover evidence
against it. It may also limit the depth of reflection in their free
responses. To mitigate this, we allowed students to submit the form
later that evening if they were motivated to continue work, and we
tested the differences in correctness to account for this choice.

Additionally, student participants may be influenced by power
dynamics when they report experiences related to the class. We
attempted to mitigate this threat by promising anonymity and reas-
sured them their grade would not be impacted by their participation
(beyond the extra credit for interviewees) or lack of participation.

External Validity. The code change comprehension tasks were
situated with a specific set of refactorings, in a specific language,
in a specific code base. The results may not generalize beyond this
context. For one, the particular refactorings that we implemented
here may not sufficiently capture the variety in practice, and the
barriers discoverable in the data could be conditioned by the refac-
toring types that produced the data. Future research should explore
the different impact of different types of changes—from renames to
algorithmic rewriting—with more variety.

Our population—a single class in a single semester at a single
university—may not generalize. Student efficacy in these tasks may
be a product of their training. As such, curricula that emphasize
review in lectures may be more or less sensitive to refactorings
in tasks like these. Even accounting for these contexts, this study
differs from its immediately surrounding course context in that
these pull requests do not impact their class project.

7 CONCLUSION
In this paper, we showed qualitative and quantitative evidence
that students face a broad set of barriers when comparing code
changes. We report that for students, comparing code requires
coordination of cognitive activities, as well as tools, in a way that
is challenging and often frustrating. Furthermore, given that many
of the challenges that students face, such as unclear motivation or
unfamiliar code, persist into professional environments [48] this
study increases the urgency with which issues in change-based or
comparative comprehension should be addressed.

We also confirm the findings of prior work that participants tend
to overestimate behavioral equivalence when assessing proposed
code changes [33]. It would seem that code review is sufficiently
cognitively demanding, and requires sufficient coordination among
tools, that is challenging for developers regardless of expertise.

8 ACKNOWLEDGEMENT
This work is funded in part by NSF SHF #2006947 and #1749936.
Thank you to Drs. Kai Presler-Marshall, Alexandra Milliken, and
Souti Chattopadhyay for help in the study execution and analysis.

11



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Justin Middleton, John-Paul Ore, and Kathryn T. Stolee

REFERENCES
[1] Louis Alfieri, Timothy J Nokes-Malach, and Christian D Schunn. 2013. Learning

through case comparisons: A meta-analytic review. Educational Psychologist 48,
2 (2013), 87–113.

[2] Eman Abdullah AlOmar, Hussein Alrubaye, Mohamed Wiem Mkaouer, Ali Ouni,
and Marouane Kessentini. 2021. Refactoring Practices in the Context of Modern
Code Review: An Industrial Case Study at Xerox. In 43rd IEEE/ACM International
Conference on Software Engineering: Software Engineering in Practice, ICSE (SEIP)
2021, Madrid, Spain, May 25-28, 2021. IEEE, 348–357. DOI:http://dx.doi.org/10.
1109/ICSE-SEIP52600.2021.00044

[3] Eman Abdullah AlOmar, Moataz Chouchen, Mohamed Wiem Mkaouer, and Ali
Ouni. 2022. Code Review Practices for Refactoring Changes: An Empirical Study
on OpenStack. In 19th IEEE/ACM International Conference on Mining Software
Repositories, MSR 2022, Pittsburgh, PA, USA, May 23-24, 2022. ACM, 689–701. DOI:
http://dx.doi.org/10.1145/3524842.3527932

[4] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and chal-
lenges of modern code review. In 2013 35th International Conference on Software
Engineering (ICSE). IEEE, 712–721.

[5] Mike Barnett, Christian Bird, João Brunet, and Shuvendu K Lahiri. 2015. Helping
developers help themselves: Automatic decomposition of code review changesets.
In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
Vol. 1. IEEE, 134–144.

[6] Tobias Baum and Kurt Schneider. 2016. On the need for a new generation of code
review tools. In Product-Focused Software Process Improvement: 17th International
Conference, PROFES 2016, Trondheim, Norway, November 22-24, 2016, Proceedings
17. Springer, 301–308.

[7] Amiangshu Bosu, Michaela Greiler, and Christian Bird. 2015. Characteristics
of useful code reviews: An empirical study at microsoft. In 2015 IEEE/ACM 12th
Working Conference on Mining Software Repositories. IEEE, 146–156.

[8] Raymond PL Buse and Westley R Weimer. 2010. Automatically documenting
program changes. In Proceedings of the 25th IEEE/ACM international conference
on automated software engineering. 33–42.

[9] Teresa Busjahn, Roman Bednarik, Andrew Begel, Martha Crosby, James H Pater-
son, Carsten Schulte, Bonita Sharif, and Sascha Tamm. 2015. Eye movements in
code reading: Relaxing the linear order. In 2015 IEEE 23rd International Conference
on Program Comprehension. IEEE, 255–265.

[10] Chun Yong Chong, Patanamon Thongtanunam, and Chakkrit Tantithamthavorn.
2021. Assessing the students’ understanding and their mistakes in code review
checklists: an experience report of 1,791 code review checklist questions from 394
students. In 2021 IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering Education and Training (ICSE-SEET). IEEE, 20–29.

[11] Nicole Davila and Ingrid Nunes. 2021. A systematic literature review and tax-
onomy of modern code review. Journal of Systems and Software 177 (2021),
110951.

[12] Felipe Ebert, Fernando Castor, Nicole Novielli, and Alexander Serebrenik. 2019.
Confusion in Code Reviews: Reasons, Impacts, and Coping Strategies. In 2019 IEEE
26th International Conference on Software Analysis, Evolution and Reengineering
(SANER). 49–60. DOI:http://dx.doi.org/10.1109/SANER.2019.8668024

[13] CarolynD. Egelman, EmersonMurphy-Hill, Elizabeth Kammer,MargaretMorrow
Hodges, Collin Green, Ciera Jaspan, and James Lin. 2020. Predicting Developers’
Negative Feelings about Code Review. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE). 174–185.

[14] Khashayar Etemadi, Aman Sharma, Fernanda Madeiral, and Martin Monperrus.
2023. Augmenting DiffsWith Runtime Information. IEEE Transactions on Software
Engineering (2023), 1–20. DOI:http://dx.doi.org/10.1109/TSE.2023.3324258

[15] Janet Feigenspan, Christian Kästner, Jörg Liebig, Sven Apel, and Stefan Ha-
nenberg. 2012. Measuring programming experience. In 2012 20th IEEE In-
ternational Conference on Program Comprehension (ICPC). 73–82. DOI:http:
//dx.doi.org/10.1109/ICPC.2012.6240511

[16] Denae Ford, Kristina Lustig, Jeremy Banks, and Chris Parnin. 2018. " We Don’t
Do That Here" How Collaborative Editing with Mentors Improves Engagement
in Social Q&A Communities. In Proceedings of the 2018 CHI conference on human
factors in computing systems. 1–12.

[17] Martin Fowler. 2018. Refactoring: improving the design of existing code. Addison-
Wesley Professional.

[18] Enrico Fregnan, Larissa Braz, Marco D’Ambros, Gül Çalıklı, and Alberto Bacchelli.
2022. First Come First Served: The Impact of File Position on Code Review. In
Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE 2022).
Association for Computing Machinery, New York, NY, USA, 483–494. DOI:
http://dx.doi.org/10.1145/3540250.3549177

[19] Adrian Furnham and Hua Chu Boo. 2011. A literature review of the anchoring
effect. The journal of socio-economics 40, 1 (2011), 35–42.

[20] Xi Ge, Saurabh Sarkar, Jim Witschey, and Emerson Murphy-Hill. 2017.
Refactoring-aware code review. In 2017 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). IEEE, 71–79.

[21] Sanuri Dananja Gunawardena, Peter Devine, Isabelle Beaumont, Lola Piper Gar-
den, Emerson Murphy-Hill, and Kelly Blincoe. 2022. Destructive Criticism in
Software Code Review Impacts Inclusion. Proc. ACM Hum.-Comput. Interact. 6,
CSCW2, Article 292 (nov 2022), 29 pages. DOI:http://dx.doi.org/10.1145/3555183

[22] Sarah Heckman, Kathryn T. Stolee, and Christopher Parnin. 2018. 10+ Years of
Teaching Software Engineering with Itrust: The Good, the Bad, and the Ugly. In
Proceedings of the 40th International Conference on Software Engineering: Software
Engineering Education and Training (ICSE-SEET ’18). Association for Computing
Machinery, New York, NY, USA, 1–4. DOI:http://dx.doi.org/10.1145/3183377.
3183393

[23] Bradford W. Hesse. 1995. Curb cuts in the virtual community: telework and
persons with disabilities. In 28th Annual Hawaii International Conference on
System Sciences (HICSS-28), January 3-6, 1995, Kihei, Maui, Hawaii, USA. IEEE
Computer Society, 418–425. DOI:http://dx.doi.org/10.1109/HICSS.1995.375707

[24] Theresia Devi Indriasari, Andrew Luxton-Reilly, and Paul Denny. 2020. A re-
view of peer code review in higher education. ACM Transactions on Computing
Education (TOCE) 20, 3 (2020), 1–25.

[25] Sarah Jessup, Sasha M Willis, Gene Alarcon, and Michael Lee. 2021. Using eye-
tracking data to compare differences in code comprehension and code perceptions
between expert and novice programmers. (2021).

[26] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2020. Student refactor-
ing behaviour in a programming tutor. In Proceedings of the 20th Koli Calling
International Conference on Computing Education Research. 1–10.

[27] Oleksii Kononenko, Olga Baysal, and Michael W Godfrey. 2016. Code review
quality: How developers see it. In Proceedings of the 38th international conference
on software engineering. 1028–1038.

[28] SeolHwa Lee, Andrew Matteson, Danial Hooshyar, SongHyun Kim, JaeBum
Jung, GiChun Nam, and HeuiSeok Lim. 2016. Comparing programming language
comprehension between novice and expert programmers using eeg analysis.
In 2016 IEEE 16th international conference on bioinformatics and bioengineering
(BIBE). IEEE, 350–355.

[29] Moira Maguire and Brid Delahunt. 2017. Doing a thematic analysis: A practical,
step-by-step guide for learning and teaching scholars. All Ireland Journal of
Higher Education 9, 3 (2017).

[30] George Mathew, Chris Parnin, and Kathryn T Stolee. 2020. SLACC: Simion-based
language agnostic code clones. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering. 210–221.

[31] Mary L McHugh. 2012. Interrater reliability: the kappa statistic. Biochemia
medica 22, 3 (2012), 276–282.

[32] Andrew Meneely, Ben Smith, and Laurie Williams. 2012. Appendix B: iTrust
electronic health care system case study. Software and Systems Traceability (2012),
425.

[33] Justin Middleton and Kathryn T Stolee. 2022. Understanding Similar Code
through Comparative Comprehension. In 2022 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC). IEEE, 1–11.

[34] Emerson Murphy-Hill, Chris Parnin, and Andrew P. Black. 2012. How We
Refactor, and How We Know It. IEEE Transactions on Software Engineering 38, 1
(2012), 5–18. DOI:http://dx.doi.org/10.1109/TSE.2011.41

[35] Matheus Paixão, Anderson Uchôa, Ana Carla Bibiano, Daniel Oliveira, Alessandro
Garcia, Jens Krinke, and Emilio Arvonio. 2020. Behind the intents: An in-depth
empirical study on software refactoring in modern code review. In Proceedings of
the 17th International Conference on Mining Software Repositories. 125–136.

[36] Luca Pascarella, Davide Spadini, Fabio Palomba, Magiel Bruntink, and Alberto
Bacchelli. 2018. Information Needs in Contemporary Code Review. Proc. ACM
Hum.-Comput. Interact. 2, CSCW, Article 135 (nov 2018), 27 pages. DOI:http:
//dx.doi.org/10.1145/3274404

[37] Elizabeth Patitsas, Michelle Craig, and Steve Easterbrook. 2013. Comparing and
contrasting different algorithms leads to increased student learning. In Proceed-
ings of the ninth annual international ACM conference on International computing
education research. 145–152.

[38] Rajshakhar Paul, Amiangshu Bosu, and Kazi Zakia Sultana. 2019. Expressions of
Sentiments during Code Reviews: Male vs. Female. In 2019 IEEE 26th International
Conference on Software Analysis, Evolution and Reengineering (SANER). 26–37.
DOI:http://dx.doi.org/10.1109/SANER.2019.8667987

[39] Patrick Peachock, Nicholas Iovino, and Bonita Sharif. 2017. Investigating eye
movements in natural language and c++ source code-a replication experiment.
In Augmented Cognition. Neurocognition and Machine Learning: 11th International
Conference, AC 2017, Held as Part of HCI International 2017, Vancouver, BC, Canada,
July 9-14, 2017, Proceedings, Part I 11. Springer, 206–218.

[40] Norman Peitek, Annabelle Bergum, Maurice Rekrut, Jonas Mucke, Matthias
Nadig, Chris Parnin, Janet Siegmund, and Sven Apel. 2022. Correlates of pro-
grammer efficacy and their link to experience: A combined EEG and eye-tracking
study. In Proceedings of the 30th ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering. 120–131.

[41] Peter C Rigby and Christian Bird. 2013. Convergent contemporary software peer
review practices. In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering. 202–212.

[42] Peter C Rigby, Daniel M German, Laura Cowen, and Margaret-Anne Storey. 2014.

12



Barriers for Students During Code Change Comprehension ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Peer review on open-source software projects: Parameters, statistical models,
and theory. ACM Transactions on Software Engineering and Methodology (TOSEM)
23, 4 (2014), 1–33.

[43] Christian Rohrer. 2014. When to use which user-experience research methods.
Nielsen Norman Group 12 (2014).

[44] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto
Bacchelli. 2018. Modern code review: a case study at google. In Proceedings of
the 40th international conference on software engineering: Software engineering in
practice. 181–190.

[45] Caitlin Sadowski, Kathryn T. Stolee, and Sebastian Elbaum. 2015. HowDevelopers
Search for Code: A Case Study. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2015). Association for Computing
Machinery, New York, NY, USA, 191–201. DOI:http://dx.doi.org/10.1145/2786805.
2786855

[46] Galit Shmueli, Thomas P Minka, Joseph B Kadane, Sharad Borle, and Peter
Boatwright. 2005. A useful distribution for fitting discrete data: revival of the
Conway–Maxwell–Poisson distribution. Journal of the Royal Statistical Society:
Series C (Applied Statistics) 54, 1 (2005), 127–142.

[47] Xiangyu Song, Seth Copen Goldstein, and Majd Sakr. 2020. Using Peer Code
Review as an Educational Tool. In Proceedings of the 2020 ACM Conference on
Innovation and Technology in Computer Science Education (ITiCSE ’20). Association
for Computing Machinery, New York, NY, USA, 173–179. DOI:http://dx.doi.org/
Song2020Peer

[48] Yida Tao, Yingnong Dang, Tao Xie, Dongmei Zhang, and Sunghun Kim. 2012.
How Do Software Engineers Understand Code Changes? An Exploratory Study
in Industry. In Proceedings of the ACM SIGSOFT 20th International Symposium
on the Foundations of Software Engineering (FSE ’12). Association for Computing
Machinery, New York, NY, USA, Article 51, 11 pages. DOI:http://dx.doi.org/10.
1145/2393596.2393656

[49] Yida Tao and Sunghun Kim. 2015. Partitioning composite code changes to
facilitate code review. In 2015 IEEE/ACM 12th Working Conference on Mining
Software Repositories. IEEE, 180–190.

[50] Deborah A. Trytten. 2005. A Design for Team Peer Code Review. In Proceedings
of the 36th SIGCSE Technical Symposium on Computer Science Education (SIGCSE
’05). Association for Computing Machinery, New York, NY, USA, 455–459. DOI:
http://dx.doi.org/10.1145/1047344.1047492

[51] Marvin Wyrich, Andreas Preikschat, Daniel Graziotin, and Stefan Wagner. 2021.
The mind is a powerful place: How showing code comprehensibility metrics
influences code understanding. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). IEEE, 512–523.

13


