
An Empirical Study on Regular Expression Bugs

Peipei Wang
North Carolina State University

Raleigh, NC, USA

pwang7@ncsu.edu

Chris Brown
North Carolina State University

Raleigh, NC, USA

dcbrow10@ncsu.edu

Jamie A. Jennings
North Carolina State University

Raleigh, NC, USA

jjennings@ncsu.edu

Kathryn T. Stolee
North Carolina State University

Raleigh, NC, USA

ktstolee@ncsu.edu

ABSTRACT

Understanding the nature of regular expression (regex) issues is

important to tackle practical issues developers face in regular ex-

pression usage. Knowledge about the nature and frequency of var-

ious types of regular expression issues, such as those related to

performance, API misuse, and code smells, can guide testing, in-

form documentation writers, and motivate refactoring efforts. How-

ever, beyond ReDoS (Regular expression Denial of Service), little is

known about to what extent regular expression issues affect soft-

ware development and how these issues are addressed in practice.

This paper presents a comprehensive empirical study of 350

merged regex-related pull requests from Apache, Mozilla, Face-

book, and Google GitHub repositories. Through classifying the root

causes and manifestations of those bugs, we show that incorrect

regular expression behavior is the dominant root cause of regular

expression bugs (165/356, 46.3%). The remaining root causes are

incorrect API usage (9.3%) and other code issues that require regular

expression changes in the fix (29.5%). By studying the code changes

of regex-related pull requests, we observe that fixing regular ex-

pression bugs is nontrivial as it takes more time and more lines of

code to fix them compared to the general pull requests. The results

of this study contribute to a broader understanding of the practical

problems faced by developers when using regular expressions.

CCS CONCEPTS

• General and reference→ Empirical studies; • Software and

its engineering → Software defect analysis.

KEYWORDS

Regular expression bug characteristics, pull requests, bug fixes

ACM Reference Format:

Peipei Wang, Chris Brown, Jamie A. Jennings, and Kathryn T. Stolee. 2020.

An Empirical Study on Regular Expression Bugs. In 17th International Con-

ference on Mining Software Repositories (MSR ’20), October 5–6, 2020, Seoul,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7517-7/20/05. . . $15.00
https://doi.org/10.1145/3379597.3387464

Republic of Korea. ACM, New York, NY, USA, 11 pages. https://doi.org/10.

1145/3379597.3387464

1 INTRODUCTION

Regular expression research in software engineering has explored

performance issues [18], comprehension [17], translation between

languages [21, 22], and test coverage [46]. These efforts are mo-

tivated by the assumption that regular expressions are pervasive

in systems. For example, through the lens of GitHub issues, a sim-

ple search for “regex OR regular expression” yields 227,474 results

(and growing), with 25% of those still being open. Yet, the nature

of these issues related to regular expressions, aside from ReDoS

vulnerabilities [20], is largely unknown.

Knowledge about the frequency of various types of regular ex-

pression issues, such as those related to performance, API misuse,

and code smells, can guide testing, inform documentation writers,

and motivate refactoring efforts. This work aims to uncover the na-

ture of the issues that relate to regular expressions, and in particular,

the nature of the issues that developers end up addressing.

As a lens into issues developers face and fix, we explore merged

pull requests (PRs) related to regular expressions (regex-related pull

requests). The assumption is that pull requests that are merged

represent issues in code that developers find worthy of fixing. We

target large open-source projects – specifically Apache, Mozilla,

Google, and Facebook – that use the pull request model for code

contributions. This allows us to study the problem, solution, and dis-

cussions in multiple programming languages. Prior work suggests

that there are significant differences in some regex characteristics

across programming languages [22], and our findings echo this: we

likewise find differences in bug characteristics across languages.

Our main findings are a classification of the regular expression

bugs addressed by developers. For example, developers write regu-

lar expressions that are too constrained three-times as often as they

write regular expressions that are too relaxed. This has implica-

tions for test case generation research, indicating the importance of

generating strings that are outside the regular expression language.

The contributions of this work are:

• The first comprehensive empirical study on regular expres-

sion bugs in real-world open-source projects.

• Identification of root causes and manifestations of regular

expression bugs with 350 merged pull requests related to

regular expressions.

103

2020 IEEE/ACM 17th International Conference on Mining Software Repositories (MSR)

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3379597.3387464&domain=pdf&date_stamp=2020-09-18

• Analysis of regular expression bug fix complexity and the

connection between root causes and the changes in a fix.

• Ten common patterns in regular expression bug fixes.

2 RESEARCH QUESTIONS

The goal of this study is to understand the regular expression bugs

developers address in practice. We obtain our data via purposely

selected GitHub pull requests and carefully analyze these pull re-

quests to achieve this goal. Specifically, this study asks and answers

the following questions:

RQ1: What are the characteristics of the problems being ad-

dressed in regex-related PRs?

We use an open card sort to categorize the root causes of

the problems that pull requests deal with. Three root causes

emerge: 1) the regex itself; 2) regex API; and 3) other code.

Within each type of root cause, we further characterize dif-

ferent manifestations of the addressed problem and provide

more details about each manifestation (see Section 4).

RQ2: What are the characteristics of the fixes applied to regex-

related PRs?

In analyzing the fixes in regex-related PRs, we measure fix

complexitywith four PR features proposed in priorwork [25]:

1) minutes between PR opening and merging; 2) the number

of commits in the PR; 3) the number of lines changed in the

fixes; and 4) the number of files touched in the fixes. We

then zoom in to study the four types of regex-related code

changes: 1) regex edit; 2) regex addition; 3) regex removal;

and 4) API changes. For each PR root cause and manifesta-

tion, we identify the dominant type of change. Finally, we

identify ten common fix patterns to fix either a regex bug or

a regex API bug (see Section 5).

3 STUDY

This section describes the data collection process and analyses to

address RQ1 and RQ2.

3.1 Dataset

Our dataset is a sample of merged GitHub pull requests. We chose

merged GitHub pull requests for two reasons: 1) our study is ori-

ented towards the existing solutions of regular expression issues.

Compared to GitHub issues, merged pull requests provide us with

both the problem description and a solution; and 2) merged pull

requests indicate the priority of the regular expression issues and

the feasibility to fix them, which are not always satisfied by GitHub

issues since they may cover very general regular expression discus-

sions or Q&As and thus do not embody a direct solution.

3.1.1 Artifact Collection. As we aim to focus on real resolutions to

real bugs, we examined repositories from established organizations

with relatively mature development processes and active projects.

These repositories have many commits, contributors, and culture

around pull request use. We targeted four large active GitHub orga-

nizations: Apache [7], Mozilla [13], Google [11], and Facebook [9].

Using the GitHub GraphQL API [10], we searched for merged pull

Figure 1: Example of Regex Addition from a pull request in

JavaScript (mozilla/zamboni#1442)

1 gettext(format('Changes in {0} {1}',

2 this.app.trans[this.app.guid],
3 - this.app.version.substring(0,1)))));
4 + /\d+/.exec(this.app.version)))));

requests1 with “regular expression" or “regex" in the title or de-

scription with the last update time before February 1st, 2019. We

selected only repositories that have Java, JavaScript, or Python as

the primary language, as these are the three most popular program-

ming languages used on GitHub [4]. This resulted in 664 merged

pull requests from 195 GitHub repositories in the 4 organizations.

3.1.2 Pruning. We limited our focus to pull requests that are regex-

related. A PR is called regex-related only if there are changes to a

regular expression or a regular expression API method. In regex-

related PRs, there is at least one regular expression that is added,

removed, or edited, or there is at least one modification to regex

APIs. For example, Figure 1 shows an example of the regex /\d+/

being added on line 4. We manually inspected the 664 merged PRs

and identified 350 of them (52.7%) as regex-related PRs.

3.1.3 Final Dataset Description. The final dataset of 350 regex-

related PRs comes from 135 GitHub repositories. Of these, 86 are

from Apache repositories, 162 are from Mozilla repositories, 66 are

from Facebook repositories, and 36 are from Google repositories.

When analyzing regex-related code changes, we considered the

overall code differences before and after the PR, hence avoiding is-

sues from reworked commits (Peril VII [27]). Because a pull request

can handle multiple independent regular expression problems, six

PRs are split, creating a final dataset with 356 bugs addressed by

pull requests, or pull request bugs. Our final data are available [8].

3.2 RQ1 Analysis: Bug Characteristics

With the 356 pull request bugs, two authors performed an open card

sort with two raters. The dataset is categorized in two dimensions,

root cause and manifestation, based on the pull request descrip-

tion, comments, linked GitHub issues, or linked bug reports from

other systems (e.g., JIRA, Bugzilla). For example, PRmozilla/feedthe-

fox#43 addresses two problems. One is a typo of a variable shown

in the title of this pull request, the other problem is an unused regex

shown in the description of this pull request. We ignore the typo

problem because the fix to the typo does not involve any regex or

API changes. In the analysis of this PR, the fix is to remove the

regular expression, and the problem it addresses is unused regex

which is a type of regex code smells. PRmozilla/addons-server#10352

addresses a problem is described in a GitHub issue, which identifies

an error caused by the incorrect flag in regex API with the mani-

festation of exception handling 2. In a JIRA bug report related to

PR apache/ambari#760, the problem being addressed is incorrect

regex behavior because valid URLs are rejected and the scope of the

regular expression needs to be expanded.

1While we avoid many perils of mining GitHub [27] through our selection of orga-
nizations and projects (i.e., Perils II, III, IV, V, and VI), evaluating only merged pull
requests is Peril VIII and thus a threat to validity, as discussed in Section 7.
2The specific error message is “ValueError: cannot use LOCALE flag with a str pattern".
Since Python version 3.6, re.LOCALE can be used only with bytes patterns.

104

After card sorting is complete, eight manifestations of three root

causes of regex-related bugs are identified. Four of the eight man-

ifestations are further broken into categories and sub-categories

according to the common characteristics shared by the bugs. The

hierarchy of the 356 pull request bugs is presented in Table 1.

3.3 RQ2 Analysis: Fix Characteristics

To answer RQ2, we explored regex fix characteristics compared to

general software bugs, the nature of the changes in the fixes, and

identify common fix patterns.

3.3.1 Complexity of Regex-related PR Fixes. To understand if regex-

related bugs are similar in complexity to other software bugs, we

compare our regex-related PRs (regexPRs) with a public dataset of

PRs from GitHub projects that use PRs in their development cy-

cle [25] (allPRs). We selected four features from the prior work that

represent the complexity of the fix or the complexity of reviewing

the PR. For the complexity of reviewing the PR, we chose the num-

ber of minutes from PR initialization to merge (mergetime_minutes).

For measuring the complexity of the fix in the PR, we chose the

number of commits (num_commits), the number of modified lines of

code (code_churn), and the number of files changed (files_changed).

Note that code_churn is a combined feature which is the sum of

two originally proposed features, src_churn and test_churn. This is

because regular expressions are not only in source code but also in

testing frameworks and configuration files, which makes it hard to

distinguish the code of fixing a regex bug from the testing code.

The metrics for bug fix complexity in our dataset (regexPRs) are

obtained through the PyGithub [14] library, which provides APIs

to retrieve GitHub resources. The allPRs dataset [25] contains over

350,000 PRs; as a matter of fairness, we filtered out the unmerged

pull requests and retained 300,600 merged ones for analysis. We

used the Mann-Whitney-Wilcoxon Test [12] to investigate whether

our dataset, regexPRs, and the allPRs dataset have the same distri-

bution. These comparison results are presented in Table 2.

3.3.2 Changes to Regexes in PRs. We take into consideration four

types of regex-related changes: 1) regular expression addition (𝑅𝑎𝑑𝑑),
2) regular expression edit (𝑅𝑒𝑑𝑖𝑡), 3) regular expression removal
(𝑅𝑟𝑚), and 4) regular expression API changes (𝑅𝐴𝑃𝐼).
Before counting the number of regex-related changes, we first

identified regular expressions being used in the code. Because the

regular expression is often represented as a string or a sequence of

characters, we treated each quoted regex string as a normal string

until we find it is parsed with regular expression syntax and a reg-

ular expression instance or object is created consequently. Strings

wrapped by regular expression delimiters are straightforward and

treated as regular expressions. For example, slash / in JavaScript is

a regex delimiter. Hence /\d+/ in Figure 1 is identified as a regex.

A regular expression addition (𝑅𝑎𝑑𝑑) is counted when the PR
shows a new regular expression string. In the code snippet shown

in Figure 1, there is no regex string prior to the PR whereas line 4

introduces regular expression /\d+/.

A regular expression edit (𝑅𝑒𝑑𝑖𝑡) is a content change to the regu-
lar expression string directly or indirectly used in regex API meth-

ods. These are the type of regular expression changes studied in

prior work on regular expression evolution [45].

Figure 2: Example of RegexAPI Changes from a pull request

in Java (google/ExoPlayer#3185)

1 currentLine = subripData.readLine();

2 - Matcher matcher = SUBRIP_TIMING_LINE.matcher(currentLine);

3 - if (matcher.matches()) {

4 + Matcher matcher = currentLine == null ? null :

5 SUBRIP_TIMING_LINE.matcher(currentLine);

6 + if (matcher != null && matcher.matches()) {

Similar to regex addition, a regular expression removal (𝑅𝑟𝑚) is
counted when the code before a PR contains more regexes than after

the PR. A pull request could directly remove a regex object (e.g.,

mozilla/feedthefox#43) or replace the regex and the code where it

is used with other types of code (e.g., google/graphicsfuzz#167).

The regular expression API change (𝑅𝐴𝑃𝐼) encapsulates changes
to the APIs being used statically and dynamically. This includes

modifying the method itself on a certain call site and reducing the

execution frequency of that call site. For modifying the API method,

we counted only when the regex object shows up both before and

after the PR. Therefore, API methods introduced with 𝑅𝑎𝑑𝑑 or re-
moved with 𝑅𝑟𝑚 are excluded. Take Figure 1 as an example. In this

example, the method exec is added as the side-effect of adding the

regex /\d+/ and thus exec is not accounted as 𝑅𝐴𝑃𝐼 . The modifica-
tion to the method itself could be on its method name or arguments.

If the modified argument is in the position for the regex string,

it is not counted as an 𝑅𝐴𝑃𝐼 but as an 𝑅𝑒𝑑𝑖𝑡 . API changes could
also be about how the API methods are executed in run-time. For

example, constructing regular expression objects statically rather

than on-the-fly. The PR in Figure 2 adds two checks of null object,

one for the argument passed into Pattern.matcher and the other

for the instance invoking Matcher.matches. Hence, it is counted

to have two regular expression API changes. Another way of re-

ducing call site execution frequency is to add guards (e.g., if-else

statements) on the path of executing regular expression matching

(e.g., mozilla/treeherder#61).

3.3.3 Recurring Patterns for Fixing Regular Expression Bugs. To find

the common fix patterns, we manually examined the code changes

in pull requests caused by either regex or API. Since we are more

interested in fixing regular expression bugs, the regex-related PRs

caused by other code are out of the scope of common fix patterns

of regex bugs. Each regex-related change is regarded as a different

pattern, and similar changes are grouped together. We chose ten

recurring patterns to represent fix strategies for common regular

expression problems.

4 RQ1: BUG CATEGORIES

As is done in prior work on categorizing software bugs, we identi-

fied the root cause and manifestation of the bugs [23, 30, 39, 42, 48].

The root cause is the location in the source code wherein the prob-

lem lies. The manifestation is the impact of the bug on the code.

Among the 356 pull request bugs related to regular expressions,

three root causes emerged: the regex itself (218, 61.2%), the regex

api used (33, 9.3%), and other code (105, 29.5%), as shown in the

Root Cause and Count (%) in Root Cause columns of Table 1. When

the root cause is the regex, the regex itself caused an issue; examples

include incorrect behavior, a compile error, or a code smell. When

105

Table 1: The hierarchy for the 356 pull request bugs including root causes, manifestation, categories, and sub-categories.

Root Cause Manifestation Category (Sub-Category)
Count (%) in

(sub)Category

Count (%) in

Manifestation

Count (%) in

Root Cause

Regex

Incorrect Behavior

Rejecting valid strings 102 (61.8%)

165 (75.7%)

218 (61.2%)

Accepting invalid strings 36 (21.8%)

Rejecting valid and accepting invalid 17 (10.3%)

Incorrect extraction 9 (5.5%)

Unknown 1 (0.6%)

Compile Error 8 (3.6%)

Bad Smells

Design Smells
Unnecessary regex 11 (24.4%)

45 (20.6%)

Other 6 (13.3%)

Code Smells

Performance issues 10 (22.2%)

Regex representation 10 (22.2%)

Unused/duplicated regex 8 (17.8%)

Regex

API

Incorrect Computation 6 (22.2%)

33 (9.3%)
Bad Smells

Design Smells Alternative regex API 2 (7.4%)

27 (81.8%)
Code Smells

Unnecessary computation 9 (33.3%)

Exception handling 8 (29.6%)

Deprecated APIs 5 (18.5%)

Performance/Security 3 (11.1%)

Other

Code

New Feature

Data processing 22 (37.3%)

59 (56.2%)

105 (29.5%)

Regex-like implementation 19 (32.2%)

Regex configuration entry 18 (30.5%)

Bad Smells 19 (18.1%)

Other Failures 27 (25.7%)

Total 356 (100%)

the regex api is the root cause, this means the API was deprecated,

the wrong flags were used, the API call is unprotected from ex-

ceptions, or another issue related to the use of the API is present.

When the root cause is other code, the regex-related changes are

identified but the fault or root cause lies elsewhere in the code (i.e.,

the regex or API was modified in a fix, but are not the root cause of

the issue).

Each root cause is divided by the manifestation of the bug, which

describes how the bug was observed (Manifestation and Count (%) in

Manifestation columns of Table 1). For example, 45 PRs have Regex

as the root cause and manifest as a Bad Smell, representing 20.6%

of the regex root cause. Categories and sub-categories are used to

further subdivide the manifestations (Category (Sub-Category) and

Count (%) in Category columns in Table 1). For example, 11 PRs

have an Unnecessary Regex, representing 24.4% of the Bad Smells

for the Regex root cause.

Note that the manifestation of Bad Smells appears for each of

the root causes. This is because the PRs will frequently identify a

better way to accomplish a behaviorally equivalent task, making

the manifestation a bad smell rather than a fault. These bad smells,

in aggregate, account for 91 (25.6%) of the regex-related PR bugs.

Next, we describe each root cause category.

4.1 Bugs Caused by Regexes Themselves

When the regex is an issue (218 PR bugs), we observed three mani-

festations: incorrect behavior, compile error, and bad smells.

4.1.1 Regex: Incorrect Behavior. Incorrect Behavior is the dominant

manifestation for bugs with the regex as the root cause (75.7%,

165/218). Table 1 shows the four categories of this manifestation:

rejecting valid string, accepting invalid strings, both rejecting valid

and accepting invalid strings, and incorrect extraction. Rejecting

valid strings represents 61.8% of the incorrect behavior bugs. This

reinforces the observation that developers prefer to compose a

conservative regex to an overly liberal one [34] and tend to expand

the scope of regular expressions as software evolves [45].

Two primary factors seem to contribute to incorrect regex behav-

ior. One factor is incorrect regex escaping, including not escaping

characters and incorrectly escaping characters such as backslash (\)

and forward slash (/). The other is changing requirements. When

the inputs change and the regex is not updated, the regex behavior

may become obsolete (e.g., PR apache/cordova-ios#376). Other less

common problems are related to case sensitivity, Unicode compati-

bility, misuses of quantifier greediness, and lack of anchors.

4.1.2 Regex: Compile Error. Eight pull requests fix regex compile

errors. While the project code is compiled without errors, there

could exist uncaught invalid regular expressions until runtime. For

example, apache/nutch/#234 reports a compile error caused by

File.separator on Windows-based systems. Since \ is used for

escaping other characters, this PR reports an uncaught PatternSyn-

taxException.

4.1.3 Regex: Bad Smells. The regex bad smells we observed can

be divided into two categories, as shown in Table 1: design smells,

such as whether to use regex solution or not, which data to use

for validation, and what the matching data and non-matching data

look like; and code smells referring to smells with the regex itself.

106

Overall, 17 out of the regex bad smells are design smells and the

other 28 are code smells.

Most design smells were sub-categorized as unnecessary regex

(11/17). These PRs indicate that simpler solutions exist and a regex

is not needed. For example, using a regex for string replacement

is not necessary if the replaced string is a simple string literal in a

fixed location (e.g., mozilla/Snappy-Symbolication-Server#23).

The code smells are roughly evenly distributed among three

sub-categories. Performance issues means the execution of regex

could be optimized for speed or memory consumption. For example,

when the purpose of a regex is not to extract substrings from the

data input, defined capturing groups in the regex is unnecessary

since the captured values are saved in memory but not used in

later code (e.g.,apache/struts#156). Two of the performance issues

are about regular expression complexity (i.e., ReDoS [20] vulnera-

bility3). Regex representation means the regular expression string

fails to satisfy certain unspecified requirements, such as using the

raw string to describe regular expression in Python and following

the eslint rule of “No-regex-spaces" 4. Six of the ten regex repre-

sentation code smells can be detected by lint tools in Python and

JavaScript. The other four PRs fix one issue of escape characters in

regex strings and three issues of regex readability. Unlike the in-

correct behavior, the escape characters in this sub-category do not

cause a behavioral issue. Unused/duplicated regex refers to regexes

in code that are no longer needed (7/8) or that are duplicated (1/8),

with the former being more common.

Summary:Most incorrect regular expression behavior occurswhen

the regular expression is too conservative and needs to accept more

strings. Compile errors occur in eight of the PRs, representing 2.2%

of all regex-related PRs we studied; considering the severity of

compile errors in terms of disrupting the program execution, this is

worth noting. Among design smells and code smells, 11 PRs identify

the root cause as unnecessary regular expressions.

4.2 Bugs Caused by Regex APIs

Even with the correct regex, choosing the right API function is

important, as is placing the API call in an appropriate location in the

code. Bugs caused by regex APIs (33 PRs, 9.3%) refer to the incorrect

regex API usage manifesting as either incorrect computation (6, 1.7%)

or bad smells (27, 7.6%).

4.2.1 Regex API: Incorrect Computation. Six PRs were submitted

because the API being used in the program produced incorrect

results. For example, for a particular regular expression in (face-

book/jest#3001), RegExp.test(content) has some unexpected be-

havior if it runs over the same string twice. This is because, in its

context, the global matching flag ‘g’ was used so the second call

to this method starts matching from the position saved in the first

call. This is a unique feature in JavaScript stateful regex methods

(i.e., RegExp.test and RegExp.exec). Besides the stateful methods,

other incorrect API usage leading to incorrect computation includes

3Since ReDoS cares about the time complexity of running the regular expression, we
regard it as performance issue.
4https://eslint.org/docs/2.0.0/rules/no-regex-spaces

passing arguments into the wrong method, failing to process multi-

line inputs, and enforcing matching from the beginning or to the

end of an input string.

4.2.2 Regex API: Bad Smells. We found 27 PR bugs that stem from

bad smells in using regex APIs. Table 1 shows the breakdown of the

regex API bad smells. Two design smells are alternative regex API

problems, such as deciding which regex library should be chosen to

use (e.g.facebook/prepack#645). The other 25 (92.6%) are categorized

as code smells.

Unnecessary computation was the root cause of nine PRs. In

all cases, the issue is that the regex API is executed too many

times and can be reduced. For example, on the code path where

most of the jobs are a success, the regex parser for error messages

should not be used unless the message indicates a job failure (e.g.,

mozilla/treeherder#61). This is considered a regex API issue because

it pertains to how the API is used in the code. It is a code smell

because the code is behaving properly except for the performance.

The frequency of this sub-category has implications for the impact

regex API performance has on applications.

Exception handling refers to uncaught exceptions or errors in

running regex methods. These represent issues with the regex APIs

because developers did not account for the possible unexpected

behaviors from executing a regex API. Examples include invalid

regex syntax when the regex to compile is not hard-coded and un-

known to the API method until runtime, invalid regex API method

arguments (e.g., null values, unsupported regex flags), and invalid

method returns (e.g., null values or incorrect return types).

Deprecated APIs means an obsolete regex library is being used

or there were changes in the new version of a regex library. For

example, the old regex library org.apache.oro is replaced with

java.util.regex (apache/nutch#390) because org.apache.oro

has been retired since 2010 and users are encouraged to use Java

regex library instead 5. Similarly, when flags argument is no longer

supported 6 in JavaScript regexAPIs, input.replace('<', '<',

'g') has to be changed into replace(/</g, '<') (mozil-

la/bugherder#26).

Performance/Security refers to a change in the API method due

to performance or security concerns. For example, in JavaScript, de-

velopers found regexp.test to be more suitable than str.match

because the former only returns a boolean value while the latter re-

turns the matched results, which could create a leak of information

to the external environment (mozilla/hubs#457).

Summary: Understanding the regex API is as important as under-

standing the regex itself. PR bugs result from choosing the wrong

API (6), using deprecated or updated APIs (5), or improper excep-

tion handling (8). Additional PRs reduce the number of calls to the

regex API in the interest of performance (9).

4.3 Bugs Caused by Other Code

In these pull request bugs, regexes and their APIs are involved but

are not the root causes of the bugs; the root cause is other code (105

PRs, 29.5%). Regexes may be changed in these pull requests, but the

5https://jakarta.apache.org/oro/
6https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_
Objects/String/replace

107

Table 2: Comparing selected features of regex-related PRs (regexPRs) to merged PRs (allPRs) from prior work [25].

Feature Meaning Dataset 5% mean median 95% skewness p-value

mergetime_minutes
Minutes from PR

initialization to merge

allPRs 0.00 10,529.07 405.00 43,685.05 10.99 -

regexPRs 11.93 10,212.00 1,307.46 47,589.74 6.73 8.139e-13***

num_commits
Number of commits

in the PR

allPRs 1.00 3.94 1.00 11.00 16.75 -

regexPRs 1.00 2.67 1.00 8.00 7.97 0.3635

code_churn
Modified lines of

code in the PR

allPRs 0.00 324.15 15.00 1,047.00 32.44 -

regexPRs 2.00 615.72 27.00 786.15 18.01 1.075e-08***

files_changed
number of files

changed in the PR

allPRs 1.00 11.84 2.00 30.00 93.62 -

regexPRs 1.00 6.78 2.00 23.65 8.20 0.3068

*** p-value < 0.001 when comparing regexPRs and allPRs for that feature using the Mann-Whitney-Wilcoxon test.

regex is part of the solution, not part of the problem. For example, to

solve a filename comparison failure filename === 'jest.d.ts'

where the filename could be an absolute file path, a solution of

regex matching is used to take the place (facebook/react6804).

The manifestations of the regex-related PRs caused by code

other than the regex or the regex APIs are categorized according

to how regex-related changes are involved in the solution. A PR

is categorized as a new feature if it implements new functionality

or improves existing features (59 PRs). Note that we also regard

feature improvement as a new feature. A PR is categorized as a bad

smell if the regular expression is employed to refactor the source

code and to remove the smells (19 PRs). A PR is categorized as other

failures if it reports any other failure (27 PRs).

4.3.1 Other Code: New Feature. Regular expressions are often in-

volved in the introduction of new features. For example, to prevent

malicious injection into logs, a regex is added to sanitize log mes-

sages (apache/accumulo#628), which means the root cause is un-

sanitized log messages, and sanitizing them is a new feature. Table 1

shows category the breakdown of the 59 PRs for new features.

Data processing, which accounts for 22 PRs, means the regular

expression is added to process a specific type of data (e.g., mozil-

la/bugbug#65). Regex configuration entry, which accounts for 18 PRs,

means the regex is user-provided so as to build regex-supported

features satisfying different user needs (e.g., apache/openwhisk-

utilities#16). Regex-like implementation adds new functionality for

performing regular expression execution. It requires both a regex

and an input string, but provides some unique features. For example,

a data query engine added query methods (e.g., regexp_matches)

so that it can perform regex-like string searching in SQL queries

(apache/drill#452).

4.3.2 Other Code: Bad Smells. When the root cause is a bad smell,

the solution is a refactoring; the regex or its API is involved with

the refactoring. For example, a switch statement of over 85 cases

can be refactored into less than 20 cases through the use of regexes

(apache/incubator-pinot#2894).

4.3.3 Other Code: Other Failures. Regular expressions can also be

added when the existing solution in the code does not work. For

example, a regex solution can be used as a fix when the code of

identifying browser type fails to identify a newer version of the

browser (mozilla/pdf.js#7800).

Summary: Regexes are involved in PRs even when the regex or

its APIs are not the root cause.

5 RQ2: BUG FIX CHARACTERISTICS IN
REGEX-RELATED PRS

While RQ1 describes the regex-related PR bugs, RQ2 describes the

associated fixes. We approach this from three perspectives: 1) the

complexity of the fix, compared to general PRs; 2) the types of

changes to the code; and 3) frequently recurring bug fix patterns.

5.1 Complexity of Regex-related PR Fixes

We hypothesize that regex-related PRs differ from most other PRs.

We evaluate this hypothesis by comparing characteristics of regex-

related PRs to PRs from a public dataset of representative PRs from

GitHub projects that use PRs in their development cycle [25]. Ta-

ble 2 shows the pull request feature distributions for our dataset

(regexPRs) and the merged PRs from prior work (allPRs), as de-

scribed in Section 3.3.1. We compare the distributions of each fea-

ture across the datasets using a Mann-Whitney-Wilcoxen test of

means. For each feature, we present the 5% percentile, mean,median,

95% percentile, and skewness score. The skewness score is calcu-

lated according to Pearson’s moment coefficient of skewness [1, 5].

For example, for the merged pull requests in allPRs, the median

num_commits is 1 and the skewness is 16.75. Although the median

number of commits is also 1 in regexPRs, the skewness of commits

is only 7.97. This means the distribution of num_commits has a

shorter tail in regexPRs, because of which the 95% percentile of

num_commits in regexPRs is smaller than that in allPRs.

As shown in Table 2, regexPRs has less skewed distributions than

allPRs on all features. Therefore, the characteristics of regex-related

PRs are less asymmetric than general PRs. The Mann-Whitney-

Wilcoxon tests between regexPRs and allPRs show that regexPRs

take longer to merge (mergetime_minutes) and involve more lines of

code (code_churn), and these differences are significant at 𝛼 = 0.001.
Our conclusion is that regex-related PRs are different than gen-

eral PRs.

Summary: The fixes in regex-related PRs are significantly different

from general PRs. Most regex-related PRs take a longer time to get

merged and involve more lines of code.

5.2 Changes to Regexes in PRs

In regex-related PRs, we observed four types of changes: a regex

addition (𝑅𝑎𝑑𝑑), edit (𝑅𝑒𝑑𝑖𝑡), or removal (𝑅𝑟𝑚), or a regex API is
modified (𝑅𝐴𝑃𝐼). Table 3 presents the distribution of regex changes
over the 356 PR bugs with noted dominant type of regex changes.

108

Table 3: Distribution of the four types of regex-related changes over different root causes and manifestations. A (B) means A

PRs have B occurrences of the change, in total. • indicates the dominant type of regex-related changes in the corresponding

manifestation (or category) in each row.

Root Cause Manifestation (Category) #PR 𝑅𝑎𝑑𝑑 𝑅𝑒𝑑𝑖𝑡 𝑅𝑟𝑚 𝑅𝐴𝑃𝐼

Regex

Incorrect Behavior 165 22 (40) 139 (236)• 26 (48) 12 (13)

Compile Error 8 0 (0) 7 (10)• 1 (3) 3 (3)

Bad Smells
Design Smells 17 4 (5) 4 (9) 12 (63)• 3 (4)

Code Smells 28 3 (3) 20 (49)• 8 (10) 3 (5)

Sum 218 29 (48) 170 (304) 47 (124) 21 (25)

Regex API

Incorrect Computation 6 1 (1) 1 (1) 0 (0) 6 (9)•

Bad Smells
Design Smells 2 0 (0) 0 (0) 0 (0) 2 (2)•

Code Smells 25 2 (8) 3 (10) 1 (25) 23 (381)•

Sum 33 3 (9) 4 (11) 1 (25) 31 (392)

Other Code

New Feature 59 53 (110)• 3 (4) 0 (0) 4 (4)

Other Failures 27 23 (44)• 6 (7) 2 (4) 3 (6)

Bad Smells 19 11 (19)• 5 (21) 5 (20) 0 (0)

Sum 105 87 (173) 14 (32) 7 (24) 7 (10)

Total 356 119 (230) 188 (347) 55 (173) 59 (427)

Across all root causes and manifestations, the most common change

is an edit, as 52.8% (188/356) of the PRs contain one or more edit.

Regexes were added in over twice the number of PRs (119) as they

were removed (55). Regex API changes occurred in 59 (16.6%) of the

PRs. Note that these numbers do not add up to 356 because a PR can

have multiple types of changes (e.g., 𝑅𝐴𝑃𝐼 and 𝑅𝑒𝑑𝑖𝑡); 14.9% (53/356)
of the regex-related PRs involve more than one type of changes.

Although 𝑅𝑒𝑑𝑖𝑡 is the dominant type of regex-related changes in
our dataset, the number of 𝑅𝑒𝑑𝑖𝑡 changes in those pull requests is
usually one or two. In contrast, the average number of changes for

𝑅𝐴𝑃𝐼 is above seven. Next, we examined the fixes applied to each
root cause.

Fixes for Regex Root Cause.When the regex is the root cause,

78.0% (170/218) of the PRs contain a regex edit. To fix design smells,

however, regex removal is more common; as 11 of the 17 design

smells PRs are related to unnecessary regexes (Table 1), removing

the regex is a natural response.

We note that a regex edit is not always the solution, even when

the regex itself is the root cause. For example, incorrect regex be-

havior could be fixed by replacing the regex with an existing parser

(See Pattern 4 in Table 4). When incorrect regex behavior relates to

the changed input data, the PR can either modify the regex or sim-

ply add a regex to the list of regexes (See Pattern 5 & 6 in Table 4).

When the incorrect regex behavior is related to case sensitivity

and Unicode characters, adding or modifying the regex flags in the

regex API method can also be found together with regex edits (e.g.,

apache/beam#6092).

Fixes for Regex API Root Cause. Most of the fixes for regex

API issues involve changes to the API (78.8%, 26/33). Of all the

API changes for all root causes (59 PRs, 427 instances), most fix

deprecated APIs (71.2%, 304/427). However, multiple changes are

sometimes required. For example, the PR mozilla/treeherder#198

handles an incorrect computation and contains an 𝑅𝐴𝑃𝐼 and an
𝑅𝑒𝑑𝑖𝑡 . While the fix moves the flag from re.search to re.compile,

the regular expression '.+ pgo(?:[]|-).+' is optimized into a

different representation '.+ pgo[-].+', which is a hidden regex

representation code smell not mentioned in the PR description.

Fixes for Other Root Causes. The majority (75%, 173/230) of

𝑅𝑎𝑑𝑑 edits come from the other code root cause. This is fitting as

regexes are used in the solution for PRs in this category, but are

not the cause of any issues.

Summary: Suitably, each root cause has a common change type.

When regexes are the problem, edits are the most common, unless

it is a design smell that is resolved through removal. API problems

involve API changes, and regexes are often added to solve problems

caused by other code.

5.3 Recurring Patterns to Fix Regular
Expression Bugs

Table 4 presents the ten recurring fix patterns we identified

from the regex-related pull requests. Patterns 1-7 fix regex issues

and patterns 8-10 fix regex API issues. The column #PR shows the

number of pull requests that exhibit the pattern. However, this

is not an indication of pattern frequency because a fix pattern

can (and does) appear multiple times in the same PR. Pattern 7 is

language-specific, but the rest are general enough to apply to the

three languages: Python, JavaScript, and Java.

Escaping Issues (Patterns 1 & 7). Pattern 1 fixes incorrect regex

behavior and compile errors that result from improper escaping,

which we saw in Java, JavaScript, and Python. The domain knowl-

edge required in Pattern 1 is to distinguish a regex meta-character

from string escape character (e.g., \b can be a backspace or a regex

word boundary) and from plain text (e.g., ‘(’ can be a common

left parenthesis or the starting anchor of a regex capturing group).

Pattern 7 is specific to Python and can be used to distinguish regex

meta-character escaping (e.g., \.) from string character escaping

(e.g.,\n).

Regex Scope Issues (Patterns 2, 5 & 6). Pattern 2 adds characters

to a character class. Pattern 5 and Pattern 6 apply when additional

alternatives are needed. When the strings within the regex are

expressed in separate regular expressions, they can be combined

in a single regex using an OR operator | or grouped into a set of

regexes.

109

Table 4: Recurring patterns to fix regular expression bugs. Pattern 1-7 are to solve regex issues and Pattern 8-10 are to solve

regex API issues. With the exception of Pattern 7 (as noted), each pattern can be applied to each of the languages studied:

JavaScript, Python, and Java.

ID Description #PR Example Before/After

1 Correctly escaping regex literals 17
Before: regex="a.png"

After: regex="a\.png"

2 Extend or shrink the character class 17
Before: value_regex = r'[_\w]+'

After: value_regex = r'[_\-\w]+'

3 Replace regex with string methods 15
Before: if re.match(".*error.*",message):

After: if "error" in message:

4 Replace regex with existing parser 11

Before: EMAIL_REGEX_PATTERN.matcher(email).matches();

After: import javax.mail.internet.InternetAddress;
InternetAddress emailAddr = new InternetAddress(email);

emailAddr.validate();

5 Add or remove a regex alternation 10
Before: regex="win32|windows"

After: regex="wind32|windows|win64"

6

Add or remove a regex to the regex

list

9

Before: 'regexes': [

re.compile('Ubuntu HW 12.04 x64 .+')

]
After: 'regexes': [

re.compile('Ubuntu (ASAN)?HW 12.04 x64 .+'),

re.compile('^Android 4\.2 x86 Emulator .+'),

]

7
Correct the type of regex represen-

6
Before: 'pattern': '\d{1,2}/\d{1,2}'

tation; Language = {Python} After: 'pattern': r'\d{1,2}/\d{1,2}'

8

Checking null values for regex

5

Before: Matcher matcher = regex.matcher(currentLine);

execution After: Matcher matcher = currentLine == null ? null :

regex.matcher(currentLine);↩→

9 Regex static compilation 4

Before: String BLACKLIST = "...";

boolean method(String name) {

return !(name.matches(BLACKLIST));

}
After: Pattern BLACKLIST = Pattern.compile("...");

boolean methodE(String name) {

return !(BLACKLIST.matcher(name).matches());

}

10

Conditional checking before regex

4

Before: Matcher m=Pattern.compile(regex).matcher(currentLine);

execution After: if currentLine.contains("error"){

Matcher m=Pattern.compile(regex).matcher(currentLine);

}

Removing Regexes (Patterns 3 & 4). Pattern 3 replaces the regex

using string API functions while Pattern 4 replaces the regex so-

lution with APIs provided in third-party libraries. The differences

between Pattern 3 and Pattern 4 lie in the matching strings. Pat-

tern 4 is used when the matching string has its own syntax grammar

(e.g., email address, IP address, URL) and its dedicated parser. Pat-

tern 3 is used when the use of string libraries is simpler or easier

to understand than the regex implementation, but further research

is needed to identify situations when a regex is better and when a

string implementation is better.

Exception Handling (Pattern 8). Pattern 8 prevents null values

from getting into or out of regex API methods. Another fix pattern

for regex exception handling uses try-catch code blocks, but this

can often be addressed by using smart editors to suggest exceptions

to catch, so we omit it from the table.

Unnecessary Computation (Patterns 9 & 10). Pattern 9 avoids

repeated regex compilation by pre-compiling regex objects and

making the pre-compiled objects sharable among various functions.

Pattern 10 reduces the execution frequency of regex methods by

conditionally checking the input strings prior to the regex matching.

Other Patterns. Other common patterns include transforming a

regex character class into a regex shortcut, adding or removing

regular expression anchors, changing regex API, splitting regu-

lar expressions apart or merging regular expressions together, or

switching from capturing groups to non-capturing groups. More

patterns could be observed, but those presented in Table 4 repre-

sent common ones that are candidates for automation based on our

careful exploration of the data.

Summary: For a regex issue, there are often multiple fix patterns

that can help, such as replacing a regex with string library oper-

ations or replacing it with external library calls. These patterns

provide a first step toward understanding common regex-related

code changes, which could enable automated program repair or

other automated regex support.

110

6 DISCUSSION AND FUTUREWORK

We began this work to gain a better understanding of the issues

developers face when working with regular expressions, and the

lens we chose is the pull request. Here, we discuss our high-level

observations, implications, and future work possibilities. Based on

our analysis of the data, the following observations stand out:

Differences across programming languages. Prior work shows

that the regular expression representations have significant differ-

ences across programming languages [22] and porting regular ex-

pressions causes semantic and performance differences [21]. During

our analysis of regex bugs, we saw that some regex bugs are closely

related to a particular program language. The incorrect computa-

tion or incorrect regex behavior caused by stateful methods occurs

only in JavaScript. The Regex API code smell of Performance/Secu-

rity occurs in JavaScript and Python, but not Java (Section 4.2.2).

The language version also has an impact on regex bugs by changing

flags (e.g., re.L is no longer supported after Python 3), deprecating

APIs, and changing performance.

Regex issues when represented as string literals.When a reg-

ular expression is represented as a quoted string literal, it can be

tricky to get right. Regexes use backslashes for shortcuts (e.g., \d)

and to convert meta-characters to plain characters (e.g., a\.png).

However, backslashes themselves need to be escaped to make a

valid string sequence. The complicated escaping process and the

different escaping character support in different languages make

regular expression escaping fragile (see Pattern 1 in Table 4).

To regex or not to regex. Our study found 15 PRs of replacing

regex with string operations and 9 PRs of replacing string opera-

tions with regular expressions. When other code is the root cause

of the issue, regexes are added in 82.9% (87/105) of the PRs. The

problem of when regular expressions should and should not be

used [2, 3, 6] is also discussed in the PRs. One PR discussion sets

a boundary for when regexes should be used: “If the data and the

comparison only require you to test for equality, then I’d try to use

an Array. If whatever I’m testing can’t use equality then I’d use a

RegExp." (mozilla/fxa-auth-server#1743). This problem is regarded

to be one of the difficulties of regex programming [34]. Further

research efforts are needed to better understand when to use and

when not to use regexes.

Regex usage context matters. In this paper, we found that regex

errors go beyond just composing the intended regex. The issues we

observed also include incorrect usage of regular expression APIs

(Section 4.2), improper exception handling (Section 4.2.2), and un-

readable or inefficient regexes (Section 4.2.2). Thus, it is important

to consider regexes in their context when proposing solutions to

support developers. Online tools, which developers report to use

for regex composition and testing [16], cannot determine if a regex

is compiled too often (Pattern 9, Table 4), if a string library would

be more appropriate (Pattern 3, Table 4), or if a meta-character

should be escaped (Pattern 1, Table 4). While helpful for under-

standing matching behavior, developers could benefit from tool

support within the IDE that can consider the context.

Regex performance is about more than regex complexity.

Prior work on regex and ReDoS [20] focuses on the complexity

of executing a regular expression. In the PRs we studied, developers

demonstrated an interest in optimizing regex execution by refactor-

ing the surrounding code (e.g., adding conditional or null checking,

Patterns 8 & 10, Table 4) or by fine tuning the features in the regular

expression representation such as changing capturing groups to

non-capturing groups (e.g., apache/nutch#432). Automated perfor-

mance support would help developers identify these inefficiencies

sooner.

Testing Regexes. Prior work on regex testing [46] shows that only

17% regular expressions are tested. The PRs reveal that test code is

not typically committed with regex changes; over 50% of PRs do not

include test code edits. Providing test cases provides clarity on the

intended behavior of the regex and may reduce discussions about

what purpose a regex should serve. Among the 165 PRs causing

incorrect regex behaviors, 47.9% (79) contain regex testing code for

the regex and 49.7% (82) do not. The other four are not feasible to

test because the regular expression is in either the configuration

files or the testing framework itself specifying which tests to run

(e.g.,mozilla/amo-validator#320).

We note that regex testing statistics from prior work [46] may

be artificially low due to feasibility issues. Not all regexes can be

tested in context. Regular expressions written in configuration

files, for example, make testing more challenging (e.g., mozilla/amo-

validator#520). In that case, it is important to ensure the regexes

are not malicious and do not cause significant system slowdown.

Summary: Each of these observations opens the door for further

research. Our sample of PRs was not large, but the analysis was in-

depth. Opportunities for further, automated exploration and further,

automated support have been identified.

7 THREATS TO VALIDITY

Internal Validity. We manually labeled the PRs using two au-

thors as raters. To reduce misclassifications, all disagreements were

thoroughly discussed with a third author.

Our analysis considers only the code changes present in merged

pull requests. Thus, and changes that proceed or follow the PR but

are not linked to the PR were not analyzed.

Construct Validity.We analyzed 356 merged PR bugs from 4 or-

ganizations, which may not be representative of all regex-related

PRs. These PRs are in three languages, which may not general-

ize. The dataset is from public GitHub repositories, which may

not generalize to projects hosted elsewhere or private repositories.

However, we did not observe any important differences in PRs be-

tween the selected organizations. Their distributions of root causes

and manifestations, are not statistically different from one another,

suggesting (though not proving) generalizability.

When comparing regexPRs and allPRs, we observed that 8 PRs

in regexPRs are present in allPRs. We believe the impact is minimal,

as there are over 800x more PRs in the allPRs dataset.

We split six PRs into multiple bugs because the issues were

independent. This has a subtle impact on the generalizability of the

results to other sets of regex-related PRs.

Where appropriate, we connected our results to prior work on

regular expressions to reduce mono-method bias.

External Validity. The PRs were sampled on February 1, 2019, and

thus reflect the PRs available at a specific date and time. Results

may not generalize to PRs sampled from a different period.

111

We used GitHub’s merge status in selecting PRs, which poses a

threat to validity [27]. This threat is that additional pull requests

may have been merged, and the existence of such pull requests

would affect our results if they substantially differ from the ones

merged via GitHub. Further study is needed to assess the impact of

this threat.

Among the 16 PR features [25], we only select four of them to

evaluate RQ2. The comparison between regexPRs and the allPRs

dataset may not hold on the other features.

8 RELATEDWORK

This work is mostly related to research on regular expressions in

software engineering. The methodology is most related to research

on software bugs and classification.

Regular Expressions in SE. Empirical research on regular ex-

pressions in software engineering is emerging (e.g., [16, 17, 20–

22, 45, 46]). Previous research focuses on regex feature usage in one

language [16] and later on comparing regex characteristics across

languages [21, 22], with a specific focus on portability issues [21].

Previous research also explores regex characteristics (e.g., size, fea-

tures) at a moment in time [16, 21], or, more similar to this work,

on changes to the characteristics over time through the lens of

commit history [45]. Another dimension is context: some regular

expression studies extract regexes from their context for analysis

(e.g., [17, 45]), but others consider the execution environment (e.g.,

to measure test coverage [46] or identify actual ReDoS issues [20]).

In this work, we analyzed regexes in multiple languages using the

context from the PR, which is not available through commit history

alone, in addition to properties of the regex itself.

Regex comprehension has been studied using controlled exper-

iments [17] and composition strategies have been studied using

observational studies of developers [15]. This work is complemen-

tary to work in regex comprehension, as regex representation code

smells were found in this work. These are the byproduct, in part,

of regex readability issues (Section 4.1.3).

Complementary to our efforts here, prior work identifies the

presence of ReDoS vulnerabilities in thousands of JavaScript and

Python modules [20, 41]. While the prior work [20] took a deep dive

into a particular type of vulnerability, this work looks more broadly

at issues resulting from regular expressions (including ReDoS issues,

which were also present in two PRs in our dataset, Section 4.1.3).

Prior work has surveyed developers to identify pain points asso-

ciated with regular expression usage [16, 34]. Rather than surveying

developers, this work explored the discussions in regex-related PRs.

Pain points were revealed indirectly through the fix patterns (e.g., is-

sues with escaping literals are common and likely a pain point),

and bug characteristics.

Software Bugs and Classification. GitHub has become a pop-

ular hosting site for organizations large and small to make their

projects available to their teams and the public. Pull requests are

created when a developer wants their changes to be integrated into

a project; sometimes these are linked to a GitHub issue or another

bug reporting software. Pull requests are reviewed and discussed

before being merged.

The lens through which researchers study bugs is typically a

bug report [23, 31, 42, 48, 49]. GitHub pull requests [24, 25, 33, 38]

provide a different lens as they contain a proposed (or actual, in

the case of a merged PR) change.

Similar research to ours is bug classification [26, 32, 36]. Some re-

search targets emerging applications, such as TensorFlow bugs [48]

and Blockchain bugs [44], while others target distributed systems

such as node change bugs [29] and concurrency bugs [30]. More

specific bug types include bugs in exception-related code [19], bugs

in patches [47], numerical bugs [23], performance bugs [39], and

cross-project correlated bugs [31]. Our study joins this list with its

focus on regex-related bugs.

Bugs are often categorized in terms of root causes and man-

ifestations [23, 30, 39, 47, 48], bug patterns [30], and fix strate-

gies [30, 31, 39]. Tan and Liu et al. [42] conduct a temporal analysis

to study the trend of different types of bugs with software evolu-

tion. Zhong et al. [49] evaluate the differences between bug fixes by

programmers and the fixes by automatic program repair. Selakovic

et al. [39] measure the complexity of optimization code changes.

Wan et al. [44] evaluate the relationship between bug type and

bug fixing time. We adopt the approach of using root causes and

manifestations to describe regex-related bugs and the approach of

using fix strategies to describe bug resolution.

In addition to bug studies, there is also lots of research focused

on code refactoring to categorize or detect code smells and design

smells in source code [35, 37, 40] and to understand the mutual

impact between those bad smells and the software development

process [28, 43]. As many of the PRs were addressing code smells,

our work is related to this literature as well.

9 CONCLUSION

Most empirical studies on regular expression bugs are focused on

detecting or fixing ReDoS. The studied regular expressions are

often extracted from source code, and thus real, but the whole

empirical study is often separate from the environment where the

regexes are executed. There is little knowledge about what regular

expression problems could happen in real-world software code and

the consequences of those problems.

This paper presents a study of 350 merged regular expression

related pull requests from Apache, Mozilla, Facebook and Google

GitHub repositories where the regular expression problems are

studied carefully by bug descriptions and the source code. Our re-

sults provide not only the dominant regular expression problems

but also a spectrum of regular expression root causes and mani-

festations. Our study shows that regular expression bugs are not

independent of the source code it runs, but are influenced by the

software evolution and the code quality. Furthermore, by analyzing

the complexity of regular expression bug fixes, we demonstrate that

regular expression bugs are not trivial problems as they take more

time and more lines of code to fix compared to general bugs. We

also provide ten common patterns of regex bug fixes. Our results

and finding provides an overview of regular expression bugs and

motivates future work on techniques and tools to solve practical

regular expression problems.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science

Foundation under Grant No. 1714699.

112

REFERENCES
[1] [n.d.]. Skewness | R Tutorial. http://www.r-tutor.com/elementary-statistics/

numerical-measures/skewness.
[2] 2005. Regex use vs. Regex abuse. https://blog.codinghorror.com/regex-use-vs-

regex-abuse.
[3] 2011. When you should NOT use Regular Expressions? https:

//softwareengineering.stackexchange.com/questions/113237/when-you-
should-not-use-regular-expressions.

[4] 2014. GitHut - Programming Languages and GitHub. https://githut.info/.
[5] 2015. Pearson’s moment coefficient of skewness | A Blog on Probability and

Statistics. https://probabilityandstats.wordpress.com/tag/pearsons-moment-
coefficient-of-skewness/.

[6] 2017. Replacing a Complex Regular Expression with a Simple Parser. https:
//www.honeybadger.io/blog/replacing-regular-expressions-with-parsers/.

[7] 2020. The Apache Software Foundation. https://github.com/apache.
[8] 2020. An Empirical Study on Regular Expression Bugs Dataset. https://figshare.

com/s/802eb74c2e722ca5d8df. https://doi.org/10.6084/m9.figshare.11620083
[9] 2020. Facebook. https://github.com/facebook.
[10] 2020. Github GraphQL API v4 2019. https://developer.github.com/v4/.
[11] 2020. Google. https://github.com/google.
[12] 2020. Mann-Whitney-Wilcoxon Test | R Tutorial. http://www.r-tutor.com/

elementary-statistics/non-parametric-methods/mann-whitney-wilcoxon-test.
[13] 2020. Mozilla. https://github.com/mozilla.
[14] 2020. PyGithub - PyGithub 1.45 documentation. https://pygithub.readthedocs.io/

en/latest/.
[15] Gina R Bai, Brian Clee, Nischal Shrestha, Carl Chapman, Cimone Wright, and

Kathryn T Stolee. 2019. Exploring tools and strategies used during regular
expression composition tasks. In Proceedings of the 27th International Conference
on Program Comprehension. IEEE Press, 197–208.

[16] Carl Chapman and Kathryn T Stolee. 2016. Exploring regular expression usage
and context in Python. In Proceedings of the 25th International Symposium on
Software Testing and Analysis. ACM, 282–293.

[17] Carl Chapman, Peipei Wang, and Kathryn T Stolee. [n.d.]. Exploring regular
expression comprehension. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering (2017). IEEE Press, 405–416.

[18] Brendan Cody-Kenny, Michael Fenton, Adrian Ronayne, Eoghan Considine,
Thomas McGuire, and Michael O’Neill. 2017. A search for improved performance
in regular expressions. In Proceedings of the Genetic and Evolutionary Computation
Conference. ACM, 1280–1287.

[19] Roberta Coelho, Lucas Almeida, Georgios Gousios, and Arie van Deursen. 2015.
Unveiling exception handling bug hazards in Android based on GitHub and
Google code issues. In 2015 IEEE/ACM 12thWorking Conference onMining Software
Repositories. IEEE, 134–145.

[20] James C Davis, Christy A Coghlan, Francisco Servant, and Dongyoon Lee. [n.d.].
The Impact of Regular Expression Denial of Service (ReDoS) in Practice: an
Empirical Study at the Ecosystem Scale. In The ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE) (2018).

[21] James C Davis, Louis G Michael IV, Christy A Coghlan, Francisco Servant, and
Dongyoon Lee. 2019. Why aren’t regular expressions a lingua franca? an empirical
study on the re-use and portability of regular expressions. In Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ACM, 443–454.

[22] James C Davis, Daniel Moyer, Ayaan M Kazerouni, and Dongyoon Lee. 2019.
Testing regex generalizability and its implications: A large-scale many-language
measurement study. In 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 427–439.

[23] Anthony Di Franco, Hui Guo, and Cindy Rubio-González. 2017. A comprehensive
study of real-world numerical bug characteristics. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering. IEEE
Press, 509–519.

[24] Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An exploratory
study of the pull-based software development model. In Proceedings of the 36th
International Conference on Software Engineering. ACM, 345–355.

[25] Georgios Gousios and Andy Zaidman. 2014. A dataset for pull-based develop-
ment research. In Proceedings of the 11th Working Conference on Mining Software
Repositories. ACM, 368–371.

[26] KimHerzig, Sascha Just, and Andreas Zeller. 2013. It’s not a bug, it’s a feature: how
misclassification impacts bug prediction. In Proceedings of the 2013 international
conference on software engineering. IEEE Press, 392–401.

[27] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M
German, and Daniela Damian. 2014. The promises and perils of mining GitHub.
In Proceedings of the 11th working conference on mining software repositories.
92–101.

[28] Foutse Khomh, Massimiliano Di Penta, and Yann-Gael Gueheneuc. 2009. An
exploratory study of the impact of code smells on software change-proneness. In
2009 16th Working Conference on Reverse Engineering. IEEE, 75–84.

[29] Jie Lu, Liu Chen, Lian Li, and Xiaobing Feng. 2019. Understanding Node Change
Bugs for Distributed Systems. In 2019 IEEE 26th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 399–410.

[30] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learning from
mistakes: a comprehensive study on real world concurrency bug characteristics.
In ACM SIGARCH Computer Architecture News, Vol. 36. ACM, 329–339.

[31] Wanwangying Ma, Lin Chen, Xiangyu Zhang, Yuming Zhou, and Baowen Xu.
2017. How do developers fix cross-project correlated bugs? a case study on
the GitHub scientific Python ecosystem. In 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE). IEEE, 381–392.

[32] Walid Maalej and Hadeer Nabil. 2015. Bug report, feature request, or simply
praise? on automatically classifying app reviews. In 2015 IEEE 23rd international
requirements engineering conference (RE). IEEE, 116–125.

[33] Suvodeep Majumder, Joymallya Chakraborty, Amritanshu Agrawal, and Tim
Menzies. 2019. Why Software Projects need Heroes (Lessons Learned from 1100+
Projects). arXiv preprint arXiv:1904.09954 (2019).

[34] Louis GMichael IV, James Donohue, James C Davis, Dongyoon Lee, and Francisco
Servant. 2019. Regexes are hard: Decision-making, difficulties, and risks in
programming regular expressions. In ACM International Conference on Automated
Software Engineering (ASE). ACM.

[35] Naouel Moha, Yann-Gael Gueheneuc, Laurence Duchien, and Anne-Francoise
Le Meur. 2009. Decor: A method for the specification and detection of code and
design smells. IEEE Transactions on Software Engineering 36, 1 (2009), 20–36.

[36] Masao Ohira, Hayato Yoshiyuki, and Yosuke Yamatani. 2016. A case study on
the misclassification of software performance issues in an issue tracking system.
In 2016 IEEE/ACIS 15th International Conference on Computer and Information
Science (ICIS). IEEE, 1–6.

[37] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Andrea
De Lucia, and Denys Poshyvanyk. 2013. Detecting bad smells in source code using
change history information. In Proceedings of the 28th IEEE/ACM International
Conference on Automated Software Engineering. IEEE Press, 268–278.

[38] Mohammad Masudur Rahman Chanchal K Roy. 2014. An Insight into the Pull
Requests of GitHub. In Proc. MSR, Vol. 14.

[39] Marija Selakovic and Michael Pradel. 2016. Performance issues and optimiza-
tions in JavaScript: an empirical study. In Proceedings of the 38th International
Conference on Software Engineering. ACM, 61–72.

[40] Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. 2016. Does your
configuration code smell?. In 2016 IEEE/ACM 13th Working Conference on Mining
Software Repositories (MSR). IEEE, 189–200.

[41] Cristian-Alexandru Staicu and Michael Pradel. 2018. Freezing the web: A study of
redos vulnerabilities in javascript-based web servers. In 27th {USENIX} Security
Symposium ({USENIX} Security 18). 361–376.

[42] Lin Tan, Chen Liu, Zhenmin Li, XuanhuiWang, Yuanyuan Zhou, and Chengxiang
Zhai. 2014. Bug characteristics in open source software. Empirical Software
Engineering 19, 6 (2014), 1665–1705.

[43] Michele Tufano, Fabio Palomba, Gabriele Bavota, Rocco Oliveto, Massimiliano
Di Penta, Andrea De Lucia, and Denys Poshyvanyk. 2015. When and why your
code starts to smell bad. In Proceedings of the 37th International Conference on
Software Engineering-Volume 1. IEEE Press, 403–414.

[44] Zhiyuan Wan, David Lo, Xin Xia, and Liang Cai. 2017. Bug characteristics
in blockchain systems: a large-scale empirical study. In 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR). IEEE, 413–424.

[45] PeipeiWang, Rui Gina, and Kathryn T Stolee. [n.d.]. Exploring Regular Expression
Evolution. In Software Analysis, Evolution and Reengineering (SANER), 2019 IEEE
International Conference on (2019). IEEE, 502–513.

[46] Peipei Wang and Kathryn T Stolee. 2018. How well are regular expressions
tested in the wild?. In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, 668–678.

[47] Zuoning Yin, Ding Yuan, Yuanyuan Zhou, Shankar Pasupathy, and Lakshmi
Bairavasundaram. 2011. How do fixes become bugs?. In Proceedings of the 19th
ACM SIGSOFT symposium and the 13th European conference on Foundations of
software engineering. ACM, 26–36.

[48] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang.
2018. An empirical study on TensorFlow program bugs. In Proceedings of the 27th
ACM SIGSOFT International Symposium on Software Testing and Analysis. ACM,
129–140.

[49] Hao Zhong and Zhendong Su. 2015. An empirical study on real bug fixes. In
Proceedings of the 37th International Conference on Software Engineering-Volume
1. IEEE Press, 913–923.

113

