
Using Assertions to Help End-User Programmers
Create Dependable Web Macros

Andhy Koesnandar†, Sebastian Elbaum†, Gregg Rothermel†,
Lorin Hochstein†, Christopher Scaffidi∗, and Kathryn T. Stolee†,

†Computer Science Department
University of Nebraska – Lincoln

Lincoln, NE, U.S.A.
{akoesnan, elbaum, grother, hochstein, kthomass}@cse.unl.edu

∗School of Computer Science
Carnegie Mellon University

Pittsburgh, PA, U.S.A.
{cscaffid}@cs.cmu.edu

ABSTRACT
Web macros give web browser users ways to “program” tedious
tasks, allowing those tasks to be repeated more quickly and re-
liably than when performed by hand. Web macros face depend-
ability problems of their own, however: changes in websites or
failure on the part of end-user programmers to anticipate possible
macro behaviors can cause macros to act incorrectly, often in ways
that are difficult to detect. We would like to provide at least some
of the benefits of software engineering methodologies to the cre-
ators of web macros. To do this we adapt assertions to web-macro
programming scenarios. While assertions are well-known to pro-
fessional software engineers, our web macro assertions are unique
in their focus on website evolution, are generated automatically,
and encode the expectations and assumptions of a rapidly growing
group of users who often have limited formal programming exper-
tise. We have integrated our techniques for assertion generation and
evaluation into a web macro tool, and performed an empirical study
investigating its use. Our results show that the assertions can help
web macro users detect macro failures and correct macro faults.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
Assertion checkers.; D.2.6 [Software Engineering]: Programming
Environments—Integrated Environments.

General Terms
Reliability, Performance, Experimentation.

Keywords
Web macros, end user software engineering, programming by demon-
stration, dependability, assertions.

1. INTRODUCTION
Web macros give web browser users ways to “program” for the

web, saving time and reducing the incidence of errors resulting
from manual repetition of tasks. Web macros are being used in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT 2008/FSE-16, November 9–15, Atlanta, Georgia, USA
Copyright 2008 ACM 978-1-59593-995-1 ...$5.00.

a wide range of practical situations to help users perform important
jobs; for example, analysts at Home2Hotel.com use web macros
to manage online advertising and compile sales information [9],
auditors at the World Bank use web macros to perform automatic
quality audits on their intranet sites [8], and product managers at
Audi use web macros to perform competitive analyses of automo-
tive lines [10]. Web browsers are beginning to connect with the
potential for web macros as well, incorporating architectural plug-
in facilities designed to help users program and use them.

To create web macros, users employ web macro tools, most of
which utilize a programming-by-demonstration (PBD) approach
[4] to encode actions. Under the PBD paradigm, users manually
demonstrate a sequence of actions involving webpage access and
manipulation (e.g., navigating through a webpage and filling out
forms), and the tool records a generalized description of these ac-
tions. PBD-based web macro tools have a broad user appeal be-
cause they do not require expertise in writing code.

While web macros can be enormously helpful, they can also
cause several dependability problems [17, 21]. For example, when
changes have been made to the websites on which a macro operates,
that macro may terminate prematurely, produce incorrect results, or
perform unintended actions [21]. Other types of errors occur when
a user constructing a macro fails to anticipate potential responses to
that macro’s operation (as when a resource assumed by the macro
to always exist is not found), or when a user expects potential types
of data to be encountered (e.g., names entered family-name-first
rather than given-name-first). The resulting errors can be difficult to
detect, leading to unwarranted confidence in the results of macros.
Since the tasks automated by web macros can be critical to business
or other processes and can have costly side-effects if performed in-
correctly [9, 21], finding ways to help the creators of macros detect
and correct such problems is important.

We would like to provide at least some of the benefits of soft-
ware engineering methodologies to the creators of web macros. We
have therefore developed an approach for improving web macro de-
pendability by encoding users’ expectations and assumptions about
macros into assertions. These assertions are automatically gener-
ated as macros are created, and then, during subsequent web macro
execution, results of the assertions are used to detect unintended
consequences. To evaluate our approach, we implemented Robo-
fox, a Mozilla Firefox-based web macro tool, which incorporates
our techniques. Our empirical study of users employing Robofox
show that the approach helps them detect macro failures, isolate the
associated faults, and correct their macros.

The notion of using software engineering methodologies to help
end users program more dependably in non-traditional language

124

paradigms is not new in the software engineering research litera-
ture; in particular, it has been employed successfully in relation to
the spreadsheet language paradigm (e.g., [6, 19]). The notion of
using assertions to enhance software dependability is also not new
in the context of software engineering (e.g., [12, 18]), and prior
research has also considered automatic assertion generation in the
context of professional programming [14]. These lines of thought
have come together in work utilizing range assertions to help end-
user programmers create dependable spreadsheets [2].

This prior work notwithstanding, addressing dependability needs
for end users working in the web macro paradigm presents new
challenges. The first challenge involves the web macro environ-
ment, which is quite different from the programming contexts con-
sidered in prior work (whether spreadsheets or traditional program-
ming languages). Web macros live in a harsh climate: clipped re-
gions of a web page can appear and disappear as a site evolves,
form fields can be added and removed, and variables associated
with those fields do not even have types. Consequently, things that
can be taken for granted in other programming contexts must be
more carefully checked in web macro environments, motivating the
need for assertions.

A second challenge involves the characteristics of the end users
who program web macros. While web macro programmers may be
fairly skilled in their jobs (as we would expect the analysts, audi-
tors, and product managers referred to above to be), they also tend
to have little interest in programming for its own sake; if they pro-
gram it is in order to perform some task important to their “real”
jobs. We find a wide range of skills among end users who program
web macros [20]: most could not be expected to write or attend to
the details of assertions, but some do have a great deal of expertise.
Our primary focus in this work is on the former class of users, but
we do provide some support for the latter as well.

The research we report here is novel along several dimensions:

• This is the first research to attempt to bring software engi-
neering methodologies (and in particular the use of asser-
tions) to play within the web macro programming paradigm,
to help end users create and use these macros dependably.

• The family of assertion types that we utilize, which focus
on particular website aspects such as the presence of specific
design elements, the flow and format of data passed between
websites and associated applications, and the state of a given
website when a request is made, are novel.

• The underlying mechanisms that we use to support the gener-
ation, checking, and handling of such assertions, which must
be hidden within the web browsing environment while still
allowing for the evolution of the macros, have not previously
been investigated.

The remainder of this paper is organized as follows. Section 2
provides background information on web macros, web macro tools,
and the relation of these tools to other engineering support devices
such as testing tools. Section 3 describes our automated mecha-
nisms for generating and evaluating assertions. Section 4 presents
our study of the use of assertions in web macros. Finally, Section 5
presents conclusions and discusses possible future work.

2. BACKGROUND
We now describe two scenarios involving web macros that we

use in the remainder of this paper to illustrate our approach. We
then describe the web macro tool that we have implemented to sup-
port the work, and its relation to existing tools.

2.1 Web Macro Scenarios and Faults
Insurance Quotes. Consider an independent insurance agent

who wishes to find the best insurance quote for a customer. When
a customer makes an inquiry, the agent must query multiple in-
surance companies or insurance comparison websites. Since these
websites require many pieces of data about the customer (e.g., name,
address, age, weight, occupation, coverage, tobacco usage, family
history, insurance history), the agent saves the customer’s informa-
tion in a spreadsheet from which it can be copied and pasted into
the sites’ forms. The agent repeats this process across multiple sites
and provides the best quote to the customer.

A web macro can automate this process by populating insur-
ance quote sites with data from the corresponding spreadsheet cells,
making the data-entry process more efficient and less error prone.
However, other types of failures can occur with such a macro: for
example, if an insurance site changes its quotes display from a list
to a tabular format, a macro may be unable to clip the desired infor-
mation. If an insurance site changes the date format, the macro may
work but return the wrong quote. If a site alters its default values,
the macro will eventually provide the wrong quote. Consider the
site insure.com, for example, which in December 2006 changed the
default value in the “coverage amount” field from $50K to $500K.
A macro using this site before December 2006 would provide in-
surance quotes for coverage at the $50K level. After that date, the
same macro would provide a higher level of coverage with a corre-
sponding higher price. An insurance agent unaware of the change
would give a quote with the wrong coverage level.

Data Migration. Consider a data entry task aimed at incorpo-
rating student data from a university’s database into a bookstore’s
customer database. A bookstore may use the student information to
send out promotions and booklets each semester. For students at the
University of Nebraska - Lincoln (UNL), this task can be performed
through UNL’s “PeopleFinder” website, using copy-and-paste ac-
tions to place data into the bookstore’s internal contact database
web interface. To do this, a clerk must perform the copy-and-paste
operation for each student’s name and address.

At UNL this data migration task could entail 20,000 copy-paste
operations, which is highly repetitive and error prone. Still, the use
of a web macro to automate this task could lead to other types of
failures. The student information in the Peoplefinder website may
vary depending on the students’ place of residence and the infor-
mation they provide. If a student lives on-campus, Peoplefinder’s
website displays their address with a nine-digit zip code, but if they
live off-campus, the website displays their address with just a five-
digit zip code. Furthermore, some students may not provide their
local address information to the university. A web macro built with
the assumption that all students’ information includes nine-digit zip
codes will fail to extract the zip codes for students who live off-
campus or fail to provide addresses.

The foregoing scenarios illustrate some of the types of tasks end
users can create web macros to perform. While we might question
a decision to entrust such an important task as, say, underwriting
to a brittle program like a web macro, the instances of web macro
usage cited in Section 1 indicate that users currently do use web
macros to perform tasks just as important. Further, as illustrated in
both scenarios, end users creating web macros do not control and
often do not fully understand the potential behavior of the websites
accessed by their macros. As such, the web macros they create are
extremely vulnerable to changes in a website’s structure, semantics,
or default behavior, and also likely to underapproximate a website’s
exceptional behavior.

125

Figure 1: Robofox’s interface and high level architecture.

2.2 The Robofox Web Macro Tool
There are many tools that enable recording and replay of user

actions on web clients. Several tools have been developed, for
example, to support software testing activities by automating test
case execution [15, 16, 23]. Web macro tools such as Newbie Web
Automation[13], Deskperience Web Replay [5], Kapowtech [10],
and CoScripter [1, 3], also provide recording and replay facilities
that replicate user interactions with websites through the browser,
though with less concrete connection to testing.

Although the lines between web testing tools and web macro
tools are often blurred (e.g., iMacros [8] is said to support testers,
TestGold-Drive is said to support GUI testers’ activities without re-
quiring them to learn a complex scripting language), the scope of
application of web macro tools is broader than that of existing test-
ing tools. Web macro tools enable not only the replay of a form
submission, but also modification of the presentation of a website
on the fly to filter material that is not interesting, integration of in-
formation from various websites, and pushing/pulling of informa-
tion to/from other applications [20]. Further, web macros are built
not only to operate on a user’s own websites, but also to manipulate
websites that are not under that user’s control and may be subject to
unannounced and subtle changes (e.g., changes in the type of a vari-
able, addition of dynamic behavior). To cope with these situations,
web macro tools incorporate sophisticated mechanisms to identify
website elements even in the presence of changes, facilities to edit
the macros within the browser while browsing, and parameterized
macros that can be shared among users [3]. Still, none of the test-
ing or web macro tools discussed here incorporates any notion of
assertions, and all of them can run wild when a target site changes.

In this work we use Robofox, a web macro tool that we have im-
plemented, to study our automated assertion generation and check-
ing techniques. Robofox does not require users to have program-
ming experience, focusing instead on allowing users to work as
they normally do within the context of a web browser. We have
integrated Robofox into the Firefox browser as a toolbar extension
that provides access to functionality with which users record and
replay macros. Figure 1 shows the Robofox toolbar in the browser,
its Script Manager, and its basic architecture. From the users’s per-
spective, once recorded, a macro is displayed in the Script Man-
ager as a tree of action-object pairs (e.g., action “load” and object

“http://cse.unl...”, action “click” and object “submit button”).
In terms of generality, the architecture of Robofox is similar to

that of other PBD-based web macros [11, 21], and the set of fea-
tures Robofox provides include the primary features available in
commercial tools (e.g., the abilities to clip website content, format
clipped data, paste data from multiple clipboards, import and ex-
port data from a file or a spreadsheet, and obtain notifications when
a website changes).1 A user creates a macro with Robofox by ini-
tiating a recording session and then interacting as usual with web-
sites of interest via the web browser. Robofox’s Macro Generator
component captures the user’s interactions and generates the web
macro. For each user interaction, the Macro Generator captures
event information and processes it to generate an action-object pair
used to replicate the interaction during replay.

Table 1 lists several actions that Robofox captures. To replicate
interactions that operate on objects on webpages, Robofox iden-
tifies these objects by recording their XPaths, names, and ids, and
visual patterns that help to pinpoint an object (e.g., a button’s neigh-
boring labels [1]). Robofox also has its own clipboard where cut,
copied, or imported items can be placed and associated with a vari-
able name for future reuse through actions such as paste or filter.

As illustrated in the data migration scenario in Section 2.1, a
site may provide a range of responses when queried. Processing
these responses may require the execution of different sequences of
operations. Different sequences of operations may also be required
in response to distinct user inputs. Such sequences of operations
can be encoded in the form of web macro branches whose execution
is determined by the evaluation of a predicate on a site responses
or on user provided values. Internally, Robofox represents a web
macro as a Web Macro Graph (WMG). A WMG is a directed graph
G = (V, E), much like the control flow graphs used to represent
code written in an imperative language, where V is a set of nodes
and E is a set of directed edges. A node v ∈V can represent the
entry to (initiation of) a macro, an action captured in the recording
session, a branch or merge in the flow of actions, or a macro exit.
Edge direction allows Robofox to enforce the order of execution.

1Our decision to implement Robofox was a practical one, given
that source code for existing web macro tools was not available to
the extent necessary to allow us to implement our techniques.

126

Table 1: A Sample of Actions Captured by Robofox.
Class Action Description
Navigation Click Click element

Go Back Go to previous page in browser history
Go Forward Go to next page in browser history
Load Load a URL

Form Check Check checkbox
Manipulation Choose Choose radio button

Enter Enter value into textbox
Paste Paste clipboard value to form field
Select Select option from dropdown
Uncheck Uncheck checkbox

Data Clip Place text/HTML element on clipboard
Define Define new clipboard
Delete Delete existing clipboard
Export Export clipboard values
Filter Extract text matching pattern
Import Import clipboard values

Other Close Tab Close browser tab
Notify Pop-up message box
Verify Exist Verify text present on page
Verify !Exist Verify text absent from page
Wait Wait for page refresh

Continuing with Figure 1, Robofox’s Macro Runner provides the
environment for replicating the interactions recorded in a macro.
During a replay session, Robofox reads the WMG associated with
a previously recorded macro to reproduce the encoded user inter-
actions. When an action node is visited, Robofox attempts to find
the target element based on its XPath, element name, element id,
or a visual pattern. If the element is found, the action is executed
on that element; otherwise Robofox displays an alert and the macro
execution is stopped. If the action completes successfullly, Robo-
fox moves to the next node, otherwise it stops execution. When
Robofox finds a WMG branching node, it evaluates its associated
predicate to determine the next node to visit. A traversal of the
WMG is complete when the exit node is reached.

The Macro Generator and Runner also contain the assertion gen-
eration, evaluation, and handling mechanisms that are the novel
contribution of this work; these are discussed next.

3. ASSERTIONS INWEB MACROS
We now describe the primary contribution of this work: our

mechanisms for generating and evaluating assertions in web macros.

3.1 Assertion Generation
As we have noted, some web macro programmers may reach

a high-level of expertise in dealing with macros, and these users
might be able to “manually” construct certain types of assertions
and insert these into web macros at appropriate points. Robofox
supports one such manual process, similar to existing commercial
web testing tools [15], by enabling the user to specify visual cues
on webpages that correspond to the appearance of certain elements.
Users can generate such assertions by simply selecting text on the
webpage and clicking the “verify exist” context menu, as pictured
in Figure 2. These assertions become part of the macro script and
are checked by Robofox in the background at run-time (details on
these later steps are provided in Section 3.2).

For most web macro programmers, however, automated asser-
tion generation techniques are more viable, so we focus on these
here. Automated techniques require only limited user participa-
tion while providing powerful controls for the detection of subtle
changes in macro operation that may have a large impact on macro
dependability. We concentrate on three classes of assertions:

Figure 2: Manual assertions are entered via context menus that
allow users to verify whether selected text should appear or not.

• Existence assertions verify whether elements and data avail-
able during the recording session are available in the replay
session. We define an HTML object (e.g., text, bullet, fig-
ure, checkbox) to be available if it can be located by the web
macro tool. We define a clipboard variable as available if it
is defined and its value is not null. Non-existence assertions,
the counterpart of existence assertions, are used to verify the
absence of a webpage object and to detect collisions caused
by attempts to rewrite an existing clipboard variable.

• Value assertions verify that the value of a clipboard variable
or HTML object seen during macro replay matches a spec-
ified value or value characterization (e.g., is not empty, is
greater than) from a recorded execution. For most HTML
objects we derive the value from the text corresponding to
the object (e.g., text found in a label, next to a bullet, or in
a specific table row). For a form’s elements, we define the
value through the corresponding HTML “value” construct
(e.g., “checked” for checkboxes, “text” for text input fields).

• Data type assertions verify whether the format of the data
used by an action is appropriate. Robofox focuses on the
verification of clipboard data consisting of text strings. We
enforce the type of such data by specifying or inferring its
format. For example, a clipboard variable can be declared
to have a “zip code” type, consisting of five digit numbers.
We define a clipboard variable to be consistent if its value
matches its specified data type.

Robofox incorporates three automated assertion generation mech-
anisms to cover these three classes of assertions. We describe these
generation mechanisms next.

3.1.1 Action-based Assertion Generation
The most basic type of automated assertion generation mecha-

nism provides pre and postconditions for each macro action fol-
lowing a predefined template. The preconditions ensure that con-
ditions necessary for proper execution of the action are met, while
the postconditions verify that actions performed by the macro pro-
duce their expected results. The considered actions and their corre-
sponding pre and postconditions are listed in Table 2. The process
for generating these assertions consists of traversing the WMG of
a recorded macro and deriving the assertions for each action node
by instantiating the corresponding pre and postconditions.

We illustrate this assertion generation process using two actions
from Table 2. First, consider a clip action that extracts data from a
webpage, assigns it a name, and places it on the clipboard. Before
executing the clip action node, Robofox assumes that the element

127

Table 2: Actions and their assertion templates.
Action (parameter) Precondition (class) Postcondition (class)
Check (elm) Element elm exists (existence) Element elm is checked (value)
Choose (elm) Element elm exists (existence) Element elm is chosen (value)
Clip (elm, var) Element elm exists (existence)

Clipboard does not contain var (non-existence)
Clipboard contains defined var (existence)
Value of clipboard var equals value of element elm (value)

Define (var, val) - Clipboard contains the defined var (existence) with val (value)
Enter (elm, val) Element elm exists (existence) Value of element elm is val (value)
Filter (var) Clipboard contains variable var (existence) Clipboard contains new var of type t (existence and type)
Go Back () Browser has a previous history (existence) Page load event is captured (existence)
Go Forward () Browser has a forward history (existence) Page load event is captured (existence)
Import (filename) File filename is accessible (existence)

Clipboard does not contain var(s) (non-existence)
Clipboard contains var(s) (existence)

Load (url) - Page load event is captured (existence)
Current URL is url (value)

Paste (elm, var) Element elm exists (existence)
Clipboard contains var (existence)

Value of element elm is equal to value of clipboard var (value)

Select (elm, val) Element elm exists (existence) Selected option of element elm is val (value)
Uncheck (elm) Element elm exists (existence) Element elm is not checked (value)
Wait (sec) - Wait time sec is elapsed or a page load event is captured (existence)

Algorithm 1 Generate Form Default Value Assertions
Input: wmg: graph representation of current web macro;
f : web form to be submitted.
Output: assertions: set of default value assertions.
1: assertions← {}
2: action← start-action
3: untouchedformFields← f.getFieldsOfForm()
4: while (action← wmg.getNext(action)) $= {} do
5: if action.isModifyingAction() then
6: modifiedField← action.getField()
7: untouchedformFields.remove(modifiedField)
8: end if
9: end while

10: for all field in untouchedformFields do
11: assertions.add(field.name, field.value)
12: end for

to be extracted is present on the webpage and that the clipboard
does not contain an item with the same variable name. Thus, two
precondition assertions are generated: the first is an existence as-
sertion that verifies whether the extracted element can be found on
the currently loaded webpage and the second is a non-existence as-
sertion that verifies that the new element will not collide with an
existing element in the clipboard. After the clip action is complete,
Robofox assumes that the clipboard contains a new variable and its
value is not empty. Thus, two postcondition assertions are gener-
ated: an existence assertion that verifies the availability of the clip-
board variable and a value assertion that verifies that the variable’s
value is non-empty.

Next, consider the paste action that places the content of a clip-
board variable onto a webpage form field. Robofox assumes that
the clipboard contains the variable and the target webpage form
field is available before executing the paste action. This leads to
the creation of two preconditions. After the paste action is per-
formed, Robofox verifies the postcondition that the values of the
clipboard variable and the webpage form field are identical.

3.1.2 Forms’ Default Value Assertion Generation
Forms’ default value assertions ensure that the values of fields

that were not modified by the user actions in the recording ses-
sion are the same when the submit action is executed in a replay
session. Default value assertions enable the prompt detection of

failures caused by changes in a form’s default values, such as the
one described in the insurance quoting scenario in Section 2.1. This
mechanism analyzes the fields of the submitted form, determining
those that have not been modified by the macro’s actions between
the times at which the page is loaded and the form is submitted, and
generates default value assertions for the unmodified fields.

Algorithm 1 provides details. The algorithm’s first three lines
initialize the assertion set and action, and obtain the list of all form
fields that belong to the submitted form f. The algorithm then visits
all action nodes in a WMG through the getNext method. If the vis-
ited action node modifies a field of the submitted form (e.g., enter,
select, paste, check-field type actions), the algorithm removes the
field from the set untouchedformFields. The traversal terminates
when there are no more action nodes to process. When the loop
terminates, the set untouchedformFields contains just the unmodi-
fied fields for which default value assertions are generated.

Robofox must execute this algorithm for all form-submission
type actions. Since submission can be triggered by pressing a sub-
mit HTML object or by calling the JavaScript submit function,
Robofox adds onSubmit event listeners and it overrides the native
JavaScript’s submit function to capture both types of submission.
Similar event listeners and overriding functions are used by Robo-
fox to trigger checking of the other assertions.

3.1.3 Clipboard Type Assertion Generation
A clipboard type assertion specifies that a clipboard element’s

value must match a certain pre-defined type. Enabling this class
of assertion requires: 1) support to help users identify or specify
at least certain basic types, and 2) an underlying mechanism for
automatically propagating the type information to detect potentially
conflicting or unsupported uses of the element based on its type.
Support for type specifications. Robofox provides a pre-defined

library of basic and commonly understood type formats, such as
Number, Date, and Currency, which most browser users can use to
construct clipboard type assertions.

In addition to these basic formats, Robofox provides mecha-
nisms by which more expert users can define custom types using
regular expressions and tope formats. More expert users can em-
ploy regular expressions to do string matching as is done in popu-
lar scripting languages like perl. Tope formats complement regular
expressions by allowing the validation of data through the combi-
nation of several facts about the data that individually may prove
nothing about the data’s validity, but together may suggest that an

128

Figure 3: Tope Editor.

error has occurred. Consider the Data Migration scenario presented
in Section 2.1 in which students’ names were copied between web-
sites. It is possible for last names to have 12 or more characters
(e.g., “Grothendieck”), to contain spaces (e.g., “De Morgan”), or
to start with lowercase letters (e.g., “von Neumann”). A regular
expression for a last name would probably allow for each of these
characteristics and would thus also accept “internal server error” as
a name. But it is rare for a string to have all three of these char-
acteristics. A tope format could note the multiplicity of unusual
characteristics to detect the error.

To achieve this, a tope format allows users to specify soft con-
straints that are often satisfied by data. Users can associate con-
straints with the data string as a whole, or with parts of the string.
Users can specify that data should contain, start with, or end with
a number of specific characters (e.g., letters, digits, spaces, punc-
tuation), or that data should be in a closed set of possible values.
In addition, users can specify arithmetic constraints on values that
should be treated as numbers. Each tope format is implemented
internally as a context-free grammar with constraints attached to
productions. At runtime, the web macro tool takes the clipboard
element’s value as a string and parses it according to the grammar,
then checks parts of the string against the constraints. Violations of
constraints cause Robofox to downgrade confidence in the string’s
validity.

Figure 3 displays the Tope Editor. Note how users can create a
tope format without seeing the underlying context-free grammar;
instead, our editor enables end-user programmers enter a list of ex-
amples from which the tool infers a boilerplate format that they can
review, test, and customize. A separate, detailed evaluation of the

Algorithm 2 Generate Clipboard Type Assertions
Input: wmg: graph representation of current web macro.
Output: assertions: on clipboard type usages.
1: action← start-action
2: while (action← wmg.getNext(action)) $= {} do
3: action.cbVT ← action.cbVT

S

(action.ancestors()).cbVT
4: if action.isDefinitionAction() then
5: action.cbVT ← action.cbVT

S

action.cbVars
6: else if action.isTypeDeclarationAction() then
7: action.cbVT ← action.cbVT

S

action.cbTypes
8: end if
9: end while

10: action← start-action
11: while (action← wmg.getNext(action)) $= {} do
12: if action.isUseAction() then
13: typeCount ← action.countAvailClipbVarTypes()
14: if typeCount = 1 then
15: action.generateTypeAssertion()
16: else if typeCount > 1 then
17: Warning; potential clipboard type inconsistency
18: end if
19: end if
20: end while

effectiveness of tope-based validation can be find elsewhere [22]).
Type propagation. Robofox propagates the specified type in-

formation through the WMG to generate assertions that check for
type consistency before each node containing an action using a clip-
board variable. This is particularly useful in the presence of macros
with branches, as there may be multiple element definitions and
uses throughout the macro that may introduce type inconsistencies.

The analysis we perform for type propagation is a forward dataflow
analysis and is summarized by Algorithm 2. The input to the algo-
rithm is the macro’s WMG and the output is a set of assertions
associated with each action node using a clipboard element. The
algorithm consists of two loops. In the first loop (lines 2-9) each ac-
tion node is associated with all its reachable clipboard elements and
their types through the cbVT (clipboard Variable and Type items ac-
cessible by action) data structure. The algorithm performs a breath-
first traversal of a macro’s WMG, associating each node the clip-
board variables and types from the ancestor nodes (union in line 3),
identifying actions that set either a clipboard element (e.g., define,
clip) or the type of a clipboard variable (e.g., filter), and incorpo-
rating this information into the current action node. At the end of
this loop each action node will have its cbVT populated with all the
accessible clipboard elements and types. The second loop (lines
11-20) again traverses the WMG, generating assertions for all the
nodes consisting of a “use” action (e.g., paste, export, filter). Each
assertion will control at run-time whether the used element has the
expected type. In addition, the algorithm produces a warning when
more than one type is associated with a reachable and used clip-
board element; this warning indicates the existence of paths with
used clipboard variables of conflicting types.

3.2 Assertion Handling and Evaluation
Because the number of assertions generated by our techniques

can be large (e.g., for the Data Migration scenario in Section 2.1
our techniques generate 113 assertions on 34 action nodes), by de-
fault, Robofox does not display assertions in web macros. End
users using Robofox do not need to view or concern themselves
with assertions unless those assertions are violated.

At times, however, more expert users may choose to view macros

129

and assertions, and to facilitate this, Robofox attempts to improve
the understandability of assertions and the macros that contain them
by detecting repetitive patterns in macros and rolling those into
loops. This abstraction helps macro understandability by reducing
the number of individual assertions appearing in the macro file. It
also allows a further simplification in which assertions within loops
that are invariant with respect to loop iterations are removed from
the loops and inserted into the macros prior to or after the loop. For
example, in the presence of a loop containing a clip action within
its body, Robofox replaces the individual collision assertions (de-
scribed in Table 2) with an assertion at the end of the loop that
checks whether the size of the clipboard after the execution of the
loop is equal to the size of the clipboard before the loop plus the
number of clips performed within the loop. This process also re-
duces the number of assertion evaluations that need to be performed
during macro execution.

When executing a web macro containing assertions, Robofox
performs an assertion evaluation for each visit to an action node
with assertions. An assertion is violated when its boolean expres-
sion evaluates to false, indicating that an assumption that held in
the recording session does not hold in the replay session. When
an assertion is violated, Robofox alerts users that a violation has
occurred by displaying an alert, as shown in Figure 4. The win-
dow describes the assertion violation and offers four options: (1)
Modify: re-record the macro, (2) Add Branch: add an alternative
execution, (3) Show: examine the action and assertion detail, and
(4) Cancel: stop execution of the macro.

When a user presses the “Modify” button in Figure 4, Robofox
starts a re-recording session. A re-recording session is similar to
a recording session, but the replay progress up to the point of fail-
ure is preserved. Therefore, the user can record actions as in the
recording session while maintaining the replay progress prior to
the failure. When the user finishes re-recording, Robofox displays
a dialog that shows the re-recorded macro. The user may choose to
add the newly recorded actions to the macro or to replace a portion
of the previously recorded macro with the newly recorded actions.



Figure 4: Robofox detecting an assertion violation.
The second option, “Add Branch,” allows a user to incorporate an

alternative execution branch to accommodate a new response from
the target website that was not anticipated when the macro was first
recorded. Robofox uses the violated assertion predicate as the start-
ing condition for the newly created execution branch. The user can
then perform a re-recording, similar to that of the previous option,
but in this case, when the user completes the re-recording Robo-
fox displays a dialog in which the user is asked to specify which
nodes of the macro should be included in the alternative branch.
A new execution branch creates a new alternative execution block,
which starts with “alternative” and “alternative end” nodes. Con-
sider again the Data Migration scenario (Section 2.1) in which a
student’s address is copied between websites. Figure 5 illustrates



Figure 5: Setting an alternative execution branch.
how the Script Manager displays two alternative paths to extract
the address depending on whether the site provides a local or a
permanent address (by default, the predicate that determines which
branch to take is not displayed to the user to keep the script simple).

The last option for handling assertion violations, “Show,” lets
more expert users edit or delete violated assertions, allowing them
to correct assertions that are invalid or unnecessarily restrictive.

The final option, “Cancel,” allows users to stop macro execution
and edit the macro manually.

4. EMPIRICAL STUDY
To explore whether assertions in web macros can be useful, we

performed an empirical study. The goal of the study was to analyze
the Robofox assertion mechanism to evaluate it with respect to ef-
fort and effectiveness to detect failures, identify their causes, and
repair web macros from the viewpoint of researchers in the context
of relatively skilled web macro users.

The research questions we address in this study are:

• RQ1: Do assertions help users detect web macro failures?
• RQ2: Do assertions help users identify the cause of failures?
• RQ3: Does Robofox’s re-record mechanism help users repair

web macros?

4.1 Setup and Operation
As we have noted, there are a wide range of end users, from

novice to expert, who may utilize web macros. For this study, we
chose to consider relatively skilled macro users. We did this be-
cause (1) if relatively skilled users cannot make use of macro as-
sertions, then we have little hope that non-skilled users can do so,
and (2) a population of such users was readily available from the
ESQuaReD lab at the University of Nebraska – Lincoln, allowing

130

us to more quickly conduct a formative study that could provide
initial data on our approach, and inform the design of a future sum-
mative study on non-skilled users. We selected sixteen graduate
students from the ESQuaReD lab as study subjects.

Ten of our subjects had been involved in a previous Robofox
study; this helped us consider the subjects relatively skilled. Be-
cause our other six subjects had not had Robofox experience, how-
ever, we used a randomized block design to control for experience,
first partitioning the students into blocks of high and low experience
and then randomly dividing each block into control and treatment
groups, with eight subjects per group. The treatment subjects were
given a version of Robofox with assertions enabled,2 and the con-
trol subjects were given a version of Robofox without assertions.

As experimental tasks we chose two tasks corresponding to the
two scenarios provided in Section 2.1): migrating student data from
a university website to a bookstore website, and obtaining insur-
ance quotes for a set of customers whose information is stored in
a spreadsheet. These scenarios are based on observations of real
web macro users [20]. They have the additional advantage of al-
lowing us to make specific common modifications to test the use of
assertions with, as detailed below.

The study was conducted over a period of two weeks. We ini-
tially provided the subjects with tutorial material on web automa-
tion, general concepts of PBD frameworks, and how to build web
macros using Robofox, including exercises requiring its use. We
used a questionnaire to determine whether the subjects had reviewed
the tutorial and completed the exercises. Table 3 summarizes the
subject’s responses and shows that most had obtained exposure to
Robofox either through the tutorial or from the earlier study.

Table 3: Previous exposure to Robofox.
Reviewed tutorial Completed exercises

or did previous study or did previous study
Control 6 (75%) 5 (63%)
Treatment 7 (87%) 6 (75%)

The study then proceeded in two sessions, in which each subject
performed web macro tasks with Robofox while being observed
one-on-one by an experimenter (the first author). We expected each
session to last no more than an hour but did not put any time con-
straints on the subjects. In the first session, subjects were asked to
first build web macros for a warmup task not used in the remain-
der of the study, involving sending a stock quote to a cell phone
via SMS. Following this, the subjects were asked to perform the
two experimental tasks. In all cases the subjects interacted with
mockup target sites that we developed based on real-world web-
sites with similar functionality. Using these mockup sites let us to
control for potential sources of noise due to variations across sites.

Following the first session, we applied a set of modifications to
the mockup sites so that the macros would no longer perform cor-
rectly. These changes were selected based on historical changes
made to similar websites as observed in the Internet Archive [7].
We chose simple rather than large, complex changes because de-
tecting a large change in a web page is much easier than detect-
ing more subtle changes, and thus our selected changes provided a
more challenging test of our approach.

Table 4 summarizes the four changes that we selected, one ap-
plied to the data migration task (F1) and three to the insurance task
(F2, F3, F4). Each of these changes produced one failure, when
considering these failures we call a failure an apparent failure if it
2Assertions generated through the three mechanisms discussed in
the prior section were enabled. However, type specification was
performed focusing only on Robofox built-in types.

Table 4: Modifications to websites.
Failure Class Task Web Site Change
F1 Subtle Data Displayed zipcode

migration changes from 9 to
5 digit format

F2 Apparent Insurance Field type changes from
quote radio button to dropdown

F3 Apparent Insurance Options available in
quote dropdown change

F4 Subtle Insurance Default dropdown
quote option changes

causes the web macro execution to terminate prematurely during
execution using Robofox with the assertion feature disabled. We
call other failures subtle failures. As shown in the table, F2 and F3
are apparent failures, and F1 and F4 are subtle failures.

In the second session, the subjects were told to perform the same
tasks they had performed in the first session, using the web macros
they had built. They were told to imagine that a month had passed,
and that the websites may have changed since when they first built
the macros. They were also told to re-run their macros and to de-
tect failures and fix the cause of the failures they encountered. Each
subject was given a paper log form and asked to record: (1) the time
at which they first encountered a failure, (2) the time at which they
identified the cause of a failure, with a description of why the macro
failed, and (3) the time at which they implemented a fix and veri-
fied its correctness with a successful execution. To reduce the risk
of missing or incomplete data, the observer kept an independent
record of this information. The observer also occasionally asked
questions (e.g., “What are you thinking?”) to determine what the
subjects were doing when it was not obvious.

The subjects were permitted to ask the observer specific ques-
tions about features that they knew existed but had forgotten how
to use, such as how to set macro execution speed or how to create a
break point in a macro. However, questions about how to solve the
tasks were not answered by the observer. At the end of the study,
post-questionnaires were given to the subjects to capture their im-
pressions of the study.

4.2 Results
We begin this section by depicting with boxplots (Figure 6) the

time spent by the users attempting to detect each of the four fail-
ures, find the corresponding cause, and correct it. We observe
that the control group required between one and 14 minutes longer
than the treatment group to address each failure, and the difference
was larger for “subtle” failures (the difference between control and
treatment is 14 minutes for F1, and the control group subjects did
not even detect F4).

In the following sections, we analyze these results in detail by
separately examining failure detection, fault identification, and macro
repair. For each research question, we present our null hypoth-
esis or hypotheses and use statistical tests to accept or reject the
null hypothesis with a 95% confidence level (p<0.05). We use the
nonparametric Mann-Whitney test that does not make assumptions
about the distribution of the data, and the Fisher Exact test to check
for the equality of two frequency distributions for smaller samples.

A two-factor analysis of variance test on the time taken by sub-
jects to build web macros in the first session indicated no statisti-
cally significant difference due to experience for time spent on the
the insurance quote task (p = 0.901) or the data migration task
(p = 0.602). Based on this, we decided not to consider experience
as a factor in the remainder of our statistical analysis.

131

Treatment
Group

Control
Group

15

10

5

tim
e

(m
in

ut
e)

6

F1 - Total Time

Treatment

Group
Control
Group

4

3

2

1

tim
e

(m
in

ut
e)

F2 - Total Time

Treatment

Group
Control
Group

12

9

6

3

tim
e

(m
in

ut
e)

1

F3 - Total Time

Treatment

Group
Control
Group

3

2

1

0

tim
e

(m
in

ut
e)

F4 - Total Time

 Figure 6: Time spent by the subjects to detect a failure, find the cause, and fix the macro (in minutes). Note that no subjects in the

control group reported failure F4.
Table 5: Subjects detecting failures.

F1 F2 F3 F4 Average
Control 5 8 8 0 5
Treatment 8 8 8 8 8

Table 6: Average time spent to detect a failure, identify the
cause, and repair the web macro (in minutes).

Task Group F1 F2 F3 F4
RQ1 Detect Control 2.6 0.0 0.0 N/A

Failure Treatment 0.0 0.0 0.0 0.0
RQ2 Identify Control 7.8 1.6 3.5 N/A

Cause Treatment 1.6 1.2 1.6 1.1
RQ3 Repair Control 3.2 1.0 1.8 N/A

Macro Treatment 1.0 0.6 0.9 0.4

4.2.1 RQ1: Do assertions help users detect web macro
failures?

To investigate the effect of assertions on the users’ ability to de-
tect failures, we compared the number of failures reported by the
subjects. Our null hypothesis is: H0−1a: There is no difference
between the number of failures detected by the two groups.

Table 5 lists the subjects that detected each failure during the
experiment. The eight subjects in the treatment group detected all
four failures, whereas the subjects in the control group detected
an average of 2.6 failures. The Mann-Whitney test indicates that
treatment subjects detected statistically significantly more failures
than control subjects with p < 0.001.

We also investigated the effect of assertions on the users’ effort
to detect failures. The null hypothesis is: H0−1b: There is no dif-
ference between the effort required to detect macro failures by the
two groups. To assess the effort required to detect a failure we
measured the time elapsed from the beginning of the study to the
time the user detected a failure. As mentioned in Section 4.1, these
times were recorded by the subjects and verified by an observer, at
minute-level resolution. The row of Table 6 labeled “RQ1” shows
the average times taken to detect failures for each of the four faults
considered, for the control and treatment groups. An N/A entry
indicates that no subject was successful at performing the task.

For the simpler apparent failures F2 and F3, Robofox notifies
users of their presence in less than a minute, which explains why
there was no difference between the groups in the time spent to de-
tect these faults. However, on average, the control subjects required
2.6 minutes to detect failure F1, whereas the treatment subjects re-
quired less than one minute to detect this failure. While running
the experiment we noted that the control subjects had to execute
their macros multiple times to identify failure F1, with three sub-
jects decreasing the web macro execution speed so that they could

Table 7: Mann-Whitney tests of time spent for control vs. treat-
ment. “*” denotes a statistically significant result.

p-value
All Solutions Correct Solutions

F1 Detect 0.001* 0.001*
Identify 0.003* 0.003*
Modify 0.004* 0.004*

F2 Detect 1.000 1.000
Identify 0.268 0.903
Modify 0.175 0.076

F3 Detect 1.000 1.000
Identify 0.010* 0.032*
Modify 0.179 0.046*

examine whether each step was correctly performed. As shown in
Table 7 under the “All Solutions” column, the Mann-Whitney test
indicates that the treatment subjects spent statistically significantly
less time to detect subtle failure F1 with p = 0.001. Therefore,
we can conclude that assertions helped the users detect this more
subtle failure and reduced the effort required to detect it.

4.2.2 RQ2: Do assertions help users identify the cause
of failures and fix their associated faults?

We next investigate the effect of assertions on the users’ abilities
to identify the causes of failures. The null hypothesis is: H0−2a:
There is no difference between the effort required by the two groups
to identify the causes for the macro failures. To assess the effort
required to identify the cause of a failure we measured the time
elapsed from when the user detected a failure to the time they iden-
tified the reason for the failure (as recorded by the subject in a pa-
per log and verified by the observer). The second non-header row
of Table 6 (labeled RQ2) shows the average values for these times.

The control subjects required 4.9 times longer than the treatment
subjects to identify the cause for failure F1, 1.3 times longer to
identify failure F2, and 2.2 times longer to identify failure F3. None
of the control subjects detected failure F4. The Mann-Whitney test
indicates that the treatment subjects required statistically signifi-
cantly less time to identify the cause for failures F1 and F3 with p =
0.003 and p = 0.010 respectively (Table 7 - “All Solutions” col-
umn). These results show that assertion violation messages helped
users decrease the effort required to identify the causes for web
macro failures.

We then analyzed the actions taken by the subjects to fix the
faults causing those failures. More specifically, we assessed the
correctness of the solutions provided by the subjects and the effort
required by the subjects to identify the correct solutions. The num-

132

Table 8: Subjects reporting correct solutions.
F1 F2 F3 F4 Average

Control 5 4 3 0 3
Treatment 8 7 6 7 7

bers in Table 8 show the number of correct solutions provided by
the users for each failure. The null hypotheses are: H0−2b: There
is no difference between the correctness of the macro modifications
made by the two groups and H0−2c: There is no difference between
the effort required to identify the correct solutions for the macro
failures by the two groups.

The Mann-Whitney test across all failures indicates that the treat-
ment subjects identified statistically significantly more correct so-
lutions than the control subjects with p = 0.005. Similarly, the
treatment subjects identified statistically significantly more correct
solutions for the subtle failure F1 with p < 0.001. These results are
consistent with the responses of the treatment group subjects on the
post-test questionnaire, where seven out of eight subjects answered
“Yes” to the question, “Did the assertion violation mechanism help
you to identify the possible solution for failures?” giving reasons
including the following:

• “Sometimes the messages tell you what was expected. Know-
ing what was expected helps suggest a solution.”

• “It shows differences and we can go and change the value.
But sometimes we need to find the similar value instead.”

• “It allows me to quickly identify the actual versus expected
values or actions.”

• “By saying what the value differences in the fields were, it
helped me to identify the solution of the problem.”

However, there is no statistically significant difference for the ap-
parent failures.

When considering only the correct solutions, the Mann-Whitney
test (Table 7 - “Correct Solutions” column) indicates that the treat-
ment subjects required significantly less time than the control sub-
jects to identify the correct solutions for failures F1 (p = 0.003)
and F3 (p = 0.032). These results are consistent with our previous
findings and indicate that assertions helped our subjects identify the
correct solution to macro failures faster.

The subjects’ post-questionnaire responses show that there was a
large difference between the subjects’ opinions regarding the level
of difficulty in identifying the correct solutions for the failures.
Only one treatment subject mentioned that it was not easy to iden-
tify the correct solutions, whereas there were six control subjects
who mentioned this. The Fisher Exact test shows that there is a
statistically significant difference between their opinions with p =
0.041. Moreover, all subjects in the treatment group thought that
the assertion violation messages were easy to understand and helped
them identify the cause of the macro failures.

4.2.3 RQ3: Does Robofox’s re-record mechanism
help users repair web macros?

When Robofox detects a problem during a web macro execu-
tion, it offers users an opportunity to re-record the macro. For
the treatment group, all four failures were detected automatically
by Robofox. For the control group, only the two apparent fail-
ures gave them the opportunity to use the re-record option; for
the subtle failures, the control subjects had to perform modifica-
tions manually using a drag-and-drop interface. This allowed us to
analyze whether the re-record functionality reduced the effort re-
quired to perform modifications to the macro. The null hypothesis
is: H0−3a: There is no difference between the effort required to
modify the macro manually and using the re-record functionality.

Of the five control subjects who reported failure F1, only one was
able to perform modifications within a minute. The others spent be-
tween two and five minutes performing modifications. The Mann-
Whitney test (rows labeled “Modify” in Table 7) indicates that the
treatment subjects required statistically significantly less time to
modify the macro than the control subjects with p = 0.004. Note
that this significant difference was caused primarily by F1, but also
by the additional information provided through the assertions for
the other failures. In the post-questionnaire, all subjects indicated
that the re-record functionality helped them modify their macros.
Our experience working with the subjects leads us to believe that
even if the subjects were more familiar with the tool, performing
modifications without the re-recording feature would be difficult
as this requires the subjects to set up break points, start recording
sessions, and re-arrange the macros manually.

4.2.4 Findings Summary
The major findings of the study are as follows:

RQ1. Users employing the assertions mechanisms detected a sig-
nificantly larger number of faults than users without asser-
tions support (H0−1a). Furthermore, users employing asser-
tions detected subtle faults significantly faster (H0−1b).

RQ2. Users employing assertions identified the cause of failures
significantly faster (H0−2a) and conducted the macro correc-
tion significantly more effectively and in less time than users
not using assertions (H0−2b, H0−2c).

RQ3. Users with access to the macro re-recording mechanism
were able to fix errors significantly faster than those imple-
menting manual macro modifications (H0−3a).

4.3 Threats to Validity
We now describe the threats to the validity of the study’s findings

and how we attempted to limit such threats.
External Validity. The web tasks and website changes we se-

lected may not be representative of real tasks or changes. To limit
these problems we created mockup websites that were similar to
real world websites, and used changes similar to those observed on
similar websites. Our subjects were Computer Science graduate
students, most with professional software development experience,
who know about testing and debugging programs. Although they
never found it necessary to write any code during the study, they
may have relied on their programming and debugging skills to per-
form the assigned tasks, limiting the generalization of our findings
to macro creators with lower skills levels. Finally, in practice, users
might run automated tasks in the background and may not be able
to detect changes that do not cause the macro to terminate, whereas
in our experiment the subjects observed the macro executions and
were deliberately looking for failures.
Internal Validity. We conducted the study in a one-on-one set-

ting so the subjects could not perform the tasks at the same time.
Therefore, history effects cannot be ruled out. We attempted to
minimize this by processing all of the subjects in a two-week pe-
riod. Also, 6 out of 16 subjects had not participated in the earlier
prior web macro experiment using Robofox and thus had less ex-
perience in using Robofox than the others. To address this we used
a randomized block design. Our two-factor analysis of variance
test of the time that the users spent in creating macros revealed no
significant differences between experience groups
Construct Validity. Our earlier study revealed that subjects can

be unreliable in recording their times so we had an observer record
the timings as well. We ultimately used the observer’s data for anal-
ysis. It was also this observer who evaluated the correctness of the

133

identified failures. Since the observer was aware of which group
the subject was assigned to, we cannot rule out bias in recording
these values. It is also worth noting that we assumed the overhead
associated with execution of the assertion generation and evalua-
tion mechanisms did not perturb the subjects. Although we did
not test that assumption within the experiment, preliminary runs
on the scenarios described in Section 2.1 with and without the as-
sertions mechanisms activated revealed overheads in the order of
milliseconds per action. More specifically, for a macro like the one
in Figure 5, the average execution time in replay using assertions
was only 0.5 seconds slower than the average time without asser-
tions. Finally, in this study we did not consider the effect of false
positives on the usability and adoption of the approach.
Conclusion Validity. Because of the small sample size (16 sub-

jects), the absence of a statistically significant effect for factors
(e.g., effort to identify causes and modifying macros for F2) may be
due to insufficient power rather than the absence of an effect. Even
with this small sample, however, it is clear that assertions enabled
users to detect a significantly larger number of faults, to identify
the causes of failure faster, and to fix errors faster.

5. CONCLUSION
Many tasks performed by web browser users are repetitive and

fault-prone. Web macro tools such as Robofox can help these users
automate repetitive web tasks but are still susceptible to errors caused
by changes in and lack of contextual information about web sites.
To help web macro users detect and fix such errors, we have de-
veloped assertion mechanisms and incorporated them into Robo-
fox. These mechanisms hide the underlying complexity from the
user who does not need to learn new technology, and they are tai-
lored toward common types of errors encountered in web macros.
Our study shows that Robofox’s assertions can reduce the effort re-
quired for users to detect web macro failures, identify their causes
and repair the macros.

We plan to extend Robofox’s underlying mechanisms in several
directions to further support web macro dependability. First, we
are investigating the adaptation of existing inference mechanisms
to derive types for items other than clipboard elements and to form
repositories of types that can be shared among users of web macros.
Second, we are studying opportunities for analyzing the WMG to
accelerate macro execution by performing multiple web requests
in parallel. This implies the need to determine what actions in
the WMG nodes are independent and can be parallelized, but we
expect that this can produce performance gains that enable the in-
corporation of more powerful macro analyses. Third, since web
macros are often used in conjunction with other applications such
as spreadsheets and word processors, we are identifying opportu-
nities to gather and use the type and flow information available
across these paradigms. Finally, we are investigating how to en-
code macros that abstract contextual information that may change
when the macro is reused (e.g., abstract a particular date provided
as input with information available in a calender, replace a fix list
of macro actions with a loop that iterates a number of times in func-
tion of the size of the clipboard). We hope that such mechanisms
will enhance macro robustness and extend their useful lifetime.

Robofox’s documentation and source code are available for down-
load at http://esquared.unl.edu/wikka.php?wakka=AboutRobofox.

Acknowledgments
This work was supported in part by NSF CAREER Award 0347518,
the EUSES Consortium through NSF-ITR 0325273, NSF-CNS-
0613823, and NSF-CCF-0438929

6. REFERENCES
[1] M. Bolin, M. Webber, P. Rha, T. Wilson, and R. C. Miller.

Automation and customization of rendered web pages. In
ACM Symp. User Int. Softw. Tech., pages 163–172, 2005.

[2] M. Burnett, C. Cook, O. Pendse, G. Rothermel, J. Summet,
and C. Wallace. End-user software engineering with
assertions in the spreadsheet paradigm. In Int’l. Conf. Softw.
Eng., pages 93–103, 2003.

[3] CoScripter: Simplifying Web Processes.
http://services.alphaworks.ibm.com/coscripter, Feb. 2008.

[4] A. Cypher. EAGER: Programming repetitive tasks by
example. In Conf. Human Fact. Comp. Sys., pages 33–39,
1991.

[5] Deskperience Web Replay.
http://www.deskperience.com/webreplay, Jan. 2007.

[6] M. Erwig and M. Burnett. Adding apples and oranges. Int.
Symp. Pract. Aspects Decl. Langs., pages 173–191, 2002.

[7] Internet archive. http://www.archive.org, Mar. 2007.
[8] iOpus iMacros. http://www.iopus.com/imacros, Jan. 2007.
[9] iMacros Success Stories. http://www.iopus.com/imacros,

Jan. 2007.
[10] Connect, collect, mashup everything on the web.

http://www.kapowtech.com/products.html, Jan. 2007.
[11] T. A. Lau and D. S. Weld. Programming by demonstration:

An inductive learning formulation. In Int’l. Conf. Intelligent
User Int., pages 145–152, 1999.

[12] B. Meyer. Applying “Design by Contract”. Computer,
25(10):40–51, 1992.

[13] Newbie Web Automation. http://www.newbielabs.com, Jan.
2007.

[14] J. W. Nimmer and M. D. Ernst. Automatic generation of
program specifications. In Int’l. Symp. Softw. Test. Anal.,
pages 232–242, July 22–24, 2002.

[15] HP QuickTest Professional. http://www.hp.com, Feb. 2008.
[16] IBM Rational Functional Tester.

http://www.ibm.com/software/awdtools/tester/functional,
Feb. 2008.

[17] A. Repenning and C. Perrone. Programming by example:
Programming by analogous examples. Comm. ACM,
43(3):90–97, 2000.

[18] D. S. Rosenblum. A practical approach to programming with
assertions. IEEE Trans. Softw. Eng., 21(1):19–31, 1995.

[19] G. Rothermel, M. Burnett, L. Li, C. Dupuis, and A. Sheretov.
A methodology for testing spreadsheets. ACM Trans. Softw.
Eng. Meth., 10(1):110–147, 2001.

[20] C. Scaffidi, A. Cypher, S. Elbaum, A. Koesnandar, and
B. Myers. The EUSES web macro scenario corpus: Version
1.0. Technical report, School of CS, Carnegie Mellon
University, 2006.

[21] C. Scaffidi, A. Cypher, S. Elbaum, A. Koesnandar, and
B. Myers. Using Scenario-Based Requirements to Direct
Research on Web Macro Tools. Journal of Visual Languages
and Computing, 19(4):485–498, 2008.

[22] C. Scaffidi, B. Myers, and M. Shaw. Topes: Reusable
abstractions for validating data. In Int’l. Conf. on Softw. Eng.,
pages 1–10, May 2008.

[23] TestDrive-Gold.
http://www.origsoft.com/Products/Testdrive_gold.htm, June
2008.

134

