Expressing Computer Science Concepts Through
Kodu Game Lab

*
Kathryn T. Stolee
Department of Computer Science and
Engineering
University of Nebraska—Lincoln
Lincoln, NE, U.S.A.
kstolee@cse.unl.edu

ABSTRACT

Educational programming environments such as Microsoft
Research’s Kodu Game Lab are often used to introduce
novices to computer science concepts and programming. Un-
like many other educational languages that rely on scripting
and Java-like syntax, the Kodu language is entirely event-

driven and programming takes the form of ‘when — do’ clauses.

Despite this simplistic programing model, many computer
science concepts can be expressed using Kodu. We identify
and measure the frequency of these concepts in 346 Kodu
programs created by users, and find that most programs
exhibit sophistication through the use of complex control
flow and boolean logic. Through Kodu’s non-traditional lan-
guage, we show that users express and explore fundamental
computer science concepts.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and In-
formation Science Education; D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms

Languages, Experimentation

Keywords

Educational programming languages, Kodu

1. INTRODUCTION

Since the development of high level programming lan-
guages, researchers and educators have embraced domain
specific languages designed to introduce children to pro-
gramming from a young age [10]. While ease of use has
always been a concern with these languages, often attrac-
tiveness to children is a top priority, with the rationale that

*Work completed while at Microsoft FUSE Labs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGCSE’11, March 9-12, 2011, Dallas, Texas, USA.

Copyright 2011 ACM 978-1-4503-0500-6/11/03 ...$10.00.

99

*
Teale Fristoe
Expressive Intelligence Studio
University of California, Santa Cruz
Santa Cruz, CA, U.S.A.
teale@soe.ucsc.edu

students should enjoy their experiences to gain the most
from them. For this reason, these languages often target
media creation, such as art, animations, or games. However,
rarely are the actual educational benefits of the languages
the focus of scrutiny, resulting in a stark lack of understand-
ing of the skills these languages provide for their users.

Microsoft Research’s Kodu Game Lab [4] is a recent addi-
tion to this tradition of educational programming environ-
ments. Since its release in the summer of 2009, it has been
installed over 50,000 times in over 120 countries. Kodu al-
lows users to create their own video games by designing the
world, deciding which characters will appear in it, and pro-
gramming the characters using an easy-to-understand visual
programming language. It takes the unique perspective that
children should be both producers and consumers of games.
Like many similar programming environments, Kodu has
been shown to be enjoyable for users, and clubs have formed
worldwide to teach Kodu (e.g., [1, 2, 5]), but its educational
benefits have not been explored in any rigorous fashion.

In this work, we begin to identify which computer science
concepts users can express through Kodu, and then explore
which concepts actual users have utilized in Kodu. We aim
to address the following research questions:

RQ1: Which computer science concepts can be expressed
through the Kodu Language?

RQ2: How much time do end users spend designing and
programming during a Kodu session?

RQ3: How often does each computer science concept ap-
pear in the programs created by the Kodu community?

To this end, we look at several language features available
in Kodu, connecting them to fundamental computer science
concepts. We empirically investigate what users of Kodu
are actually learning, first by determining what percentage
of their time is spent programming and configuring their
program as opposed to playing or exploring, and then by
performing a frequency analysis on 346 end user programs,
measuring how often each computer science concept appears.

The rest of this paper is structured as follows. Section 2
presents related work in educational programming languages
and Section 3 gives some background on Kodu Game Lab
and the Kodu language. Section 4 presents the computer
science concepts that can be learned in Kodu (RQ1), Sec-
tion 5 shows how users spend their time during a Kodu ses-
sion (RQ2), and Section 6 addresses RQ3 by exploring how
often each concept is present in the games created by the
community. Section 7 presents the threats to validity, and
Section 8 presents future work and conclusions.

Rule — Condition Action
Condition — Sensor FilterSet
Action — Actuator ModifierSet Selector
FilterSet — Filter FilterSet | Filter
ModifierSet — Modifier ModifierSet | Modifier
Sensor — see | bump
Filter — apple|red | €
Actuator — move | eat
Modifier — toward | away | €
Selector — it | me | e

Figure 1: Grammar Sketch for a Rule

2. RELATED WORK

Released in 1967, Logo [10] pioneered the development of
educational programming environments, and has been very
influential on the development of subsequent languages in
the domain [3, 6, 13, 15]. While there have been count-
less educational programming environments since Logo, Al-
ice [6], Greenfoot [3], and Scratch [13] are commonly ex-
plored by the research community and have many simi-
larities to Kodu. Like Kodu, all are visual programming
languages that allow users to create their own animations,
games, and simulations. Scratch also has extensive commu-
nity features that facilitate sharing of programs and collabo-
ration [13]. Unlike Kodu, the languages of Alice, Greenfoot,
and Scratch follow the Java-like syntax of many mainstream
programming languages, whereas the Kodu language is en-
tirely event-driven (see Section 3.1 for language details).

In terms of evaluation, educational programming environ-
ments have been measured primarily using qualitative and
anecdotal evidence [15, 17]. A more recent trend has been
toward the inclusion of quantitative data in the evaluation,
though sample sizes generally remain small. Kelleher has
analyzed user habits by tracking time spent programming
versus other activities, such as designing in Alice [9]; we
perform a similar analysis with Kodu. Pre- and post-tests
have also been used to evaluate what users learn by using
Alice and Scratch, and are generally accompanied by quali-
tative support [11, 12, 14]. Researchers are only beginning
to examine artifacts written in Alice and Scratch to deter-
mine what the authors of the systems may be learning, a
technique we continue in this work [7, 11, 16, 19].

3. ABOUT KODU

At its core, Kodu is an environment that allows users to
create and play their own video games. It is available for
download for the Xbox and also on the PC. Developed by
Microsoft Research, the vision of the tool is to help users
learn computer science concepts through game creation.

3.1 Kodu Language

Kodu is a high-level, visual, and interpreted language that
can be represented as a context-free grammar [18]. Users can
program each character (e.g., a fish, cycle, apple, tree) indi-
vidually, and the programming defines how it interacts with
the world, much like an intelligent agent. The programming
takes place on pages, which define different states for the
character. A character may contain up to 12 pages of pro-
gramming, and can maintain its state and control flow by
switching between pages. Each page contains a set of rules,
where a rule is analogous to a statement in typical program-
ming languages. Each rule is in the form of a condition and
an action, which form a when — do clause, that is, when

100

]

move toward

Figure 2: Programming Interface in Kodu

condition, do action. If the condition is satisfied, then the
action is performed. All the rules on a page are evaluated in
a single frame, from top to bottom. There are over 500 tiles
that can be used to compose rules in the Kodu Language. In
Figure 1, we give a grammar sketch for a rule in Kodu, and
limit the alphabet to 10 tiles. Each capitalized word (e.g.,
Rule, Condition) represents a non-terminal symbol and ap-
pears on the LHS of a production rule. Each lowercased
word (e.g., see, apple) represents a terminal symbol that
maps to one tile in the Kodu language.

3.2 Programming in Kodu

Programming in Kodu involves the placement of program-
ming tiles in a meaningful order to form the condition and
action on each rule. We show an example of the program-
ming user interface in Figure 2, where the program shown
was generated using the grammar shown in Figure 1. In the
example, there are two rules, one per line. The condition
of each rule is on the left, and the action on the right, as is
defined by the grammar rule, Rule — Condition Action.

For the first rule, the condition is, when see red apple, and
the action is, move toward. In the condition, see is the sensor
and red and apple are filters. The action defines the behavior
of this particular character when it sees a red apple, that is,
it moves toward. Here, move is the actuator, toward is the
modifier, and it is the default selector, since the condition
identifies a target object (i.e., the red apple). The second
rule has a similar condition with a different sensor, bump.
The action, eat, indicates that the character should eat any
red apple it bumps. The programming in Figure 2 applies to
the first page in this character’s programming, as indicated
by the number “1” at the top of the screen.

4. COMPUTER SCIENCE CONCEPTS
IN KODU

While the Kodu language is unlike most mainstream pro-
gramming languages, it allows its users to explore many
fundamental concepts in computer science. In this section,
we explore each of these concepts and how they can be ex-
pressed and used in the Kodu language (RQ1).

4.1 Variables and Scope

Simply, a variable is a symbol that holds a value. In Kodu
as in other languages, variables can have a local or global
scope. Here, we describe how global, local, and random
variables are expressed and used in Kodu.

Global Scope

Global variables in Kodu can be read from or written to
by any character. In Kodu, the scores, which hold integer

values, act as global variables. There are 37 global scores
that can be maintained by any program, one for each letter
of the English alphabet and color supported by Kodu.

Local Scope

Characters have four local properties that are analogous
to local variables. These are color, glow, expression, and
health. Color, glow, and expression each hold an enumer-
ated value (e.g., orange, happy), and health holds an integer
value. A character can read and write all properties for itself
and some of the properties of other characters. For example,
kodu' can be programmed to change the health property of
a cycle, but it cannot check the health of the cycle.

Random

A common way to introduce nondeterminism in program-
ming is through random variables, and Kodu has adopted
this practice. There are three random variable tiles that can
be used, one for time, one for score, and one for color. These
can be used as filters or modifiers to trigger behavior or set
a property or value at random.

4.2 Boolean Logic

The Kodu language allows users to express logical nega-
tion, conjunction, and disjunction in their programs, hence
exposing the user to these fundamental concepts.

Negation

The concept of negation is perhaps the most obvious among
the boolean logic constructs that can be explored through
the Kodu language. A specific tile, called the not tile, can be
applied to any condition in any rule. Consider the following
block of code (where A is a condition and B is an action):

(1) When not A do B

Here, when condition A is met, then nothing happens. How-
ever, if A is not met, then B executes.

A byproduct of the logical negation is the ability to ex-
press if — then — else statements. All rules in Kodu represent
conditional statements of the form if — then, but the not title
can introduce an else clause. Consider the following code:

(1) When A do B
(2) When not A do C

Here, when condition A is met, then action B executes. How-
ever, if A is not met, then C executes. In other words, we
have if A, then B, else C.

Conjunction

The ability to indent rules in the Kodu language creates a
logical conjunction in the program structure. Indented rules
will be evaluated when the condition on the parent rule is
met. Consider the following block of code:

(1) When A do B
(2) When C do D
(3) When always do E

If condition A is not met, then lines (2) and (3) will never be
evaluated. However, when condition A, then the conditions

'The kodu is a character that can be programmed, like the
cycle or the fish. It is typically the main character in a Kodu
game.

101

Page 1	Page 2
(1) When A do Switch 2	(1) When C do Switch 3
(2) When B do Switch 4	

Page 3	Page 4
(1) When D do Switch 2	(1) When F do Switch 3
(2) When E do Switch 4	

Figure 3: Example Object Control Flow

on line (2) and (3) are also checked (the always condition
in line (3) evaluates to true, always). This logical structure
forms an implication, where A = B, AANC = D, and
AN1= E. And so, we have a logical conjunction of actions
BAE when A = true and a logical conjunction of conditions
A N C to perform action D.

Disjunction

Kodu users can achieve logical disjunction by using two or
more rules with different conditions and the same action.
Consider the following block of code:

(1) When A do B
(2) When C do B

Here, we have two implications, A = B and C = B, which
can be simplified into A V C = B, representing a logical
disjunction in the program. One side effect of the disjunction
here is that B will get executed twice in the case that A and
C both evaluate to true.

4.3 Objects

In object-oriented programming, objects are data struc-
tures that encapsulate fields and methods in a single pack-
age. Each character in Kodu is an object, and each has
locally scoped variables, discussed previously. When pro-
gramming, a user can create new characters, delete charac-
ters, and clone characters, and characters can also be cre-
ated and removed during runtime. In most cases, a clone
performs a deep copy including programming and proper-
ties. However, if the character has been declared to be cre-
atable, then a clone will create a new object that references
the original and mimics its behavior, forming a rudimentary
class system. When a creatable character is modified, the
changes to its programming impact all clones.

4.4 Control Flow

Kodu users can introduce non-linear program flow through
the use of multiple pages of code and transitions between the
pages. As each page represents a state for a character, pages
map to nodes in a control flow graph, where each graph’s
start node is labeled s. The edges between nodes are labeled
with the condition on which page switch is made, with the
exception of the outgoing edge from the start state, which is
always taken. Figure 3 shows a program fragment with four
pages, which represents the behavior of a character from a
program gathered for our study (selection criteria described
in Section 6), and the generated control flow graph.

While several analyses are possible on the control flow
graph, we can determine certain characteristics of the char-
acter behavior that are related to computer science concepts
by detecting cycles and calculating the maximum fan-in and
fan-out. A control flow graph that contains a cycle, like
2 — 3 — 2 in our example, represents the introduction of
iteration, as the character can cycle through those states.
Nodes that have a high fan-out value (e.g., nodes 1 and 3
have fan-out = 2) are indicative of conditional control flow,
where the same state can transition to one of many different
states. A high fan-in value (e.g., nodes 2 and 4 have fan-in
= 2) is an indication of lightweight code reuse, since that
code can be called from many different locations.

5. INSTRUMENTATION

We have shown that many computer science concepts can
be expressed through the Kodu language, but unless users
are taking advantage of their ability to configure, modify,
and program their world, these benefits of Kodu are lost.
To address RQ2, we have instrumented Kodu so it logs the
amount of time spent in each area of the tool. The instru-
mentation was deployed with Kodu v1.0.65 released on July
1, 2010 for the PC Kodu users only. We collected instru-
mentation data for 38 days from July 1, 2010 - August 8,
2010. This resulted in data for 4,229 sessions originating
from 1,580 installations, for an average of 2.7 sessions per
install. (We use installations as a proxy for users. Since
Kodu does not require a login ID, we do not know the num-
ber of actual users covered by this data.)

We instrumented Kodu using timers that measure the
amount of time spent in each of several areas of the user
interface. Table 1 shows the average (avg), minimum (min),
25th percentile (q1), median (med), 75th percentile (¢3), and
maximum (maz) percentages of time spent per session in
each of five areas of the Kodu Game Lab: Menu includes
time spent on the main menu, home menu, save menu, and
searching for games to load; Prog. includes time spent in the
programming UI (shown in Figure 2); Add, Scan refers to
time spent adding characters and exploring the world with-
out changes; Edit refers to time spent editing the terrain,
editing character properties (e.g., creatables, speed), and
editing world properties (e.g., lighting, score visibility); Play
refers to time spent actually running the game. The final
column, Time, shows the time spent per session in minutes.
The average active time per session was over 25 minutes,
with a median of over 14 minutes.

Table 1 shows that an average of 14.6% of each session’s
time was spent in the programming UI, and 15.6% of each
session’s time was spent editing the characters and world.
In total, this means that an average of 30.2%, or nearly one-
third, of the time spent per session involved programming or
tweaking parameters in the world (compared to an average
of 22.9% of the time spent playing the game). Further, while
we did not segment time spent adding characters versus ex-
ploring the world, it can be argued that part of the Add,
Scan time involves program design, as this is when charac-
ters are added to the world. Additionally, among the 4,229
sessions, 2,578 (60.9%) entered the programming UT (the in-
terface shown in Figure 2), and 3,308 (78.2%) used one of the
edit tools for the world, characters, or terrain. Among those
sessions that entered the programming Ul, users viewed or
edited their code an average of 12.7 times per session and
played their game an average of 13.7 times, illustrating that

102

Table 1: Percent of Time Spent in Kodu (Time col-
umn shown in minutes)

Menu | Prog. ?Cda(il’ Edit Play | Time
avg 16.1% | 14.6% | 30.9% | 15.6% | 22.9% | 25.36
min 0.1% 0.0% 0.2% 0.0% 0.1% 0.16
ql 4.7% 0.0% | 189% | 0.1% | 10.0% 5.31
med | 10.7% | 9.2% | 28.4% | 9.6% | 18.7% | 14.30
q3 22.1% | 25.8% | 40.5% | 24.5% | 30.9% | 36.32
max | 98.0% | 94.8% | 97.1% | 92.1% | 96.2% | 335.32

users likely swap between programming and playing as they
tweak and test their programs. This rapid switching be-
tween developing and testing has been shown to be a suc-
cessful problem solving technique for students learning how
to program [8].

6. ANALYSIS OF KODU PROGRAMS

Section 4 describes many basic yet important computer
science concepts that can be expressed using the Kodu lan-
guage, and Section 5 shows that end users are regularly us-
ing the programming interface while interacting with Kodu.
Here, we explore how often each computer science concept
is employed in Kodu programs created in the wild (RQS3).

To achieve this goal, we obtained 346 Kodu programs cre-
ated by Xbox users and shared through the Xbox Live com-
munity between June 20, 2009 and July 30, 2010. In the
Xbox community, users can upload their programs to any
of three locations; we collected all the programs from one of
those repositories (often users upload to all three). We do
not have any demographic information about these users.

6.1 Variables

Table 2 shows the frequency within the population of pro-
grams of each type of variable defined in Section 4.1, Global
Variables, Local Variables, and Random Variables. The CS
Concept column indicates the computer science concept be-
ing evaluated, # Games indicates how often the concept
appears in the population, % Games shows the percentage
of the population, and % Rules indicates the average per-
centage of rules per program that exhibit the concept.

Over half of the programs use global variables in some ca-
pacity, and the average number of global variables used per
program is 4.1. Within those programs, an average of 23.9%
of the total rules interact with a global variable in some ca-
pacity. Approximately two-thirds (67%) of these programs
perform more reads than writes on the global variables; 29%
perform more writes than reads, and 4% perform equal num-
bers of writes and reads per variable. The average number
of reads per variable is 4.0, and the average number of writes
is 2.3. This indicates that in the general case, the scores are
used to check and maintain program state, as they are read
nearly twice as often as they are written, on average.

We found that 81.2% of the games have characters that
read the local variables of other characters, whereas only
64.5% perform a write on the local variables. Additionally,
among the games that read local variables, 31.8% of the rules
perform a read; among the games that write to the local vari-
ables, only 17.9% are involved with a write. These numbers
indicate that local variables are used to trigger other actions
more often than they are modified.

Random variables are present in over one-third of the
games, and impact nearly 10% of the rules in those games.

Table 2: Variables and Boolean Logic in Population

% %
CS Concept Gfmes Games | Rules
Global Variables 196 56.6% | 23.9%
Local Variables — Read 281 81.2% 31.8%
Local Variables — Write 223 64.5% | 17.9%
Random Variables 126 36.3% 9.7%
Logical Not 61 17.6% 4.4%
If-Then-Else Statements 29 8.4% 8.1%
Logical And Condition” 17 20.9% | 18.5%
Logical And Action® 13 16.0% | 15.6%
Logical Or 208 59.9% | 16.6%

In general, users put random variables in the condition (62%)
rather than the action (38%). A random variable in the con-
dition indicates that the user desires a controlled action to
occur at some non-deterministic condition.

6.2 Boolean Logic

The last five rows of Table 2 show the frequency of games
and rules within the population that utilize the boolean logic
constructs described in Section 4.2. The logical not is only
present in 17.6% of the games we studied, and among those
games, 47.5% of them use the not tile to form an if - then -
else statement. The creation of these predicates maps very
naturally to the use of conditionals in traditional program-
ming languages.

The presence of the logical and is dependent on the use of
indentation in the programming rules’. Among the games
for which this feature was available, only 22.2% used this
feature, but among those games, 28.7% of the rules were
indented. And so, even a smaller percentage of the games
utilize logical and in the condition and in the action. Among
the indented rules, we found that 63.6% used the logical
and in the condition, and 36.4% used the logical and in the
action. The and in the condition implies that a complex
state is needed in order to trigger the action, while the and
in the action binds multiple actions to the same condition.

Duplicating the condition among multiple rules on a page
with disparate actions is another way to bind multiple ac-
tions to the same condition. Among the population, this
was observed in 286 (82.4%) of the games, and within those
games, 35.0% of the rules had a condition identical to an-
other condition on its page. If we control for the when always
condition, then duplicate conditions exist in 207 (59.7%) of
the games, and within those games, 17.8% of the rules had a
condition identical to another on the page. Among the pop-
ulation for which the indentation was available, 76.5% of
the games contain duplicated conditions, and this number
only drops to 65.4% if we control for when always. These in-
stances can be seen as missed opportunities for usage of the
indention feature, which is a more explicit representation of
the logical and. Further, indentation can remove some code
duplication that is exhibited through duplicate conditions
and promote reuse.

The logical or is the most common among the boolean
logic structure, and represents the same action tied to dis-
parate conditions. The high frequency may be the result
of multiple similar conditions in which the user does not

2The indentation feature needed for the logical and was in-
troduced on March 19, 2010. These values consider only the
81 (23.4%) games published after that date.

103

Table 3: Object and Control Flow in Population

% %
CS Concept Gfmes Games | Objects
| Programmed Characters | 338 [97.7% | 747% |
2+ States 202 58.4% 40.0%
Cycles 166 47.9% 29.3%
Fan-in > 1 174 50.3% 47.5%
Fan-out > 1 123 35.5% 52.0%

know which actually triggers the event, but further study is
needed to validate that conjecture.

6.3 Objects

Within the population of programs, 342 (98.8%) of the
games contain characters (e.g., kodus, cycles, rocks), with
an average of 28.3 characters per game. While some charac-
ters have no behavior, nearly three-fourths of the characters
per game contain some programming, as shown in the Pro-
grammed Characters row of Table 3. The CS Concept, #
Games, and % Games columns are similar to Table 2, and
% Objects indicates the average percentage of characters per
game that utilize the concept. Overall, 97.7% of the games
contain programmed characters. Games also contain an av-
erage of 5.7 distinct character types (median is 5), indicating
that if the author included one character of a particular type
(e.g., tree, kodu, rock), they included many of that type.

On average, most of the characters (60.0%) included in a
world have programming of some kind. For any world, an
average of 25.2% of the characters contain no programming.
Conversely, the remaining 74.8% of of the characters have
programmed behavior, and the average number of rules per
character is 5.14, which indicates that users are not only
taking time to give characters behavior, but that the pro-
grams likely contain complex logic. In terms of creatables,
175 (50.6%) of the games contain programming to generate
a creatable character during runtime.

6.4 Control Flow

In the control flow analysis, we analyze the structure of
the control flow graphs that represent characters behavior,
generated as described in Section 4.4. Table 3 shows the fre-
quency of games that contain at least one character with a
certain property, where 2+ States indicates that an charac-
ter uses multiple pages, Cycles indicates that an character’s
control flow graph contains a cycle, and Fan-in > 1 and
Fan-out > 1 indicate that at least one node in at least one
character’s control flow graph has a fan-in or fan-out value
greater than one, respectively.

Most programs (58.4%) have used the page system and
have at least one character with two or more states. Ad-
ditionally, 166 of the programs (47.9%) have an character
with a cycle, and in fact 29.3% of the characters in those
programs contain cycles. Among the characters with two or
more states, 45.8% contain a cycle. About half of the pro-
grams have a node with a fan-in greater than one, with the
average max fan-in among all programs being 2.8. Addition-
ally, over one-third of the programs have a fan-out greater
than one, with the average max fan-out among all programs
being 1.7. The higher average max fan-in value may in-
dicate that the characters typically have a “hub” node, or

page, that contains default behavior, but further analysis is
needed to validate that conjecture.

7. THREATS TO VALIDITY

There are two threats to validity that warrant discussion
in this paper. The first is an internal threat concerning the
connection between expressing computer science concepts
and learning those same concepts, and the second is an ex-
ternal threat concerning artifact selection.

First, we have mapped the Kodu language onto computer
science concepts and shown how these concepts can be ex-
pressed through Kodu. However, we cannot guarantee that
just because a concept is expressed that it is necessarily
learned. An empirical user study with pre- and post-tests
would be necessary to evaluate the actual user learning.

The second threat is that the programs we analyzed come
from those self-selected by the users in the Xbox commu-
nity as being good enough to share, so they may represent
an upper-bound in complexity. Additionally, since we can-
not determine the provenance of any single Kodu program,
we do not know how much of the program complexity is
the product of the author versus how much resulted from
an existing program that was modified by the author. How-
ever, since these programs come from the Xbox community
and were created in an unsupervised environment, and since
they were self-selected for sharing, we conjecture that the
programming is mostly original.

8. CONCLUSIONS

In this work, we have shown that the Kodu language can
be used to represent computer science concepts by pairing
language constructs with fundamental concepts in computer
science, but further analysis is needed to verify that users
are actually grasping these concepts through Kodu. We
found that users spend more time programming and con-
figuring their programs than they do playing them, which
indicates that the Kodu has reached its goal of making pro-
gramming accessible to all users. Additionally, through an
evaluation of 346 Kodu programs created by the user com-
munity, we found the programs to be large, complex, and
exhibit many fundamental computer science concepts, which
indicates that Kodu may be useful not just as a beginning
programming language, but as a launching point from which
users can smoothly transition to more mainstream program-
ming languages.

Acknowledgments

We would like to give special thanks to the Kodu team and
the FUSE Labs, especially Stephen Coy, Will Portnoy, Matt
MacLaurin, Eric Anderson, Brad Gibson, and Rachel Schiff,
for their valuable feedback and support of this work.

9. REFERENCES

[1] The impact of web 2.0 technologies in the classroom.
State of Victoria: Department of Education and Early
Childhood Development, December 2009.

[2] Explorer kodu club. http://koduclub.org/default.aspx,
Retrieved August 1, 2010.

[3] Greenfoot. http://www.greenfoot.org/, Retrieved
September 1, 2010.

104

[4] Kodu game lab.
http://research.microsoft.com/en-us/projects/kodu/,
Retrieved August 1, 2010.

Kodudes — the write buzz.
http://sites.google.com/site/koduxperts/, Retrieved
August 1, 2010.

S. Cooper, W. Dann, and R. Pausch. Alice: a 3-d tool
for introductory programming concepts. In
Northeastern conference on The journal of computing
in small colleges, pages 107-116, 2000.

A. Dahotre, Y. Zhang, and C. Scaffidi. A qualitative
study of animation programming in the wild. In
ESEM °08: Symposium on Empirical software
engineering and measurement, 2010. to appear.

B. Hanks and M. Brandt. Successful and unsuccessful
problem solving approaches of novice programmers. In
Symposium on Computer science education, pages
24-28, New York, NY, USA, 2009. ACM.

C. Kelleher. Motivating programming: using
storytelling to make computer programming attractive
to middle school girls. PhD thesis, Pittsburgh, PA,
USA, 2006. Adviser-Pausch, Randy.

C. Kelleher and R. Pausch. Lowering the barriers to
programming: A taxonomy of programming
environments and languages for novice programmers.
ACM Comput. Surv., 37(2):83-137, 2005.

C. Kelleher, R. Pausch, and S. Kiesler. Storytelling
alice motivates middle school girls to learn computer
programming. In Conference on Human factors in
computing systems, pages 1455-1464, 2007.

C. M. Lewis. How programming environment shapes
perception, learning and goals: logo vs. scratch. In
Symposium on Computer science education, pages
346-350, New York, NY, USA, 2010. ACM.

J. Maloney, L. Burd, Y. Kafai, N. Rusk, B. Silverman,
and M. Resnick. Scratch: A sneak preview. In C5 ’04:
Conference on Creating, Connecting and Collaborating
through Computing, pages 104-109, 2004.

O. Meerbaum-Salant, M. Armoni, and M. M. Ben-Ari.
Learning computer science concepts with scratch. In
ICER ’10:Workshop on Computing education research,
pages 69-76, 2010.

S. Papert. Mindstorms: children, computers, and
powerful ideas. Basic Books, Inc., New York, NY,
USA, 1980.

D. Parsons and P. Haden. Programming osmosis:
Knowledge transfer from imperative to visual
programming environments. In Conference of the
National Advisory Committee on Computing
Qualifications. Citeseer, 2007.

M. Resnick. Turtles, termites, and traffic jams:
explorations in massively parallel microworlds. MIT
Press, Cambridge, MA, USA, 1994.

K. T. Stolee. Kodu language and grammar
specification. Microsoft Research whitepaper,
Retrieved September 1, 2010.

L. Werner, J. Denner, M. Bliesner, and P. Rex. Can
middle-schoolers use storytelling alice to make games?:
results of a pilot study. In Conference on Foundations
of Digital Games, pages 207-214, 2009.

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

