10 Years Later: Revisiting How Developers Search for Code

KATHRYN T. STOLEE, North Carolina State University, USA
TOBIAS WELP, Google, Germany

CAITLIN SADOWSKI, Unaffiliated, USA

SEBASTIAN ELBAUM, University of Virginia, USA

Code search is an integral part of a developer’s workflow. In 2015, researchers published a paper reflecting
on the code search practices at Google of 27 developers who used the internal Code Search tool. That paper
had first-hand accounts for why those developers were using code search and highlighted how often and in
what situations developers were searching for code. In the past decade, much has changed in the landscape
of developer support. New languages have emerged, auto-complete in the IDE has gotten better, artificial
intelligence (AI) for code generation has gained traction, Q&A forums have increased in popularity, and code
repositories are larger than ever. It is worth considering whether those observations from almost a decade ago
have stood the test of time.

In this work, inspired by the prior survey about the Code Search tool, we run a series of three surveys
with 1,945 total responses and report overall Code Search usage statistics for over 100,000 users. Unlike the
prior work, in our surveys, we include explicit success criteria to understand when code search is meeting
users’ needs, and when it is not. We find that Code Search users continue to use the tool frequently and the
frequency has not changed despite the introduction of Al-enhanced development support. Users continue to
turn to Code Search to find examples, but the frequency of example-seeking behavior has decreased. More
often than before, users access the tool to learn about and explore code. This has implications for future code
search support in software development.

CCS Concepts: « Software and its engineering — Software development methods; Development frame-
works and environments; Software libraries and repositories.

Additional Key Words and Phrases: Code search, developer surveys, development practices in industry

ACM Reference Format:

Kathryn T. Stolee, Tobias Welp, Caitlin Sadowski, and Sebastian Elbaum. 2025. 10 Years Later: Revisiting
How Developers Search for Code. Proc. ACM Softw. Eng. 2, FSE, Article FSE055 (July 2025), 21 pages. https:
//dOi.Org/lo.l145/3715774

1 Introduction

Research has shown that searching for code is integral for developers in their workflow, and the
number of publications in this area has been increasing [10]. One study at Google, conducted by
a subset of the authors of this paper, found that developers search for code using the internal
Code Search tool, which indexes all the company’s source code, an average of 12 times a day
(median of 6) [33]. Even outside Google where developers do not have bespoke search tools such
as this at their disposal, they still turn to performing code searches in general-purpose search
engines [21, 32, 35, 39] on a daily or weekly basis.

Authors’ Contact Information: Kathryn T. Stolee, North Carolina State University, Raleigh, USA, ktstolee@ncsu.edu;
Tobias Welp, Google, Munich, Germany, twelp@google.com; Caitlin Sadowski, Unaffiliated, Mountain View, CA, USA,
supertriceratops@gmail.com; Sebastian Elbaum, University of Virginia, Charlottesville, USA, selbaum@virginia.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2994-970X/2025/7-ARTFSE055

https://doi.org/10.1145/3715774

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE055. Publication date: July 2025.

HTTPS://ORCID.ORG/0000-0003-0584-7094
HTTPS://ORCID.ORG/0009-0006-6726-837X
HTTPS://ORCID.ORG/0000-0002-7742-2784
HTTPS://ORCID.ORG/0000-0001-9592-1352
https://doi.org/10.1145/3715774
https://doi.org/10.1145/3715774
https://orcid.org/0000-0003-0584-7094
https://orcid.org/0009-0006-6726-837X
https://orcid.org/0000-0002-7742-2784
https://orcid.org/0000-0001-9592-1352
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3715774

FSE055:2 Kathryn T. Stolee, Tobias Welp, Caitlin Sadowski, and Sebastian Elbaum

Over the past decade, however, the nature of development has shifted. Developers have access to
extensive Q&A forums (e.g., StackOverflow) and to programs that help newcomers have a smoother
experience contributing [11]; these may reduce the need for code search support. Developers have
access to massive quantities of source code that can be reused and remixed without having to
write everything from scratch [4]; this may increase the need for code search support. Some tasks
that were previously solved with web search can now be solved with Al, such as finding examples
to reuse [37] or understanding what code does [28], which may reduce the need for code search
support. Yet, other code search tasks still require previous code search tools, such as finding a
particular location in source code. These changes mentioned merely scratch the surface, and it
leads us to ask, is code search as critical or relevant for developers today as it was ten years
ago?

In this work, we aim to assess the degree to which code search is being used today, and additionally,
if and how its usage has changed with the introduction of new languages, IDEs, and AI tools to
better support development tasks. We focus on users of the Code Search tool at Google, referred to
as developers for simplicity, as the primary user group of the tool is those who write and review
source code at Google.

The contributions of this work are:

o A logs analysis inspired by prior work that looks at Code Search usage frequency. While
prior work captured 15 days of data for 27 users, we capture 30 months of usage for over
100,000 users (Section 2.2).

e Surveys of developers with 1,945 responses about their Code Search behavior (RQ1), based
on prior work [33].

o A deep exploration of the role of Code Search in finding code examples (RQ2).

e Clarifications on the role Code Search plays during code review (RQ3).

e Analysis of developer satisfaction during code review based on an explicit signal of Code
Search success (RQ4).

Through the this research, we gained following insights into how the code search process is
conducted today at Google:

e Developers still use Code Search to regularly support their development activities, with an
average of 7 queries per user per weekday (averaged over 3 months). Code Search query
frequency per user per workday has remained consistent over a 30-month period, despite
changes in tooling, languages, and development support from Al (Section 2.2).

e The motivations behind performing Code Search queries (e.g., to find examples, to learn why
something is failing, to read code) have remained largely consistent compared to 10 years
ago. (RQ1)

e Of those seeking code examples, most wanted the most common way of using the API in

production code. Free-text responses suggested that where the example was located and who

wrote it are considerations in deciding whether the example is acceptable. (RQ2)

During the code review process, we found that issuing Code Search queries is common.

While authoring code changes is more associated with example-seeking behavior or trying

to understand why something is failing, reviewing code changes is more associated with

exploration activities in Code Search. (RQ3)

e Code Search users are very satisfied with the tool, though those looking for examples are
somewhat less satisfied. Code Search users looking for a code location were most likely to be
completely satisfied. (RQ4)

These results have implications for where and how to better support developers through Code
Search, and also through Al The rest of the paper is organized as follows: Section 2 presents

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE055. Publication date: July 2025.

10 Years Later: Revisiting How Developers Search for Code FSE055:3

background information on development at Google, including a logs analysis on the prevalence of
Code Search among developers. The study RQs and survey design considerations are in Section 3,
followed by results and threats to validity in Section 4. The discussion, including future work and
lessons learned, is in Section 5. Related work comparing prior code search studies to this one is in
Section 6, followed by the conclusion in Section 7.

2 Background on Google Code Search

This section focuses on development practices at Google and includes a logs analysis about Code
Search frequency.

2.1 Development and Tooling

Code Search tooling at Google enables developers to effectively search and browse through Google’s
source code. The standalone tool, which was studied previously [33], is enabled by an index that
organizes the vast code base in a way that allows for efficient information retrieval. Users interact
with the tool through a search bar for issuing queries. Search results contain snapshots of relevant
code and links that point to the specific code locations. A search bar that accesses the same Code
Search backend is also embedded in the IDE.

Developers specify their queries using plain text search terms and/or regular expressions. Ad-
ditional search flags are available to limit the search scope to specific directories, file names, or
languages. As with web search, the user interface provides suggestions while the developers for-
mulate their queries. Customizable layers in the Ul show additional information depending on user
needs, such as runtime information or when the code was last modified [38].

Code review at Google is also performed using bespoke internal tools. The process involves the
submission and subsequent review of a change list (CL), which is analogous to a pull request (PR).
For example, developers create CLs when writing new features or fixing bugs. Code reviewers
work on, or evaluate, CLs when reviewing proposed code changes prior to merging it into a code
base or requesting changes. In this paper, as we were focused on those at Google who write code,
we adopt the CL terminology.

2.2 Code Search Tool Usage

We analyzed the Code Search logs at Google for 30 months, from January 2022 to July 2024, following
a procedure similar to the one described in the previous Code Search study performed at Google
[33]. In the last quarter of 2022, Al started gaining momentum in code generation [13, 24]. Tools
such as Copilot [12] and ChatGPT [29] were available and undergoing consistent improvements. In
the code search research community, discussions were emerging about the impact of such tools on
the future of code search tooling and adoption [6]. As Al was becoming more and more a part of
developer workflows, we wondered if code search as it was, is still relevant.

To understand the impact of Al tools on code search behavior, we turned to the Code Search
tool logs at Google. The tool is used by over 100,000 developers on a quarterly basis. There were
77k monthly users in January 2022 and this slowly ticked up to 96k monthly users in August 2022
and remained between 89k and 96k monthly users for the next 2 years, through August 2024.

We wanted to capture all the search query events for users, similar to the prior work, which
“collected search events and interactions with the code search tool." [33] Presently, the most common
search interfaces are the standalone tool, which accounts for 65% of the human-written search
queries, and the embedded IDE search bar, which accounts for 35% of the human-written search
queries. We considered queries from both sources, as they both interact with the same backend.

Figure 1 reports boxplots of quarterly distributions for the number of queries per user per day,
and the table shows the annualized distributions of per-user per-day queries. For example, the

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE055. Publication date: July 2025.

FSE055:4 Kathryn T. Stolee, Tobias Welp, Caitlin Sadowski, and Sebastian Elbaum

Queries per user per weekday

St

o 4 —— —— —— —— —— —— —— ——

T T T T T T T T T T
2201 22Q2 22Q3 2204 23Q1 23Q2 23Q3 2304 2401 24Q2

Year and Quarter

2022 2023 2024
Min 0.0154 0.0154 0.0154
Quartile 1 0.3231 0.3231 0.3231
Median 3.0462 3.0923 3.0462
Mean 7.0048 7.1747 7.1458
Quartile 3 9.4462 9.5538 9.4615
Max 861.1538 | 1258.3231 | 619.9538

Fig. 1. Queries per user per workday is on the y-axis, and time periods are on the x-axis. In the boxplot, the
number of queries per user per day are averaged over each 3-month quarter, from Quarter 12022 (22Q1) until
Quarter 2 2024 (24Q2) (That is, January 2022 until June 2024). In the table, the min, quartile-1, median, mean,
quartile-3, and max queries per user per day are computed for each calendar year.

mean queries per user per day per quarter in 2022 was 7.00, compared to 7.17 in 2023. Over the
analyzed time period, the average number of queries per user per workday in a quarter! is 7.1053,
and relatively stable, as shown in the plots. This is lower than the average of 12 queries (median
of 6) per user per day that was reported in prior work [33], however, details and trends matter.

Looking closer, in the prior work, the study was conducted on 27 developers who volunteered
to be studied. These developers were mostly known to the researchers, and it is possible that
they volunteered because they knew they would be doing code search intensive activities over
the next two weeks. This new data, by contrast, includes all developers and non-developers who
issued even one query to Code Search in a quarter, which would make their per-day usage over the
quarter rather low. The timeframe for the previous study was approximately 2 weeks, compared to
approximately 13 weeks in a quarter for our logs data. As not all developers are working on code
every day, and the Code Search logs also captures non-developers who used the Code Search, say,
once that quarter, we should expect our numbers here to be lower than reported by the original
researchers. It is also possible the developers in the prior work were simply power users of Code
Search. The 12 queries per user per day reported previously is aligned with the 81st percentile in
the current dataset.

10ur query is imperfect in that it ignores holidays and assumes everyone observes the same weekend days of Saturday and
Sunday.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE055. Publication date: July 2025.

10 Years Later: Revisiting How Developers Search for Code FSE055:5

During 2022, generative Al started gaining traction as a development assistant. And yet, based on
the code search query distributions, the trend for usage of the tool per user per day has remained flat.
This underscores the importance of Code Search independent of Al to support software development.
Even with Al support in the development pipeline, Code Search remains critical infrastructure.

Summary: The Code Search tool is used frequently across a large and diverse set of developers
at Google, with an average of 7 queries per user per day. The number of queries to this tool,
which does not have Al support, has remained flat over the past 30 months of Al innovation in
development workflows, highlighting its continued importance for developers.

3 Study

To understand code search behavior, we posed four research questions and designed three surveys
to address the questions. At the time this work was conducted, Large Language Models (LLMs)
were not part of the developer workflow. In fact, the Code Search tool had no Al support. And so,
the RQs and associated survey questions do not include questions about Al usage. The surveys
were deployed in the standalone Code Search tool, as described in Section 3.3.

3.1 Research Questions

Toward the goal of understanding Code Search usage, RQ1 is a replication of prior work [33];
we compare the results against observations from that prior work. RQ2, RQ3, and RQ4 are new
research questions studied in this work to address questions that emerged in the prior study.

RQ1 : Why do developers search for code?

Prior work [33] posed the question, "Why do programmers search?" The authors used an open-ended
question about search intent and used a card sorting process to qualitatively identify common
topics. Here, we take those topics that emerged and turn them into options in a survey question.
This way, we can collect the search intent at scale, covering more developers and development
contexts, with the goal of testing the generalizability of the original findings to more developers
and the robustness of the findings after ten years.

RQ2 : What are developers looking for when they want code examples?

In the prior work, it was found that developers frequently sought examples of how to use a specific
AP], as this category of results to their RQ1 reflected 33.5% of the queries [33]. As code examples
can serve many purposes (e.g., to learn from, to reuse), in this work, we dive deeper into the needs
of developers who are seeking examples.

RQ3 : What role does Code Search play during code review?

The role of Code Search during code review is largely missing from the code review literature (e.g.,
code review is never mentioned in a recent survey on code review techniques and studies [10]),
and yet, according to the prior work [33], over half the developers were working on a code change
task at the time of their Code Search query. In this work, we dive further into the role of Code
Search during code change authoring and code change reviewing.

RQ4 : In what contexts is Code Search falling short of developer needs?

One challenging part about research in code search in general is knowing when a query or search
session is successful. As the prior work [33] observed, the fact that a result is clicked is not
necessarily indicative of success, and the fact that a result is not clicked is not necessarily indicative
of a lack of success. This limits our ability to use logs alone when trying to discern search success.
Therefore, in this work, we design the surveys to explicitly ask whether their search journey

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE055. Publication date: July 2025.

FSE055:6 Kathryn T. Stolee, Tobias Welp, Caitlin Sadowski, and Sebastian Elbaum

(1) What is the main reason you are using Code Search right now?
(a) I am exploring or reading code for understanding (e.g., understand what it does)
(b) I am looking for a specific code location (e.g., where a class is instantiated)
(c) Ineed example code for how to do something (e.g., how to use an API, discover an API)
(d) I want to know who or when a particular file was modified
(e) I want to know why something is failing, or the side effects of a proposed change
(f) [Other]
(2) What do you want to do with the code once you’ve found it?
(a) Continue exploring / learning about the code
(b) Copy/paste code into my IDE, or work on a CL as an author
) Fix or diagnose bugs or production issues
) Work on a CL as a reviewer
(e) Tell a teammate about what I've found
) Work on a design document or other form of documentation
(®) [Other]
id you get what you wanted from Code Search today?
) Yes, completely
) Yes, partially
)
)

A
®
o)
=)

I'm still working on it
No

Fig. 2. Code search Intent survey questions for RQ1 & RQ4. Question 3 was only asked to a subset of the
respondents after results were found to be overwhelmingly consistent.

is successful. Then, we correlate success with different code search intentions and activities to
understand when search is supported well, and when it is not.

3.2 Survey Design

Here, we explain the design of each survey and its questions.

3.2.1 RQ1 Survey: Intent. The Intent survey is shown in Figure 2. To understand why developers
are searching for code, we asked the question, "What is the main reason you are using Code Search
right now?" The responses for the first question come directly from the Categories in the qualitative
analysis in prior work [33]. The responses for question 2 are also inspired by the prior work, where
participants could respond to a survey question, “What are you doing?" After conversations with
developers, we modified the responses about working on a CL (see Section 2.1) to separately include
working on a CL as an author (option b) or as a reviewer (option d). The third question aimed to
address a limitation of prior work in terms of understanding search success: we explicitly asked
participants if their search activity was successful. This final question is used to address RQ4.

3.22 RQ2 Survey: Examples. Based on the high frequency of cases where developers use Code
Search to find examples, we dug deeper to uncover the types of examples they seek. The Examples
survey is shown in Figure 3. First, we confirm the developer is looking for an example, in question 1.
To differentiate between exploratory tool use and focused use, we ask whether they knew which API
they want in the example (options (b) and (c)). Question 2 aims to determine if the developer wants
a standalone example (which could be created from common patterns [3, 43]) or a production code
example (which come from a code repository [18, 26]). As recent research has demonstrated value
in creating standalone example templates from production code [3], we made this a multi-select

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE055. Publication date: July 2025.

10 Years Later: Revisiting How Developers Search for Code FSE055:7

(1) Are you looking for an example in Code Search? (1/) {single select answer}
(a) No, I'm not looking for an example [exit survey]
(b) Yes, and I know which API I want
(c) Yes, but I need to discover an API for a task
(d) Yes, I'll describe the example
(2) Ideally, what kind of example do you want? (2/4) {multi-select answer}
(a) Standalone examples for how to use an API (e.g., as if the example is from a tutorial or YAQS [14])
(b) Production code that calls the API (e.g., the example is production code)
(c) [Other]
(3) Ideally, what diversity of examples would be most helpful? (3/4) {multi-select answer}
(a) Multiple options for how to call an API or solve a problem (e.g., a diverse set of examples)
(b) The most common way to use an API or solve a problem (e.g., a single best practice example)
(c) [Other]
(4) Did you get what you wanted from Code Search today? (4/4) (same as #3 in Figure 2)

Fig. 3. Code search Examples survey Questions for RQ2. The final question is used for RQ4.

(1) Are you working on a CL?
(a) Yes, as an author
(b) Yes, as a reviewer
(c) No, I'm not working on a CL [exit survey]
(d) [Other]
(2) What is the main reason you are using Code Search right now?
(a) T am exploring or reading code for understanding (e.g., understand what it does)
(b) I am looking for a specific code location (e.g., where a class is instantiated)
(c) Ineed to discover how to do something, and would like an example to work from
(d) I need example code for how to use a specific API
(e) I want to know who or when a particular file was modified
(f) I want to know why something is failing, or the side effects of a proposed change
(&) [Other]
(3) Did you get what you wanted from Code Search today? (same as #3 in Figure 2)

Fig. 4. Code search Code Review survey to answer RQ3. The final question is used for RQ4.

question. Question 3 focuses on how many examples the participants would want to see: multiple
(option a), or the single most common way (option b). Finally, question 4 asks about the success of
their search experience to partially address RQ4.

3.2.3 RQ3 Survey: Code Review. A relatively common workflow for developers is using Code
Search during the code review process when writing new code or when reviewing code. Therefore,
we found, developers often switch between a code review tool and Code Search. To understand the
challenges with those workflows, we designed the Code Review survey in Figure 4. Question 1 asks
about whether the user is working on a CL; users who are performing a relevant task are routed to
question 2, which asks about why they are using Code Search. This is similar to Question 1 in the
Intent survey (Figure 2), except option ¢ about examples is split into two, option d and option e,

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE055. Publication date: July 2025.

FSE055:8 Kathryn T. Stolee, Tobias Welp, Caitlin Sadowski, and Sebastian Elbaum

S Did you get what you want from X
Code Search today? (3/3)

Yes, completely
Yes, partially
No

I'm still working on it

Fig. 5. Survey question from the Intent survey, as it appeared to users.

based on whether they are looking to discover an API or use or know which API they want to use.
The final question is about satisfaction with their Code Search activity to partially address RQ4.

3.24 RQ4 Survey: Success. All surveys were designed to include an explicit success question about
whether the developers were satisfied with their use of Code Search that day, like the one shown in
Figure 5. This question was included in the original design of the Intent surveys but was removed
later because the results were so consistently high, we did not want to burden the developers with
unnecessary questions (see Section 5.4 for more on this). As it was found that satisfaction with
example-seeking behavior was lower than satisfaction with other intents (see Section 4.4), we kept
this question for the Examples survey. Similarly, to see if satisfaction differed based on whether a
developer was authoring or reviewing a code change in a code review process, we kept the question
in the Code Review survey.

3.3 Survey Deployment

We used the Google’s HaTS [27] infrastructure to manage the study deployment. The infrastructure
can be configured to display a survey associated with a particular trigger. For any specific trigger,
HaTSs allows a small, configurable percentage of users receive the survey. The survey questions
appeared one at a time in a pop-up on the lower-right portion of the Code Search tool; an example is
shown in Figure 5. Here, the question is posed, “Did you get what you want from Code Search today?"
followed by numbers (3/3) indicating this is the third question of three in the survey. Participation
was voluntary; participants could exit the survey at any time using the X button.

We ran all surveys between July 2022 and January 2023. A survey trigger raised a flag every time
a Code Search user issued a query and then clicked a search result. Of all flags, HaTS randomly
sampled 1% for surveying, subject to some constraints: users can only be surveyed once per week,
and the participant has not opted out of the surveys. The survey did not deploy for queries issued
in the IDE. The same survey trigger was used for all three surveys. The survey was distributed
globally without restrictions based on location. Response rates for the surveys are reported in
Table 1, with a range of 2.8% to 7.9%. No demographic information was collected.

3.4 Target Population

We studied Google developers who use the Code Search tool, a majority of these are developers. For
the surveys, we sampled from the population of users of the standalone Code Search tool, which is
a subset of the population described in Section 2.2 (recall the standalone tool accounted for 65% of

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE055. Publication date: July 2025.

10 Years Later: Revisiting How Developers Search for Code FSE055:9

Table 1. Survey response rate and duration summaries. Responses includes partial and complete surveys.

Survey Duration | Responses | Response Rate
Intent 78 days 1286 7.2%
Examples 10 days 188 2.8%
Code Review 8 days 471 7.9%

Table 2. Survey Response Numbers. RQ1 had 1,286 responses. RQ2 had 188 responses, but 117 were irrelevant
due to non-example-seeking responses. RQ3 had 471 responses; but 127 were irrelevant. RQ4 is answered by
the complete responses only (note: only some of the Intent surveys included a question about search success).

Responses
RQ | Iteration Partial [Complete [Irrelevant | Total
RQ1 | Intent 364 922 0 1286
RQ2 | Examples 15 56 117 188
RQ3 | Code Review 52 292 127 471
Intent 0 235 0 235
RQ4 | Examples 0 56 0 56
Code Review 0 292 0 292
Totals 0 583 0 583

the human-written queries to the Code Search backend). The standalone Code Search tool supports
approximately 100,000 users on a quarterly basis, and that is our target population.

The number of responses per survey are shown in Table 1. Due to the infrastructure we used
for deployment and restrictions on surveying developers, we have reason to assume that these
responses are from approximately the same number of developers. For every 10,000 times the
trigger was hit, at most 100 developers got the survey. Of those, 2-8 developers submitted a response
(based on the response rates). For this reason, and because Google aims to not over-survey the
developers, it is likely our data set has only a minimal number of repeated responses from a single
developer. However, because of anonymity requirements, we are not able to verify this.

3.5 Data

We received 1,945 survey responses. The mapping of surveys to RQs, is shown in Table 2, along
with counts of the responses. We differentiate between complete responses (those that answer all
questions in the survey) and partial responses (those that answer at least the first survey question,
but not all survey questions). This is because RQ1 is answered by the first two questions in the
Intent surveys, whereas RQ4 requires the final question from each survey. Therefore, RQ1 can use
partial responses while RQ4 cannot. Irrelevant responses are those that select an option that leads to
an [exit survey], such as option (a) in question 1 for the Examples survey (Figure 3) or option (3) in
question 1 for the Code Review survey (Figure 4). In all, the Intent survey received 1,286 responses,
the Examples survey received 188 responses, and the Review survey received 471 responses.

4 Results
4.1 RAQ1: Code Search Intent

Virtually all developers at Google use Code Search habitually and issue dozens of search queries
per week. They search for code for a variety of reasons. The results we collected for RQ1 are from
the Intent survey and represent the Code Search behaviors of 1,286 developers. A comparison of
these results to prior work is in Section 5.1.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE055. Publication date: July 2025.

FSE055:10 Kathryn T. Stolee, Tobias Welp, Caitlin Sadowski, and Sebastian Elbaum

Table 3. RQ1: What is the main reason you are using Code Search right now? Responses from the current study
reflect one response each from 1,286 developers. Responses from the prior work reflect multiple responses
across 27 developers.

Current Study Prior [33]
Response Responses % || Responses %
What: I am exploring or reading code for understanding (e.g., 472 | 37% 67 | 26%
understand what it does)
Where: I am looking for a specific code location (e.g., where a 226 | 18% 41 | 16%
class is instantiated)
How: I need example code for how to do something (e.g., how 362 | 28% 87 | 34%
to use an API, discover an API)
Who/When: I want to know who or when a particular file was 49 4% 22 8%
modified
Why: I want to know why something is failing, or the side 120 9% 42 | 16%
effects of a proposed change
Other / None of the above 57 4% 0 0%
Total 1286 | 100% 259 | 100%

Table 4. RQ1: What do you want to do with the code once you’ve found it? Responses from the current study
reflect one response each from 981 developers. Responses from the prior work reflect multiple responses
across 27 developers.

Current Study Prior Study [33]
Response Responses % || Responses %
Continue exploring / learning about the code 233 | 24% 47 | 12%
Copy/paste code into my IDE, or work on a CL as an author 306 | 31% 159 | 39%
Fix or diagnose bugs or production issues 167 | 17% 90 | 22%
Tell a teammate about what I've found 96 | 10% - -
Work on a CL as a reviewer 50 5% 62 | 15%
Work on a design document or other form of documentation 87 9% 24 6%
Other 42 4% 25 6%
Total 981 | 100% 407 | 100%

4.1.1 Code Search Purpose. Table 3 shows answers to the question, “What is the main reason you
are using Code Search right now?", alongside the results from prior work, compared in Section 5.1.
Overall, in the current study, we observe over the largest percentage of developers, 37%, were
seeking to explore or read code for understanding. In this way, Code Search is being used to assist
with comprehension of the code. The second-largest category is looking for example code, with 28%
of the responses; we explore this intention more deeply in RQ2. For 18% of the searches, developers
were looking for a specific code location. Approximately 9% of developers were seeking an answer
to a why question about the code, such as why something is failing.

Looking at the [Other] responses (57, 4%), many developers wrote-in specifics about their tasks.
Some descriptions included reading README files, reviewing tests to assess current coverage, or look-
ing for appropriate imports. Overall, these examples tended to be rather specific to the developer’s
context and represent very focused tasks, versus exploratory tasks.

4.1.2 Code Search Next Steps. In response to the question, “What do you want to do with the code
once you’ve found it?" we received 981 responses. Results are shown in Table 4, alongside results
from the prior work (see Section 5.1).

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE055. Publication date: July 2025.

10 Years Later: Revisiting How Developers Search for Code FSE055:11

The top response category was copy/paste into my IDE, or work on a CL as an author, representing
31% of the responses. This suggests a tight integration in the workflow between Code Search as a
standalone tool and the IDE. This suggests that many developers keep search activity in a separate
window from development activity, instead of using the Code Search panel within the IDE.

The next-largest category is to continue exploring, suggesting that the survey was triggered in
the middle of their activities with the Code Search tool and the task at hand was not done yet.
Approximately 17% (167) of the responses were aiming to fix or diagnose bugs or production issues,
demonstrating the utility of Code Search across a wide range of software development activities.

RQ1 Summary: Developer use Code Search to regularly support their development activities.
Exploring or reading code is the most common purpose for search, and the most common
downstream intention is to copy/paste the code into their IDE or work on a CL as an author.

4.2 RQ2: Code Search and Examples

Prior work showed that approximately 1/3 of the time developers were using Code Search, they
were looking for examples [33]. The results of RQ1 show that the frequency of using code for
example-seeking behavior is still high at 28%. In the Examples survey, we first asked, "Are you
looking for an example in Code Search?" For those seeking examples, we received 56 complete
response and 15 partial responses, totaling 71. The results for the first three questions are shown in
Table 5.

Among those looking for examples, 40 (56%) knew which API they wanted, representing a
majority of those seeking examples. Approximately a third (23, 32%) were looking to discover
an API for a task whereas the remaining 8 had other explanations for the examples they were
seeking. These examples fell into two broad categories: some were looking for an example within
a specific location, for example, “Finding other use cases within my directory to understand proper
usage.” Others were looking for example files they wanted to copy, for example, “Looking for an
example of a [elided] file containing [elided] in [location]".

Table 5. RQ2: Results from all questions in the Examples survey.

Are you looking for an example?

Yes, and I know what API [want 40 | 56%
Yes, but I need to discover an API 23 32%
Yes, I'll describe the example 8| 11%
Total 71 | 100%

Ideally, what kind of example do you want?
Standalone examples for how to use an API | 25 | 44%

Production code that calls the API 39 | 68%
Other 5 9%
Total 57 | 100%

Ideally, what diversity of examples would be most helpful?

Multiple options 27 | 48%
The most common way to use an API 38 | 68%
Other 1 2%
Total 56 | 100%

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE055. Publication date: July 2025.

FSE055:12 Kathryn T. Stolee, Tobias Welp, Caitlin Sadowski, and Sebastian Elbaum

Of those who were looking for examples, 57 (80%) continued on to answer the second question
about the kind of example they want. In a multiple-select question, 25 (44%) indicated they want a
standalone example for how to use an API whereas a majority (39, 68%) wanted production code
examples. Included in these numbers are the 12 participants who said they wanted both.

In terms of example diversity, 27 participants (48%) said they wanted multiple options for how to
use an API whereas a majority said they want to see the most common way of using the API (38,
68%). Included in these numbers are the 10 responses who wanted both. If we remove those 10 from
the categories, we see that half the participants (28, 50%) want only the most common uses. For the
participant who answered other, they were seeking specifically examples authored by themselves.

RQ2 Summary: Of those seeking examples, most knew what they were looking for and desired
to find the most common way of using the API in production code. Free-text responses suggested
that where the example was located and who wrote it were considerations in their search journey.

4.3 RQ3: Code Search and Code Review

As shown in Section 4.1.2, developers frequently use Code Search while working on a CL as an
author (31%) or reviewer (5%). Of the 471 respondents to the first question in the Code Review
survey, 295 answered yes indicating that they were working on a CL and continued to answer the
second question. Of those, 242 (82%) were working on a CL as an author, 44 (15%) were working in
a CL as a reviewer, and 9 (3%) were doing other work. These data are shown in the Sum column of
Table 6. While developers use Code Search during code review, far more often Code Search is used
during code authoring,.

To understand more about Code Search tool usage code authoring and code review, we do a
two-way analysis of the first two questions in the Code Review survey, shown with question 1 in the
rows and question 2 in the columns of Table 6. The percentages for each cell are row percentages.
That is, there were 44 participants who were reviewing a CL (Yes, as a reviewer). Of these, 19 (43%)
were Reading code for understanding and 12 (27%) were looking for a particular Location in code.

When working on a CL as a reviewer, most of the Code Search behavior is centered around
reading for comprehension or looking for a specific location in code (70% total) versus example-
seeking behavior (9% + 16% = 25%). When authoring CLs, developers are more often reading or
looking for a code location (49% total) or example-seeking (27% + 11 % = 38%). We see that example
seeking is more common during authoring than reviewing, which confirms our expectations.

RQ3 Summary: Reviewing CLs is more associated with exploration activities in Code Search,
while authoring CLs is more associated with example-seeking behavior.

Table 6. RQ3: Are you working on a CL? (rows) vs. What is the main reason you are using Code Search right now?
(columns). Numbers are reported in raw and in row percentages. For example, of those who were working on
CLs as an author (242), 73 were exploring or reading code, representing 30%. (295 total Responses)

Examples
Reading | Location | Discover | Specific API | Who or when | Failing | Other Sum
Yes, as author | 73 (30%) | 45 (19%) | 66 (27%) 26 (11%) 7(3%) | 17(7%) | 8(3%) | 242 (82%)
Yes, as reviewer | 19 (43%) | 12 (27%) 4 (9%) 7 (16%) 1(2%) | 0(0%) | 1(2%) 44 (15%)
Other 4 (44%) 2 (22%) - - 1(11%) | 2 (22%) - 9 (3%)
Total 96 (33%) | 59 (20%) | 70 (24%) 33 (11% 9(3%) | 19(6%) | 9 (3%) | 295 (100%)

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE055. Publication date: July 2025.

10 Years Later: Revisiting How Developers Search for Code FSE055:13

Table 7. RQ4: Did you get what you wanted out of Code Search today? Responses to this question from all
surveys. Column percentages add to 100%.

Response Intent Example Review Total
Yes, completely | 115 (49%) 17 (30%) 151 (52%) | 283 (49%)
Yes, partially 37 (16%) 13 (23%) 58 (20%) | 108 (19%)
Still working 78 (33%) | 25(45%) | 79 (27%) | 182 (31%)
No 5 (2%) 1(2%) 4 (1%) 10 (2%)
Total 235 (100%) | 56 (100%) | 292 (100%) | 583 (100%)

4.4 RQ4: Code Search Satisfaction

Overall, developers were satisfied with the Code Search tool. Table 7 shows the responses to
the satisfaction questions from each of the surveys. In all, we have 583 survey responses about
satisfaction with Code Search. Of these, 283 (49%) were completely satisfied and 108 (19%) were
partially satisfied. The survey was triggered after a result was clicked, and this happened to be in
the middle of their task for 182 respondents (31%) who indicated they were still working and did
not know yet if they were satisfied. Only 10 (2%) respondents were unsatisfied.

From the Intent surveys, only 5 of the 235 cases, developers reported ‘no’ to being satisfied with
Code Search. Looking deeper into the data, in two cases, developers said they were searching
because "I need example code for how to do something" (per question 1 of the survey). In two more
cases, the developers responded that they were searching because "I want to know why something is
failing, or the side effects of a proposed change". The last case was a developer who was dissatisfied
with having their workflow interrupted by surveys. In the Examples survey, only 1 in 56 of the
responses from people searching for examples were dissatisfied with Code Search. Overall, there is
extremely high satisfaction. Even if example-seeking behavior corresponds to a lack of satisfaction,
it is so small that it would see Code Search is performing well in that capacity.

In Table 7, the column Examples represents responses from the Examples survey. By and large,
participants were satisfied with Code Search when it comes to example seeking. Only one participant
out of 56 said they were not satisfied with Code Search. A majority (30, 53%) were either completely
or partially satisfied. Given that the trigger for this survey was after a single search and result
click, we expected (and received) many responses indicating their journey with Code Search was
incomplete; 25 (45%) reported to still be working. Still, those seeing examples are somewhat less
often completely satisfied with Code Search and more likely to be partially satisfied or to be still
working on their task.

For the Code Review survey, seen in the Review column, the distribution looks similar to the
Intent survey. When we look at satisfaction based on whether a developer is working on the CL as
a review versus as an author, there were no notable differences in satisfaction.

We further investigated whether satisfaction was different for any of the intents declared in
question 1 of the Intent survey. While most of the results were rather unremarkable, when the
main reason for search is to find a code location, satisfaction with Code Search was the highest.
Developers were completely satisfied 56% of the time they were looking for a location, or else,
they were still working on the task at hand (31%). This suggests that for this purpose behind Code
Search, the tool is working quite well.

RQ4 Summary: Code Search users are very satisfied with the tool, though those looking for
examples are somewhat less satisfied than others. Code Search users looking for a code location
were most likely to be completely satisfied.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE055. Publication date: July 2025.

FSE055:14 Kathryn T. Stolee, Tobias Welp, Caitlin Sadowski, and Sebastian Elbaum

4.5 Threats to Validity

There are a few threats to validity for this study. First of all, a threat to external validity is that this
study focuses on one particular Code Search tool at one particular company (Google). The Code
Search experience at Google is unique in that most developers at Google are working within (and
hence using it to search over) an extremely large monolithic repository [19]. Developers at Google
also use a custom developer tool stack [19] and so may behave differently than developers at other
companies using a different set of tools. Replication is needed to understand if that is the case.

Another threat to external validity is that we are limited to developers who chose to fill in
the survey, and since we did not collect demographic information (due to a limit on the number
of questions possible in HaTS) we cannot tell if the responses are biased towards a particular
demographic group. We also include answers from developers who only partially completed some
surveys. These threats are tempered by the large number of developers who responded.

A threat to internal validity is the specific survey questions we used and the responses we
received. Although our survey questions and response options are grounded in prior work and
we refined the surveys throughout the course of the study, a different formulation of questions or
responses could provide new perspectives not captured here.

Another internal threat is that we only surveyed queries to the standalone Code Search tool,
which misses 35% of the queries to the Code Search backed that come from the IDE. This may
create the illusion of a shift in search intents when comparing against the prior work.

Lastly, a threat to validity is the rapidly changing landscape of developer tools with increased
focus on tooling powered by LLMs (discussed in Section 5). The surveys in this paper represent a
pre-LLM context. The logs analysis, on the other hand, encompasses before and after the inclusion
of Al in the developer workflow, and we did not find any signal indicating usage changes for
Code Search. This may change in the future as Al becomes more sophisticated and entrenched in
workflows. As we move into this new future the role of code search in software development is
changing. Nonetheless, we feel that now is the time to review where we are so we can consider the
implications of existing search behavior while designing this new wave of tooling.

5 Discussion

The discussion includes an in-depth look at our results compared to prior work, implications of
this work for future research on code search and LLMs, and lessons learned.

5.1 Comparison against Prior Work

In the time between the prior work [33] and our survey, approximately ten years passed. RQ1 was
asked in prior work [33] and also by us. In this section, we look at the differences between the
prior results and our results for RQ1.

5.1.1 Code Search Purpose. Table 3 shows summaries of the answers to the question, “What is the
main reason you are using Code Search right now?". In most cases, the frequency of responses per
category in our survey versus the prior work are close, but there are exceptions. Developers in our
survey are more often using Code Search to explore or read code for understanding compared to
the prior work. Using a test of two-proportions to determine if these percentages are significant, we
find that pyhat prior = 67/259 and pyyhasnew = 472/1286 with what referring to the proportion of
responses seeking exploring or reading code, prior referring to prior results [33] and new referring
to the current study. The null hypothesis Hy : pwhat,prior = Pwhat,new 18 rejected at a = 0.01 with
p = 0.00109. Therefore, we find a significant shift in the behavior, where more developers are going
to Code Search to read or understand code than before.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE055. Publication date: July 2025.

10 Years Later: Revisiting How Developers Search for Code FSE055:15

We also find a significant decrease in the number of participants who want to know why
something is failing. Previously, it was found that 16% were asking questions of this nature,
versus 9% in the current survey. Using a test of two-proportions to determine if these percentages
are significant, we find that p,nyprior = 42/259 and pyhynew = 120/1286. The null hypothesis
Hy @ prhyprior = Pwhy,new is rejected at & = 0.01 with p = 0.00143. Therefore, we find a significant
shift in this behavior, likely because Code Search behavior related to debugging has moved within
the IDE and was not observed with our survey.

Also of note is a lower percentage of users seeking examples using Code Search as compared
to prior work; the percentage dropped 6% from 34% to 28%. This may reflect a change in the
tools available to developers for examples (e.g., internal search tools, or documentation, may
have improved). Using a test of two-proportions, we find that pex prior = 87/259 and pex new =
362/1286 with ex referring to the proportion of responses seeking examples. The null hypothesis
Hy @ Pex,prior = Pex,new is not rejected with p = 0.09206. Therefore, we conclude there has not been
a significant shift in example-seeking behavior based on the two studies.

5.1.2 Code Search Next Steps. Table 4 shows summaries of answers to the question, "What do you
want to do with the code once you’ve found it?". While the question in prior work was multiple-select,
only 13 surveys had multiple items selected, representing approximately 3% of the responses, so
the authors felt that comparison is still valuable. We expand the number of responses to 407 so the
percentages add to 100%.

There is a sizeable shift in the number of responses that report to be exploring / learning about
the code, where the current survey has significantly more (test of two-proportions, p < 0.001). The
goal of copy-pasting code or working on a CL as an author while using Code Search has gone down
significantly (test of two-proportions, p = 0.005), as has working on a CL as a reviewer (test of
two-proportions, p < 0.001). Together, these suggest a change in how the standalone Code Search
tool is being used as more of a learning tool and less of a tool to assist with the day-to-day of
writing and reviewing code. This shift, however, may not reflect overall Code Search behavior, but
rather reflects the impact of a change in workflow. As we did not want to interrupt developers
with surveys during active development, we did not capture search intent while developers were
actively within the IDE. Additionally, as the newer IDEs have gained in popularity, developers who
migrated from more simplistic IDE environments (e.g., pure text editors) to the internal tooling
may reduce the need for copy and paste from Code Search into the IDE environment. Therefore,
we can only speculate that those Code Search queries that desired to copy-paste the results, or that
were working to debug code, moved from the standalone tool to the IDE. The impact here is that it
creates the illusion of a shift in behavior when looking at surveys of only the standalone tool usage.

5.1.3 Comparison Summary. The results of this investigation into current Code Search usage
are rather consistent with the prior work. We confirm that the prior work included a rather
representative sample of Google developers from the perspective of intent. We observe a subtle
shift toward using Code Search more for reading and exploring code; it is unclear if that shift is due
to the 10-year gap between the studies, the increased number of participants, or something else.
Changes in the search intents seem to be easily explained by changes to the developer workflows
and therefore appear consistent overall.

5.2 Code Search and LLMs

During the time the study was conducted, LLMs such as ChatGPT [29] and Gemini [31] were just
emerging as part of developers’ workflow, primarily for assisting code completion [8, 16] and code
generation [20, 25]. As discussed in Section 2.2, Code Search usage at Google has remained steady

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE055. Publication date: July 2025.

FSE055:16 Kathryn T. Stolee, Tobias Welp, Caitlin Sadowski, and Sebastian Elbaum

despite the emergence of such technologies. Yet, their integration seems unavoidable. Identifying
the most productive ways to integrate Al into the Code Search workflow is an open challenge.

A research agenda to address such challenge should aim to catalog and discern the use cases
under which each technology excels. For example, we speculate that for tasks that require precise
answers, with high recall, and guarantees of no hallucination (e.g., find production code containing
a deprecated API call, find a specific location in source code), Code Search already offers a high
degree of satisfaction (Section 4.4). Meanwhile, for more exploratory activities (e.g., find simple
code examples, find other APIs to perform the task) where there is some tolerance for lower recall
or lower precision, Code Search performs well, but there are opportunities to innovate.

Identifying ways in which these technologies can be synergistically combined is likely a fruitful
pursuit. LLMs could be used to find bodies of relevant code that are further filtered by Code Search,
for example, to improve the usability of a Code Search tool itself by enabling fuzzy matching or
suggesting new places to explore in an existing code base. Other examples include refactoring
a piece of production code to fit a given context or providing alternative paths to tasks that are
currently done via a Code Search tool. When developers want standalone examples for how to use
an API (44%, as in Table 3), generative Al may provide faster or simpler examples. Code Search
could be used as an initial filter to find real examples, and those examples could be simplified or
refactored through AL If a developer wants to find an API for a task and the API is not known, an Al
agent might be able to help. On the other hand, when developers want examples from production
code (68%, Table 3), existing tools may be enough. One could imagine integrating generated and
existing code results within the same search surface.

It is also reasonable to expect that these technologies, just like it is occurring with general search
engines, will evolve towards having a single interface. Already, researchers are looking for which
code search techniques are most effective for which search intentions [41]. Defining that interface
and how it should interact with a code base and modern IDEs should also be part of that agenda.

5.3 Code Search Beyond the Code

The Code Search tool we study is focused explicitly on searching over code repositories at Google
and no other data sources that may contain information about source code (e.g., queries to an
internal Q&A site). In our survey, this means we miss some relevant searching behavior, such as
searches performed in the IDE. We chose to focus on the Code Search tool explicitly as those most
clearly represent intentional code searches. For search tools that interact with heterogeneous data
sources (e.g., API documentation, designs, source code, requirements), it would be interesting to
see what the breakdowns look like in terms of search intents and search satisfaction. For example,
if people are searching for examples, are they more satisfied by what is presented in source code or
in API documentation? Or what about summaries generated from the source code [17], are those
better than the source code itself for learning? Is there a relationship between search satisfaction
and document quality [36]? These questions remain open.

Beyond the existing data sources, as Al-generated code becomes more ubiquitous, the prompts
used for that generation are important, and prompt engineering is becoming part of the developer
workflow. Prompt and code search integration could take the form of new prompt languages for
searching over existing code, or the need to search over the prompts themselves. One could imagine
prompts themselves being yet another document in code search across heterogeneous data sources.

Correlating search intent and satisfaction with the types of resources accessed - API documen-
tation, design documents, source code, test code, and Q&A forums, LLM prompts, for example —
would perhaps shed light on the software development search process more generally. However,
replicating our survey methodology may cause undue frustration to developers by breaking their
flow, and the impact of such interruptions would need to be carefully monitored.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE055. Publication date: July 2025.

10 Years Later: Revisiting How Developers Search for Code FSE055:17

5.4 Lessons Learned from Studies of Developers at Scale

To conduct our study, we had access to thousands of developers operating under a rather uniform
workflow and set of tools, working across a variety of projects, programming languages, and teams.
Through the process, we learned some valuable lessons.

First, having at least one author that is part of the organization does not just open doors and
facilitates the implementation of the study, but can help to design the study based on the organiza-
tional context. Further, the insider perspective can contribute to interpret the data and identify
suspicious data points caused by implementation errors or nuances in telemetry.

Second, studies of this magnitude cannot be rushed. They require several iterations to mature,
to get the surveys with the right constructs, and the delivery and retrieval mechanisms to work
as expected. Incrementally building and deploying those surveys and mechanisms helped us
enormously to gain internal credibility and reduce the impact of surprises. However, the extensive
planning and iterative deployment could not overcome some unexpected events (e.g., invalidating
tools updates, move of critical personnel), which often required restarting some phases of the study,
further delaying the study for reasons beyond our control.

Third, a question asked thousands of times across a body of developers has a significant com-
pounding cost in developers’ time. This cost is magnified if that question is not well constructed
causing misleading responses or fails to add value through its associated finding. In this study, for
example, we balanced some loss of data by removing question 4 from the Intent surveys against
the increase in developer effort to answer yet another survey question. While developers at Google
have shown resilience to small interruptions in terms of their flow [5], we still wanted to minimize
any interruptions caused by our work. Thus, studies at this scale must balance the luxury of having
access to data at scale with the cost associated with such access.

6 Related Work

Here we describe recent related research on code search.

6.1 Studies on Code Search

Code search research is gaining in momentum [10], with many surveys on code search usage
emerging. The methodologies include surveys, log analyses, or both.

The prior work targeting Google developers used both surveys and logs [33]. Through the logs
analysis, it found that developers searched on average 12 times a day (median of 6). Other work
using log analysis looks deeper into the query intent, finding that users frequently use code search
tools to find code examples [30]. In a study with tens of thousands of users on the Lingma code
search tool by Alibaba, researchers found a low average of 0.02 search events per developer per day
using log analysis [23]. Follow up surveys, however, found the search rate to be higher, with most
participants conducting 3-5 queries per day. Other research using code search log analysis has
additionally focused on the content of queries, finding them to frequently include method names,
structural patterns, and keywords [30].

The work that inspired ours [33] included surveys of developer intentions, which informed the
design of our surveys, found that developers search for a variety of purposes (e.g., to find example
code, to fix a problem, to learn about code). In a separate survey of 69 developers [34], researchers
found that the most common motivations for code search were defect repair (20%), code reuse (15%),
and program understanding (14%), which map to Question 2 of the survey in Figure 2, specifically
options ¢, b, and a, respectively. Another survey of 235 software engineers found that reusing
code snippets is a common motivation being code search on the web [40], and we explore similar
motivations in the survey about code examples (Figure 3).

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE055. Publication date: July 2025.

FSE055:18 Kathryn T. Stolee, Tobias Welp, Caitlin Sadowski, and Sebastian Elbaum

Code search success is tricky to measure, but researchers have tried. Result clicks might not
be the most reliable [33], as often the preview of a code search result is enough to solve the
problem at hand. Considering the Koders [2] tool, researchers measured success by whether code is
downloaded, finding that 25% to 60% of code search queries were successful [1]. When considering
the intention of code reuse, that success criteria might be somewhat accurate. For other use cases,
such as debugging or learning about code, it would very likely be an underestimate of search
success.

With a specific focus on API search, which takes an API name as input and returns representative
code examples, researchers have achieved high developer satisfaction at scale [3, 15]. Exempla
Gratis [3] is a tool that generated simplified examples for how to use APIs. When it was compared
against code search results and hand-written examples from a popular programming website, the
generated examples were preferred by professional developers in 97% of cases. API search using
graph embeddings and clustering also received positive developer feedback, with 95% of developers
finding them useful 95% and 38% finding them very useful [15].

6.2 Al and Code Search

Al-driven support in development workflows is rapidly advancing, and Google is no exception.
Opportunities abound, including in the code comprehension space when developers need to learn
a new platform, infrastructure, framework, or technology [9]. Research in academia and other
companies is also focusing on this. For example, the Bing Developer Assistant tool from Microsoft
searches and recommends code example mined from public software repositories (such as GitHub)
and web pages (such as Stack Overflow) for users to improve their programming productivity [42].
Copilot from GitHub searches for code based on context signals from code comments [12].

Outside of industry, other research has compared different approaches to code search against
different use cases, with the insight that there may not be one solution for all of the code search
use cases. The researchers found that for reusing code, deep learning methods are more effective.
For fixing bugs or learning about APIs, information retrieval methods are more useful [41]. By
improving the mapping between the retrieved code and the query through deep learning and fuzzy
matching [22], other researchers have achieved improvements. A combination of deep learning
and information retrieval strategies has also been successful [7].

7 Conclusion

A decade ago, researchers highlighted how developers use Code Search in practice at Google. Fast
forwarding to the present day, we both revisited this prior study to see what has changed and dug
deeper into how developers use Code Search when seeking examples or performing reviews. We
find that AI has not reduced the need for Code Search, at least, not yet. The standalone Code Search
tool is still used frequently, especially when developers are exploring or reading code. Satisfaction
with the tool is very high. When seeking examples in Code Search, developers typically know what
API they are looking for and want to review production code. We find that Code Search is often
focused on reading code for understanding. As Al tool support continues to emerge and increase in
maturity, these conclusions should be revisited should the study be replicated again.

Currently, we emphasize that these results speak to the importance of the Code Search experience
when developing software. The way that developers are using Code Search to explore and read
code has implications for innovations in code summarization and comprehension. Even as LLMs
are increasingly used to generate code examples, there are still many tasks, such as identifying
code locations, that continue to fall to Code Search.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE055. Publication date: July 2025.

10 Years Later: Revisiting How Developers Search for Code FSE055:19

Data Availability

The logs and survey responses we summarize are subject to privacy constraints, including but not
limited to focusing on logs that are associated with work purposes and not reporting out individual
data without explicit permission to do so. Therefore, the raw data are not publicly available.

Acknowledgements
This work is funded in part by NSF SHF #1749936.

References

[1] Sushil Bajracharya and Cristina Lopes. 2009. Mining search topics from a code search engine usage log. In 2009 6th IEEE
International Working Conference on Mining Software Repositories. 111-120. https://doi.org/10.1109/MSR.2009.5069489

[2] Sushil Krishna Bajracharya and Cristina Videira Lopes. 2012. Analyzing and mining a code search engine usage log.
Empirical Software Engineering 17 (2012), 424-466. https://doi.org/10.1007/s10664-010-9144-6

[3] Celeste Barnaby, Koushik Sen, Tianyi Zhang, Elena Glassman, and Satish Chandra. 2020. Exempla gratis (E.G.):
code examples for free. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Virtual Event, USA) (ESEC/FSE 2020). Association for
Computing Machinery, New York, NY, USA, 1353-1364. https://doi.org/10.1145/3368089.3417052

[4] Earl T. Barr, Yuriy Brun, Premkumar Devanbu, Mark Harman, and Federica Sarro. 2014. The plastic surgery hypothesis.
In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering (Hong Kong,
China) (FSE 2014). Association for Computing Machinery, New York, NY, USA, 306-317. https://doi.org/10.1145/
2635868.2635898

[5] Adam Brown, Alison Chang, Ben Holtz, and Sarah D’Angelo. 2023. Developer Productivity for Humans, Part 6:
Measuring Flow, Focus, and Friction for Developers. IEEE Software 40, 6 (2023), 16—-21. http://doi.org/10.1109/MS.2023.
3305718

[6] Satish Chandra, Michael Pradel, and Kathryn T. Stolee. 2024. Dagstuhl Seminar 24172: Code Search. (2024). https:
//doi.org/10.4230/DagRep.14.4.108

[7] Junkai Chen, Xing Hu, Zhenhao Li, Cuiyun Gao, Xin Xia, and David Lo. 2024. Code Search is All You Need?
Improving Code Suggestions with Code Search. In Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering (Lisbon, Portugal) (ICSE "24). Association for Computing Machinery, New York, NY, USA, Article
73, 13 pages. https://doi.org/10.1145/3597503.3639085

[8] Matteo Ciniselli, Nathan Cooper, Luca Pascarella, Antonio Mastropaolo, Emad Aghajani, Denys Poshyvanyk, Massimil-
iano Di Penta, and Gabriele Bavota. 2021. An empirical study on the usage of transformer models for code completion.
IEEE Transactions on Software Engineering 48, 12 (2021), 4818-4837. https://doi.org/10.1109/TSE.2021.3128234

[9] Sarah D’Angelo, Ambar Murillo, Satish Chandra, and Andrew Macvean. 2024. What do developers want from AI?
IEEE (2024). https://www.computer.org/csdl/magazine/so/2024/03/10493171/1VTviCwygyk

[10] Luca Di Grazia and Michael Pradel. 2023. Code Search: A Survey of Techniques for Finding Code. Comput. Surveys 55,
11, Article 220 (feb 2023), 31 pages. https://doi.org/10.1145/3565971

[11] Denae Ford, Alisse Harkins, and Chris Parnin. 2017. Someone like me: How does peer parity influence participation of
women on stack overflow?. In 2017 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
239-243. https://doi.org/10.1109/VLHCC.2017.8103473

[12] Nat Friedman. 2021. Introducing GitHub Copilot: your Al pair programmer. (2021). https://github.blog/news-
insights/product-news/introducing- github- copilot-ai-pair-programmer/

[13] Alexander Frommgen, Jacob Austin, Peter Choy, Nimesh Ghelani, Lera Kharatyan, Gabriela Surita, Elena Khrapko,
Pascal Lamblin, Pierre-Antoine Manzagol, Marcus Revaj, Maxim Tabachnyk, Daniel Tarlow, Kevin Villela, Dan
Zheng, Satish Chandra, and Petros Maniatis. 2024. Resolving Code Review Comments with Machine Learning. In
2024 IEEE/ACM 46th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP).
https://doi.org/10.1145/3639477.3639746

[14] Google. [n.d.]. Yet Another Question System. ([n.d.]). A Google-internal question and answer site, similar to Stack
Overflow..
[15] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2020. CodeKernel: a graph kernel based approach to the selection of

API usage examples. In Proceedings of the 34th IEEE/ACM International Conference on Automated Software Engineering
(San Diego, California) (ASE °19). IEEE Press, 590-601. https://doi.org/10.1109/ASE.2019.00061

[16] Qi Guo, Junming Cao, Xiaofei Xie, Shangqing Liu, Xiachong Li, Bihuan Chen, and Xin Peng. 2024. Exploring the
potential of chatgpt in automated code refinement: An empirical study. In Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering. 1-13. https://doi.org/10.1145/3597503.3623306

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE055. Publication date: July 2025.

https://doi.org/10.1109/MSR.2009.5069489
https://doi.org/10.1007/s10664-010-9144-6
https://doi.org/10.1145/3368089.3417052
https://doi.org/10.1145/2635868.2635898
https://doi.org/10.1145/2635868.2635898
http://doi.org/10.1109/MS.2023.3305718
http://doi.org/10.1109/MS.2023.3305718
https://doi.org/10.4230/DagRep.14.4.108
https://doi.org/10.4230/DagRep.14.4.108
https://doi.org/10.1145/3597503.3639085
https://doi.org/10.1109/TSE.2021.3128234
https://www.computer.org/csdl/magazine/so/2024/03/10493171/1VTvfCwygyk
https://doi.org/10.1145/3565971
https://doi.org/10.1109/VLHCC.2017.8103473
https://github.blog/news-insights/product-news/introducing-github-copilot-ai-pair-programmer/
https://github.blog/news-insights/product-news/introducing-github-copilot-ai-pair-programmer/
https://doi.org/10.1145/3639477.3639746
https://doi.org/10.1109/ASE.2019.00061
https://doi.org/10.1145/3597503.3623306

FSE055:20 Kathryn T. Stolee, Tobias Welp, Caitlin Sadowski, and Sebastian Elbaum

[17]

[18]

[19]

[20

[t

[21]

[22]

[23]

[24

—

[25

[

[26

—

[27]

[28]

[29]
[30

[t

[31]

[32]

[33]

[34]

Emily Hill, Lori Pollock, and K Vijay-Shanker. 2011. Improving source code search with natural language phrasal rep-
resentations of method signatures. In 2011 26th IEEE/ACM International Conference on Automated Software Engineering
(ASE 2011). TEEE, 524-527. https://doi.org/10.1109/ASE.2011.6100115

Reid Holmes and Gail C. Murphy. 2005. Using structural context to recommend source code examples. In Proceedings
of the 27th International Conference on Software Engineering (St. Louis, MO, USA) (ICSE °05). Association for Computing
Machinery, New York, NY, USA, 117-125. https://doi.org/10.1145/1062455.1062491

Ciera Jaspan, Matthew Jorde, Andrea Knight, Caitlin Sadowski, Edward K. Smith, Collin Winter, and Emerson Murphy-
Hill. 2018. Advantages and Disadvantages of a Monolithic Codebase. In International Conference on Software Engineering,
Software Engineering in Practice track (ICSE SEIP). https://doi.org/10.1145/3183519.3183550

Kailun Jin, Chung-Yu Wang, Hung Viet Pham, and Hadi Hemmati. 2024. Can ChatGPT Support Developers? An
Empirical Evaluation of Large Language Models for Code Generation. In 2024 IEEE/ACM 21st International Conference
on Mining Software Repositories (MSR). IEEE, 167-171. https://doi.org/10.1145/3643991.3645074

Hongwei Li, Zhenchang Xing, Xin Peng, and Wenyun Zhao. 2013. What help do developers seek, when and how?. In
2013 20th working conference on reverse engineering (WCRE). IEEE, 142-151. http://doi.org/10.1109/WCRE.2013.6671289
Chao Liu, Xin Xia, David Lo, Zhiwe Liu, Ahmed E. Hassan, and Shanping Li. 2021. CodeMatcher: Searching Code
Based on Sequential Semantics of Important Query Words. ACM Transactions on Softwware Engineering Methodology
31, 1, Article 12 (sep 2021), 37 pages. https://doi.org/10.1145/3465403

Chao Liu, Xindong Zhang, Hongyu Zhang, Zhiyuan Wan, Zhan Huang, and Meng Yan. 2024. An Empirical Study of
Code Search in Intelligent Coding Assistant: Perceptions, Expectations, and Directions. In Companion Proceedings of
the 32nd ACM International Conference on the Foundations of Software Engineering (Porto de Galinhas, Brazil) (FSE
2024). Association for Computing Machinery, New York, NY, USA, 283-293. https://doi.org/10.1145/3663529.3663848
Yue Liu, Thanh Le-Cong, Ratnadira Widyasari, Chakkrit Tantithamthavorn, Li Li, Xuan-Bach D Le, and David Lo. 2024.
Refining chatgpt-generated code: Characterizing and mitigating code quality issues. ACM Transactions on Software
Engineering and Methodology 33, 5 (2024), 1-26. https://doi.org/10.1145/3643674

Zhijie Liu, Yutian Tang, Xiapu Luo, Yuming Zhou, and Liang Feng Zhang. 2024. No need to lift a finger anymore?
assessing the quality of code generation by chatgpt. IEEE Transactions on Software Engineering (2024). https:
//doi.ieeecomputersociety.org/10.1109/TSE.2024.3392499

Sifei Luan, Di Yang, Celeste Barnaby, Koushik Sen, and Satish Chandra. 2019. Aroma: code recommendation via
structural code search. Proc. ACM Program. Lang. 3, OOPSLA, Article 152 (2019), 28 pages. https://doi.org/10.1145/
3360578

Hendrik Miiller and Aaron Sedley. 2014. HaTS: large-scale in-product measurement of user attitudes & experiences
with Happiness Tracking Surveys. In Proceedings of the 26th Australian Computer-Human Interaction Conference on
Designing Futures: The Future of Design (Sydney, New South Wales, Australia) (OzCHI ’14). Association for Computing
Machinery, New York, NY, USA, 308-315. https://doi.org/10.1145/2686612.2686656

Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and Brad Myers. 2024. Using an LLM to Help
With Code Understanding. In Proceedings of the IEEE/ACM 46th International Conference on Software Engineering
(Lisbon, Portugal) (ICSE "24). Association for Computing Machinery, New York, NY, USA, Article 97, 13 pages. https:
//doi.org/10.1145/3597503.3639187

OpenAl 2022. Introducing ChatGPT. (2022). https://openai.com/index/chatgpt/

Oleksandr Panchenko, Hasso Plattner, and Alexander Zeier. 2011. What do developers search for in source code and
why. In Proceedings of the 3rd International Workshop on Search-Driven Development: Users, Infrastructure, Tools, and
Evaluation (Waikiki, Honolulu, HI, USA) (SUITE ’11). Association for Computing Machinery, New York, NY, USA,
33-36. https://doi.org/10.1145/1985429.1985438

Sundar Pinchai and Demis Hassabis. 2023. Introducing Gemini: our largest and most capable Al model. (2023).
https://blog.google/technology/ai/google-gemini-ai/

Md Masudur Rahman, Jed Barson, Sydney Paul, Joshua Kayani, Federico Andrés Lois, Sebastidn Fernandez Quezada,
Christopher Parnin, Kathryn T. Stolee, and Baishakhi Ray. 2018. Evaluating how developers use general-purpose
web-search for code retrieval. In Proceedings of the 15th International Conference on Mining Software Repositories
(Gothenburg, Sweden) (MSR ’18). Association for Computing Machinery, New York, NY, USA, 465-475. https:
//doi.org/10.1145/3196398.3196425

Caitlin Sadowski, Kathryn T Stolee, and Sebastian Elbaum. 2015. How developers search for code: a case study. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering. 191-201. https://doi.org/10.1145/
2786805.2786855

S.E. Sim, C.L.A. Clarke, and R.C. Holt. 1998. Archetypal source code searches: a survey of software developers and
maintainers. In Proceedings. 6th International Workshop on Program Comprehension. IWPC’98 (Cat. No.98TB100242).
180-187. https://doi.org/10.1109/WPC.1998.693351

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE055. Publication date: July 2025.

https://doi.org/10.1109/ASE.2011.6100115
https://doi.org/10.1145/1062455.1062491
https://doi.org/10.1145/3183519.3183550
https://doi.org/10.1145/3643991.3645074
http://doi.org/10.1109/WCRE.2013.6671289
https://doi.org/10.1145/3465403
https://doi.org/10.1145/3663529.3663848
https://doi.org/10.1145/3643674
https://doi.ieeecomputersociety.org/10.1109/TSE.2024.3392499
https://doi.ieeecomputersociety.org/10.1109/TSE.2024.3392499
https://doi.org/10.1145/3360578
https://doi.org/10.1145/3360578
https://doi.org/10.1145/2686612.2686656
https://doi.org/10.1145/3597503.3639187
https://doi.org/10.1145/3597503.3639187
https://openai.com/index/chatgpt/
https://doi.org/10.1145/1985429.1985438
https://blog.google/technology/ai/google-gemini-ai/
https://doi.org/10.1145/3196398.3196425
https://doi.org/10.1145/3196398.3196425
https://doi.org/10.1145/2786805.2786855
https://doi.org/10.1145/2786805.2786855
https://doi.org/10.1109/WPC.1998.693351

10 Years Later: Revisiting How Developers Search for Code FSE055:21

[35] Kathryn T Stolee, Sebastian Elbaum, and Daniel Dobos. 2014. Solving the search for source code. ACM Transactions on
Software Engineering and Methodology (TOSEM) 23, 3 (2014), 1-45. https://doi.org/10.1145/2581377

Christoph Treude, Justin Middleton, and Thushari Atapattu. 2020. Beyond accuracy: assessing software documentation
quality. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (Virtual Event, USA) (ESEC/FSE 2020). Association for Computing Machinery,
New York, NY, USA, 1509-1512. https://doi.org/10.1145/3368089.3417045

[37] Shangwen Wang, Bo Lin, Zhensu Sun, Ming Wen, Yepang Liu, Yan Lei, and Xiaoguang Mao. 2023. Two Birds with One
Stone: Boosting Code Generation and Code Search via a Generative Adversarial Network. Proc. ACM Program. Lang. 7,
OOPSLA2, Article 239 (oct 2023), 30 pages. https://doi.org/10.1145/3622815

Hyrum Wright, Titus Delafayette Winters, and Tom Manshreck. 2020. Software Engineering at Google. O’Reilly.

Xin Xia, Lingfeng Bao, David Lo, Pavneet Singh Kochhar, Ahmed E Hassan, and Zhenchang Xing. 2017. What do
developers search for on the web? Empirical Software Engineering 22 (2017), 3149-3185. https://doi.org/10.1007/s10664-
017-9514-4

Xin Xia, Lingfeng Bao, David Lo, Pavneet Singh Kochhar, Ahmed E. Hassan, and Zhenchang Xing. 2017. What do
developers search for on the web? Empirical Software Engineering 22, 6 (dec 2017), 3149-3185. https://doi.org/10.1007/
510664-017-9514-4

Shuhan Yan, Hang Yu, Yuting Chen, Beijun Shen, and Lingxiao Jiang. 2020. Are the Code Snippets What We Are
Searching for? A Benchmark and an Empirical Study on Code Search with Natural-Language Queries. In 2020 IEEE
27th International Conference on Software Analysis, Evolution and Reengineering (SANER). 344-354. http://doi.org/10.
1109/SANER48275.2020.9054840

Hongyu Zhang, Anuj Jain, Gaurav Khandelwal, Chandrashekhar Kaushik, Scott Ge, and Wenxiang Hu. 2016. Bing
developer assistant: improving developer productivity by recommending sample code. In Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Software Engineering (Seattle, WA, USA) (FSE 2016).
Association for Computing Machinery, New York, NY, USA, 956-961. https://doi.org/10.1145/2950290.2983955

Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei. 2009. MAPO: Mining and recommending API usage patterns.
In ECOOP 2009-Object-Oriented Programming: 23rd European Conference, Genoa, Italy, July 6-10, 2009. Proceedings 23.
Springer, 318-343. https://doi.org/10.1007/978-3-642-03013-0_15

[36

—

[38
[39

—

[40

[t}

[41

—

[42

—

[43

[t

Received 2024-09-12; accepted 2025-01-14

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE055. Publication date: July 2025.

https://doi.org/10.1145/2581377
https://doi.org/10.1145/3368089.3417045
https://doi.org/10.1145/3622815
https://doi.org/10.1007/s10664-017-9514-4
https://doi.org/10.1007/s10664-017-9514-4
https://doi.org/10.1007/s10664-017-9514-4
https://doi.org/10.1007/s10664-017-9514-4
http://doi.org/10.1109/SANER48275.2020.9054840
http://doi.org/10.1109/SANER48275.2020.9054840
https://doi.org/10.1145/2950290.2983955
https://doi.org/10.1007/978-3-642-03013-0_15

	Abstract
	1 Introduction
	2 Background on Google Code Search
	2.1 Development and Tooling
	2.2 Code Search Tool Usage

	3 Study
	3.1 Research Questions
	3.2 Survey Design
	3.3 Survey Deployment
	3.4 Target Population
	3.5 Data

	4 Results
	4.1 RQ1: Code Search Intent
	4.2 RQ2: Code Search and Examples
	4.3 RQ3: Code Search and Code Review
	4.4 RQ4: Code Search Satisfaction
	4.5 Threats to Validity

	5 Discussion
	5.1 Comparison against Prior Work
	5.2 Code Search and LLMs
	5.3 Code Search Beyond the Code
	5.4 Lessons Learned from Studies of Developers at Scale

	6 Related Work
	6.1 Studies on Code Search
	6.2 AI and Code Search

	7 Conclusion
	References

