
Revealing the Copy and Paste Habits of End Users

Kathryn T. Stolee, Sebastian Elbaum, and Gregg Rothermel
Department of Computer Science and Engineering

University of Nebraska – Lincoln
Lincoln, NE, U.S.A.

{kstolee, elbaum, grother}@cse.unl.edu

Abstract

Transferring data across applications is a common end
user task, and copying and pasting via the clipboard lets
users do so relatively easily. Using the clipboard, how-
ever, can also introduce inefficiencies and errors in user
tasks. To help researchers and tool developers understand
and address these problems, we studied how end users inter-
act with the clipboard through cut, copy, and paste actions.
This study was performed by logging clipboard interactions
while end users performed everyday tasks. From the clip-
board usage data, we have identified several usage patterns
that describe how data is transferred within the desktop en-
vironment. Such patterns help us understand end user be-
havior and indicate areas in which clipboard support tools
can be improved.

1. Introduction
End users who wish to move data often do so by copying

it onto a clipboard and later pasting it into a chosen desti-
nation. Consider for example Alex, an administrative as-
sistant and one of the millions of end users who are pro-
gramming today [9]. Every month Alex must compile an
expense report for his division. To do this, he retrieves last
month’s report and repeatedly copies data from emails, in-
ternal business system websites, and spreadsheets onto the
clipboard – all of these are common activities performed
by administrative assistants [10]. Alex then pastes that data
into the report’s fields. By using the clipboard, Alex saves
time and avoids data transcription errors that could have oc-
curred through manually re-entering the data.

Despite the convenience and simplicity of copying and
pasting through the clipboard and its usefulness in reduc-
ing transcription errors, clipboard usage can also introduce
other forms of errors. Among professional programmers,
copy and paste activities have been found to introduce errors
via pasting of incomplete copies and pasting without proper
context updates. These errors were seen to reduce pro-
ductivity by delaying development during program mainte-

nance tasks [6]. Context switches caused by copy and paste
activities across overlapping windows may also reduce pro-
ductivity by causing delays in task completion [2]. There
have been some efforts to explore clipboard usage and the
purpose of copy and paste actions by professional program-
mers working in controlled environments, such as within
IDEs [5, 13]. Also, several tools have been developed to
support and to address inefficiencies in copy and paste ac-
tivities [1, 2, 3, 7, 12].

In spite of this work, we do not yet know much about
how end users use the clipboard, to what extent they use it,
where it is used most often, or what copy and paste patterns
represent their behavior. Understanding these issues is im-
portant as it directly affects end users’ productivity and the
correctness of the tasks they perform, with implications for
the environments and tools that might support those tasks.

In this paper we address these issues by studying the
copy and paste behaviors of end users, and based on the data
obtained, defining patterns that represent end user behav-
iors. We discuss ways in which these patterns, in conjunc-
tion with our other findings regarding clipboard usage, have
implications for researchers and tool builders who wish to
support automation of data transfer tasks or enhance valida-
tion of copy-paste activities to increase dependability and
productivity.

The next section of this paper describes our approach for
studying clipboard usage and the data we collected. Sec-
tion 3 presents the patterns we inferred from the study data
and Section 4 describes the implications of these patterns
and the usage data for further research and support for clip-
board activities. Section 5 summarizes our findings.

2. Clipboard Study
To explore how end users utilize the clipboard, we built

a tool that unobstrusively monitors a user’s clipboard activ-
ities and remotely logs the collected observations. Then,
we conducted a study on a group of end users and analyzed
the collected data to determine how often the clipboard was
used, with what kinds of applications it was used, and which



applications were typically used together with the clipboard
as a means for data transfer. We now describe these steps in
more detail.

2.1. Setup and Methodology

Our clipboard monitor keeps track of the type of clip-
board interaction (i.e., cut, copy, or paste), which method
was used for the interaction (i.e., keyboard or mouse), time
and date, the application involved, window title, data value,
and data size. The monitor anonymizes any data that can
identify a user to minimize privacy concerns and potential
changes in user behavior. This is done by performing a hash
on the copied data and on window titles associated with the
applications being used, which allows us to recognize when
the same window was used again as well as when the same
textual data was copied more than once. To better fit the
target user population, the monitor was built to work with
the Windows XP and Vista clipboards.

We distributed the monitor to two groups of end users:
the first was composed of administrative assistants and
teachers, and the second was composed of students who are
non-CS-majors in an introductory computer science course.
Our sample selection criteria intended to capture two dis-
tinct end user groups that are readily available within our
institution. The participants were asked to install the moni-
toring software and leave it running on their computers for
four weeks while performing their regular activities. In to-
tal, 25 users downloaded our tool and 15 followed through
with the study. Seven of those users came from the first
group and eight came from the second group. Our average
observation time per user was over 50 hours.

A total of 2544 clipboard interactions were captured;
1158 (45%) were copies, 71 (3%) were cuts, and 1315
(52%) were pastes. The average number of clipboard inter-
actions per hour per user was between three and four – con-
siderably smaller than the 16 copy-paste instances per hour
reported for professional programmers [5]. Note, however,
that our study observed end users during all computer activ-
ities – not just those related to programming – which may
account for these differences. We also observed some vari-
ability in usage frequency among end users, with one user’s
average being nearly 20 clipboard interactions per hour.

2.2. Findings

We treat cuts and copies the same, as both perform the
same action from the perspective of the clipboard – both
place data onto the clipboard – and the number of cuts per-
formed was small compared to the number of copies and
pastes. For each item that was copied to the clipboard, we
looked at the number of destinations for that item, which
is the number of locations in which a paste of that item oc-
curred. We found that data put onto the clipboard was rarely

Table 1. Application Category Usage
Application % %
Category of Use as Source – Destination
Word Processors 26% 36% – 64%
Web Browsers 23% 58% – 42%
Email Clients 19% 49% – 51%
Spreadsheets 18% 51% – 49%
IDEs 5% 40% – 60%
File System 4% 44% – 56%
Business 3% 61% – 39%
Other 2% 81% – 19%

wasted – approximately 81% of copied data was pasted. Re-
garding the wasted data, our intuition is that it represents
cases when a user accidentally copies data or copies the
wrong data and realizes it before pasting. We also found
that pasted data had a single destination 83% of the time.
Of those data items that were pasted multiple times, the av-
erage number of destinations was approximately three.

We also examined how end users treated particular cat-
egories of applications as well as how often each category
was used as a data source (i.e., in a copy), or a destination
(i.e., in a paste). We considered eight different categories,
shown in Table 1. The % of Use column shows the percent-
age of all clipboard interactions that involved the category,
and the % as Source – Destination column shows how of-
ten the category was used as a source or as a destination.
Overall, word processors were the most popular type of ap-
plication and were used predominantly as a destination. On
the other hand, web browsers were used more as a source
than a destination. Spreadsheets and email clients served
equally (± 2%) as sources and destinations. The last four
categories exhibited comparatively little usage.

Each user interacted with between two and 16 distinct
applications. The frequency of application use per user,
or how often each application was used with the clipboard,
showed that users tended to concentrate their copy and paste
actions within a small number of applications. On average,
users performed nearly 80% of their clipboard interactions
using two distinct applications, 88% using three applica-
tions, and nearly 97% within five applications. While the
actual applications used varied per user, the trend of con-
centrating clipboard activities in just a few applications was
consistent.

To gauge the interactions between specific applications,
we examined the most popular applications used with the
clipboard across all users, shown in Figure 1 . Each applica-
tion is represented as a node, and there is an additional node
representing the 20 applications with the least usage that are
not explicitly shown. The solid edges represent links cre-
ated by a copy and one of its subsequent pastes; these are
undirected to show simply that a link exists between two
applications. The dashed loops indicate self-loops in which



Figure 1. Interaction percentages among
popular applications across all users

the same application served as both source and destination.
The edge labels represent a percentage of the total copy and
paste interactions that occurred between applications (e.g.,
4% of the total links created by a copy and a subsequent
paste occurred between Firefox and Lotus Notes).

Figure 1 reveals interesting differences among copy and
paste activities across applications. For some applications
like Excel, most copies and pastes occurred within the ap-
plication, while for others like PowerPoint, most copies
and pastes transferred data across applications. Overall,
we found that approximately 43% of pasted data had been
copied from within a different application.

3. Discovering Behavior Patterns
We now proceed to analyze the collected data to un-

cover patterns in the users behavior. For that, we perform
a finer level of analysis and consider user copy and paste
behavior between windows, where an application may have
multiple windows (e.g., worksheets in spreadsheets, tabs in
browsers, the find dialog for a word processor). To help
us present the patterns we discovered in clipboard usage at
the window level, we define a transaction pair as one copy
followed by one paste, which represents a user’s explicit
movement of data from one window to another. This con-

Table 2. Elementary Patterns

Description Graph Usage
Per user Overall

Between. A pattern in-
volving one transaction
pair in which the source
window is not the same as
the destination window.

A

B

µ: 77%
σ: 18%

65%

Within. A pattern involv-
ing one transaction pair in
which the source and des-
tination window are the
same.

A
µ: 23%
σ: 18%

35%

cept fits naturally with a copy that is followed by only one
paste. For copies that are pasted into multiple destinations,
as when a copy in window x is followed by a paste into
window y and then a paste into window z, we treat it as two
sequential transaction pairs; the same data item is moved
via the clipboard from x to y and also from x to z.

In the next sections, we describe two classes of patterns,
elementary and complex. A pattern instance is an occur-
rence of a pattern in the data. For the elementary patterns,
each pattern instance is composed of exactly one transaction
pair. For the complex patterns, each pattern instance is com-
posed of one or more transaction pairs. The frequency with
which these patterns were observed helps us to understand,
describe, and make inferences regarding user behaviors.

3.1. Elementary Patterns
Through studying the user data, we observed and defined

two elementary patterns that represent the relationship be-
tween the source window and the destination window in any
transaction pair. These patterns are shown in Table 2. The
Description column gives the pattern name and a short tex-
tual description. The Graph column visually depicts the
pattern, where the nodes represent windows and the arrows
represent the directional movement of data. The Usage
columns indicate the frequency with which transaction pairs
fit into a particular pattern. The Per user Usage column
considers the pattern frequency per user and presents the
average and standard deviation. The Overall Usage column
considers the user population as a whole, and presents the
pattern frequency for all users.

The between pattern involves a single transaction pair in
which the source window differs from the destination win-
dow. For this pattern to occur, the user must perform a
change in window focus (navigate away from the currently
active window to another window) and may also perform a
context switch (bring to focus part or all of a window that
was previously hidden from view) between the source win-
dow and destination window. The within pattern involves



Table 3. Complex Patterns

Description Graph Usage
Per user Overall

Repeat. A pattern involving two or more consecutive trans-
action pairs in which every pair’s source window is the same
and every pair’s destination window is the same, and the
source window is not the same as the destination window.

µ: 32%
σ: 18%

37%

Distribution. A pattern involving two or more consecutive
transaction pairs in which one common source window feeds
data into two or more distinct destination windows.

µ: 36%
σ: 16%

32%

Composition. A pattern involving two or more consecutive
transaction pairs in which two or more distinct source win-
dows feed data into one common destination window.

µ: 19%
σ: 17%

18%

Isolation. A pattern involving one transaction pair in which
neither the source window nor the destination window is the
same as the windows in the transaction pairs occurring im-
mediately before or immediately after it.

µ: 10%
σ: 8%

10%

Relay. A pattern that is composed of two consecutive trans-
action pairs in which the first transaction’s destination win-
dow is the same as the second transaction’s source window,
and all the windows are different.

µ: 2%
σ: 2%

3%

a single transaction pair in which the source window is the
same as the destination window. The user does not need
to switch windows in order to perform the paste, thus no
changes in window focus are necessary in this case.

In our study, we observed that data was transferred be-
tween windows more often than within the same window:
65% of all transaction pairs fit the between pattern and indi-
vidual users exhibited an average between pattern frequency
of 77%. This is compared to the within pattern frequency
of 35% overall and 23% per user. The difference in fre-
quencies indicates that the users for whom we logged more
clipboard interactions showed lower frequencies of the be-
tween pattern than the other users did.

3.2. Complex Patterns

By considering relationships between instances of the el-
ementary patterns, we have identified several complex pat-
terns that involve aggregations of the elementary patterns.
These complex patterns represent temporal relationships
among the transaction pairs. The high frequency of the be-
tween pattern and our interest in data movement across win-
dows led us to focus only on complex patterns that involve
instances of the between pattern. We present these complex
patterns in Table 3. As with Table 2, the Usage column con-
siders the frequency with which transaction pairs occur in
the specific patterns, considering only the transaction pairs
involved with the patterns presented here. Since the average

pattern frequency per user is similar (± 5%) to the overall
frequency for all patterns, we treat the user population as
a whole for this analysis. Note that every instance of the
between pattern fits at least one of these complex patterns,
except for the rare case of two sequential transaction pairs
in which the source of the first is the same as the destina-
tion of the second; this pattern did not imply intuitive user
behavior and had the lowest support of all the patterns (less
than 2%), so we omitted it from the analysis and normalized
the usage frequencies.

Over a third (37%) of the transaction pairs appeared in
a repeat pattern instance. This pattern involves multiple se-
quential transaction pairs in which the source window in all
pairs is the same and the destination window in all pairs is
also the same, yet the source window and destination win-
dows are distinct. The average number of transaction pairs
per repeat pattern was slightly over three. The high percent-
age of occurrences of this pattern indicates that users often
worked repetitively between two windows and performed
copies and pastes in a directional manner from one window
to another. This pattern requires multiple changes in win-
dow focus and may also involve rapid context switches.

Close in frequency to the repeat pattern is the distribu-
tion pattern, which describes 32% of the transaction pairs.
This pattern represents the case of a user working within
one window and distributing data to two or more different
windows, such as copying an address from a website into a



spreadsheet and then an address book. The average number
of pastes per distribution pattern instance was slightly over
four. This pattern does not require as many changes in win-
dow focus as the repeat pattern: one copy can be pasted into
multiple destinations without re-visiting the source window.

Following the distribution pattern in frequency is the
composition pattern, which represents 18% of all transac-
tion pairs. This pattern is the reverse of the distribution pat-
tern and involves the aggregation of data from two or more
distinct source windows into one common destination win-
dow. The average number of copies per composition pattern
instance was close to five. Alex, the administrative assistant
from our example, would likely use a composition pattern
to gather data from multiple sources and compile them into
a single destination.

The next pattern is the isolation pattern which is seen
in 10% of the transaction pairs. This pattern involves one
transaction pair with distinct source and destination win-
dows (i.e., not an instance of the within pattern), and re-
quires that neither the source window nor the destination
window is the same as either of the windows within the
transaction pairs occurring immediately before or after it.
What is most interesting about this pattern is its low fre-
quency, implying that 90% of the transaction pairs had some
direct relationship with the pair coming immediately before
or immediately after.

Finally, the relay pattern accounts for 3% of all trans-
action pairs. This pattern represents two sequential trans-
action pairs in which the destination of the first pair is the
same as the source of the second. An instance of this pattern
may occur when a user pastes data into a temporary destina-
tion for reformatting and copies it again onto the clipboard
before pasting into its final destination.

4. Discussion
Ours is just one study of end user clipboard usage and

further studies are clearly necessary to generalize our re-
sults. Still, end user behavior seems to follow a set of pat-
terns representing their treatment of source and destination
windows. These patterns, in conjunction with our other
findings regarding clipboard usage, have implications for
researchers and tool builders who wish to support automa-
tion of data transfer tasks or validation of copy-paste activi-
ties to increase dependability and improve user productivity.

For example, end users often utilize the clipboard to
transfer data within and between windows, but transfers be-
tween windows happen much more frequently. End users
also perform the majority of their clipboard interactions
within a handful of applications, though the specific appli-
cations used vary based on the user. From these observa-
tions, we can infer the need for a clipboard support tool that
works with all desktop applications. This feature, as well
as the other features we identify in this section, appear in

Figure 2. Multiple-item clipboard, shown with
composition pattern

Table 4, along with some state-of-the-art clipboard support
tools, each of which is compared against the 12 support fea-
tures we identify. Note that we are not advocating specific
tools to support these user behaviors, but rather possible fea-
tures that future tools could provide to better fit user needs.
These support needs are described in the following sections.

4.1. Automation
There are several ways in which automation could be ap-

plied to a clipboard support tool. Here, we identify several
possible automation features.

4.1.1 Multiple-Item Clipboard
The high frequency of the repeat pattern shows that users of-
ten switch between windows repeatedly to perform related
copy and paste actions. Such extra work could be allevi-
ated by a clipboard that holds multiple items at once. For
example, if a user copies an address to paste into a form,
a multiple-item clipboard could hold each of the street ad-
dress, city, state, and zip code as a separate item, allowing
the data to be accessed in the destination application with-
out returning to the source.

Such a concept would also be beneficial to users when
they employ the composition pattern, in which items are
copied from multiple sources and pasted into a single desti-
nation. The intuition behind the composition pattern is that
users perform actions that are centered around one particu-
lar window in which they are operating. This window serves
as the destination for copies that are aggregated from multi-
ple sources. In the composition pattern, each copy requires
a change in focus to the destination window for a paste, then
a return to another source window for a copy. A multiple-
item clipboard would reduce the number of times the user
would return to the destination window from each source.

We illustrate the concept of the multiple-item clipboard
in Figure 2 using an instance of the composition pattern



Figure 3. Context aware clipboard, shown
with repeat pattern

as an example. The Current images show the traditional
clipboard model, while the Proposed images show how the
multiple-item clipboard would assist with the pattern. The
top box illustrates the data movement from windows B, C,
and D into A; the bottom box illustrates the changes in
window focus that are necessary given the data movement.
The key to this solution is that copying data onto and past-
ing data from the multiple-item clipboard does not involve
changes in window focus. With the composition pattern,
we see a clear reduction in the number of changes in win-
dow focus using a multiple-item clipboard. The multiple-
item clipboard feature has been implemented, but only for
select applications, such as with the Microsoft Office clip-
board [7], or in specialized tools, such as ClipMate, that are
not commonly available to end users [3].

4.1.2 Context-Aware Clipboard
The traditional clipboard model does not support consider-
ation of context. Adding context to copied data could be ac-
complished with a feature that extracts context from copied
data. We see a need for such contextual support by the re-
peat pattern, which had the highest overall usage.

Upon a user copying data onto the clipboard, a context-
aware feature would automatically extract useful pieces of
that data. Contextual extraction serves then as a disassem-
bler for the copied data to reduce the need to return to the
source window. For example, if a user copies an address to
paste into a form, a context-aware clipboard could extract
the street address, city, state, and zip code each as a sepa-
rate item. Clearly, this feature would be necessary in con-
junction with a multiple-item clipboard. We illustrate this
concept in Figure 3 using the repeat pattern as an example.
With the current clipboard, the repeat pattern requires five
changes in window focus to move three pieces of data from
one window to another. A clipboard with a context-aware
feature would eliminate many of the unnecessary transitions

between windows A and B. A further improvement to this
model would be to add a feature that facilitates pasting of
multiple items at once, hence reducing the number of paste
operations that must be performed in the destination.

A tool that supports contextual extraction and the ability
to paste multiple items at once could transform instances
of the repeat pattern into the elementary between pattern,
which would reduce the number of changes in window fo-
cus to just one. Such contextual support is provided in part
by clipboard extensions like Citrine [12] or Entity Quick
Click [1]. Citrine extracts context from copied data and uses
the contextual information to partition the data. It also al-
lows the user to paste the partitioned data into multiple des-
tination fields with one paste operation, but the user is re-
sponsible for teaching Citrine how to map the data to paste.
Entity Quick Click allows users to select multiple items
with a single click on each item and will extract context
from the source application, partitioning the desired text
automatically along natural language boundaries, yet it is
the responsibility of the destination application to integrate
contextual support and to allow for multiple pastes.

4.1.3 Clipboard with Iteration
A clipboard with an iteration feature that sequentially iter-
ates through multiple items on the clipboard would allow
users to perform the same operation or set of operations on
each of several items in a list. A need for such a feature
manifests itself in the distribution pattern in which a copy
in window A results in pastes in windows B, C, and D, and
then the user returns to A, copies different data, and repeats
the pasting process (illustrated in Figure 4). Let us again
consider Alex, who is now tasked with transferring contact
information for a list of new employees from a spreadsheet
into three locations: an address book, a text document, and
a web form. To do this, Alex copies data for an employee
and pastes it into each of the three destination locations,
then returns to the spreadsheet and copies data for the next
employee. This is time consuming and repetitive, and could
benefit from the concept of an iterator.

We illustrate this concept of a clipboard with iterator in
Figure 4. Returning to our example, A represents the orig-
inal spreadsheet containing the employee information, and
B, C, and D represent the address book, text document, and
web form, respectively. A′ represents a copy of different
data from the same window A (another employee’s contact
information). The destinations B′, C ′, and D′ represent the
pastes of data from A′ into the same windows B, C, and D.
An iterator would reduce the number of changes in window
focus by avoiding the need to iterate among B, C, and D
depositing the later copies from A′. In the proposed clip-
board in Figure 4, the dashed arrows between B and B′

represent a user pasting the latter data onto the clipboard,
using the iterator, and without changing window focus.



Figure 4. Iterator clipboard, shown with dis-
tribution pattern

4.1.4 Window Management
Changing focus between windows is distracting and time-
consuming, and it cannot be eliminated completely. We
have shown how changes in window focus can be decreased
by various automation techniques and motivated the need
for a support tool that reduces the number of changes in
window focus. However, we can also aim to reduce the time
it takes to perform this action. This is especially important
if the windows overlap, in which case the user must also
re-adjust to a new context. To reduce the delays introduced
by changes in window focus and context switches during
copy and paste activities, advanced window management
techniques such as restacking or rolling partially overlap-
ping windows have been shown to be effective [2]. Thus,
a feature that reduces the overhead of managing multiple
windows would be desirable.

4.2. Validation and Format Support

Errors are pervasive in copy and paste activities for pro-
fessional programmers working within single software ap-
plications [6]. Given that end users also perform program-
ming and data aggregation tasks, we conjecture that such
errors are likely to occur in end user tasks as well. Un-
fortunately, end users do not always have the benefit of a
compiler or test cases to alert them when errors exist.

It has been observed that programmers often copy and
paste data and then modify it in the destination location to
adapt it to the new context [6]. Adding user-defined format-
ting support to clipboard items may help reduce the amount
of manual formatting users perform when transferring data
between two different locations, like transferring a list of
websites from a text document into HTML and adding the
correct tags. This type of behavior was observed with the
repeat pattern and with the distribution pattern, which were
the two most popular patterns. Topes is an example of a

data abstraction that could provide such support to the clip-
board by allowing users to define how the data should be
formatted, but generalizing this solution to data other than
small strings is still a challenge [8].

Copy and paste can also lead to context inconsistencies
in the paste location. With programming tasks, such in-
consistencies can lead to unintended program behavior and
errors. A solution to this problem could be to have the des-
tination applications search for type errors or have the des-
tination applications search for context dependencies that
appear when data is pasted. This would be similar to the
feature in some IDEs that points out potential compilation
errors, or the feature in spreadsheets that identifies incon-
sistencies between similar or related formulas.

Another error that can occur from copy and paste is in-
consistent data between the source and destination resulting
from updates in the source location. Consider the task Alex
performed in our first example. He compiles monthly re-
ports by copying data from emails, spreadsheets, and web-
sites and pasting it into report fields. If a website data
value changes, the report becomes inconsistent and Alex
unknowingly presents obsolete information. One solution
to this problem is to treat copied data like objects so that
all destination locations would reflect updates made to the
source data. A feature that represents pastes as references
to copied objects would provide such a solution. While
this might not be necessary for all types of data transfers,
it could be practical for reporting data or aggregation tasks.
Similar functionality has been provided in part for web ap-
plications through Clip, Connect, Clone, which allows users
to link data from web pages [4]. Object references could
also be enriched by keeping track of the data provenance, as
copy and paste actions form links between the source data
and its destinations [11]. These links may help users track
how data is transferred over time, thus, a feature that keeps
track of the provenance of pasted data would be useful.

4.3. Overview of the State of the Art
We have now identified and motivated twelve clipboard

support features found in the usage data and behavioral pat-
terns we uncovered in our user study. As indicated in this
discussion, there exist some tools that address many of these
features, but several of the features have not yet been ad-
dressed in any existing tools. Table 4 summarizes this set
of support features and identifies how existing tools provide
some of these features. Some tools are commercial, (Clip-
Mate [3] and MS Office [7]), while others are still in a pro-
totype stage (Citrine [12], Quick Click [1], Restacking [2],
and Topes [8]).

5 Conclusion
Studying end users and their behavior is no easy task.

End users vary greatly in their behavior based on their past



Table 4. Clipboard Support Features
Feature Citrine ClipMate MS Office Quick Click Restacking Topes
Works with all desktop applications - + - - + -
Holds multiple items at once + + + + - -
Extracts context from copied data + - - + - +
Facilitates pasting of multiple items at once + - - + - -
Sequentially iterates through multiple items - - - - - -
Reduces the number of changes in window focus + + + + - -
Reduces overhead of managing multiple windows - - - - + -
User-defined formatting support for clipboard items - - - - - +
Destination apps search for type errors - - - - - +
Destination apps search for context dependencies - - - - - -
Represents pastes as references to copied objects - - - - - -
Keeps track of provenance of pasted data - + - - - -

experiences with technology and the types of tasks they per-
form. However, in our study of 15 end users, we were able
to reveal some of the copy and paste habits of the end users.

We saw that end users are certainly creatures of habit and
perform the majority of their copy and paste tasks within
just a few applications. We also saw that repeating copy-
paste sequences between the same two windows, and dis-
tributing data from one source to multiple destination win-
dows, are the most popular behaviors. Furthermore, we
witnessed a need for introducing context and iteration to
the clipboard to reduce unnecessary changes in window fo-
cus and for tracking data provenance that is created through
the clipboard. All these findings motivate further study of
end user behavior and the development of tools with support
features, such as those that we have suggested, to make end
users’ data transfer tasks faster, more intuitive, and more
dependable.

Still, just extending the clipboard may not be the best
answer to end users’ computational needs. Perhaps it is time
to explore alternative and richer metaphors that transform
the clipboard from being a mere witness to data transfers, to
an intelligent and active participant in end users’ attempts to
harness the power of their systems.

Acknowledgments

We would like to thank the study participants for their
time, Witawas Srisa-an for assisting with recruitment, and
the anonymous reviewers of this paper for their helpful
comments. This work was supported in part by the EUSES
Consortium through NSF-ITR 0324861 and 0325273, and
CFDA#84.200A: Graduate Assistance in Areas of National
Need (GAANN).

References

[1] E. A. Bier, E. W. Ishak, and E. Chi. Entity quick click: Rapid
text copying based on automatic entity extraction. In CHI ’06
Ext. Abs. Human Facts. Comp. Sys., pages 562–567, 2006.

[2] O. Chapuis and N. Roussel. Copy-and-paste between over-
lapping windows. In Conf. Human Factors Comp. Sys.,
pages 201–210, 2007.

[3] ClipMate 7.3 - The Ultimate Clipboard Extender.
http://www.thornsoft.com/index.htm, 2008.

[4] J. Fujima, A. Lunzer, K. Hornbaek, and Y. Tanaka. Clip, con-
nect, clone: combining application elements to build custom
interfaces for information access. In Symp. User Inter. Soft.
Tech., pages 175–184, 2004.

[5] M. Kim, L. Bergman, T. Lau, and D. Notkin. An Ethno-
graphic Study of Copy and Paste Programming Practices in
OOPL. In Int’l. Symp. Emp. Soft. Eng., pages 83–92, 2004.

[6] A. J. Ko, H. Aung, and B. A. Myers. Eliciting design re-
quirements for maintenance-oriented ides: A detailed study
of corrective and perfective maintenance tasks. In Int’l Conf.
Soft. Eng., pages 126–135, 2005.

[7] Copy and paste multiple items by using the Of-
fice Clipboard. http://office.microsoft.com/en-
us/word/HA101636021033.aspx, 2008.

[8] C. Scaffidi, B. Myers, and M. Shaw. Topes: Reusable ab-
stractions for validating data. In Int’l Conf. Soft. Eng., pages
1–10, 2008.

[9] C. Scaffidi, M. Shaw, and B. Myers. Estimating the numbers
of end users and end user programmers. In Symp. Visual
Langs. Human-Centric Computing, pages 207–214, 2005.

[10] C. Scaffidi, M. Shaw, and B. Myers. Games programs play:
Obstacles to data reuse. In WEUSE, 2006.

[11] S. Stumpf, E. Fitzhenry, and T. G. Dietterich. The use of
provenance in information retrieval. Work. Princ. Prov., Nov.
2007.

[12] J. Stylos, B. A. Myers, and A. Faulring. Citrine: Providing
intelligent copy-and-paste. In Symp. User Inter. Soft. Tech.,
pages 185–188, 2004.

[13] G. Wallace, R. Biddle, and E. Tempero. Smarter cut-and-
paste for programming text editors. In Australasian Conf. on
User Interface, pages 56–63, 2001.


