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Fair Enough: Searching for Sufficient Measures of Fairness
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Testing machine learning software for ethical bias has become a pressing current concern. In response, recent

research has proposed a plethora of new fairness metrics, for example, the dozens of fairness metrics in the

IBM AIF360 toolkit. This raises the question: How can any fairness tool satisfy such a diverse range of goals?

While we cannot completely simplify the task of fairness testing, we can certainly reduce the problem. This

article shows that many of those fairness metrics effectively measure the same thing. Based on experiments

using seven real-world datasets, we find that (a) 26 classification metrics can be clustered into seven groups

and (b) four dataset metrics can be clustered into three groups. Further, each reduced set may actually predict

different things. Hence, it is no longer necessary (or even possible) to satisfy all fairness metrics. In summary,

to simplify the fairness testing problem, we recommend the following steps: (1) determine what type of

fairness is desirable (and we offer a handful of such types), then (2) lookup those types in our clusters, and

then (3) just test for one item per cluster.

For the purpose of reproducibility, our scripts and data are available at https://github.com/Repoanon

ymous/Fairness_Metrics.
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1 INTRODUCTION

The issue of bias in the Artificial Intelligence (AI) and machine learning (ML) community
has gained much momentum in the last few years. Increasingly, the software is being used for crit-
ical automated decision-making processes, such as patient release from hospitals [14, 80], credit
card applications [45], hiring [78], and admissions [17]. According to guidelines from the European
Union [12] and IEEE, the software cannot be used in real-life applications if it is found to be discrim-
inatory toward an individual based on any sensitive attribute such as gender, race, or age. Hence
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“fairness testing” is now an open and pressing problem in software engineering. Researchers are
working on topics such as fairness and bias in ML, and the explainability of “black-box” models,
which focus on the risks and drawbacks of using ML in automated decision-making. Research in-
stitutions, private companies, and public sector organizations are formulating ethical principles
and guidelines for the responsible use of AI systems. To create and establish such principles and
guidelines, we need definitions of fairness. Thus, over the past few years, to measure fairness, re-
searchers have proposed a plethora of fairness metrics that try to formalize different perspectives
from which to assess and monitor fairness in decision-making processes. That number is growing
(e.g., see all the metrics proposed in References [18, 23, 59]). Given that, it is somewhat strange to
report that researchers in this area only use a few metrics in their papers [35, 50, 56, 61, 72, 87].
For example, in our literature review of papers from the past 3 years, we see only a handful of
papers (13 of 60, to the best of our knowledge) using more than five fairness metrics to evaluate
their method. This is surprising, since all of them ignore more than half the available metrics. Is
that wise? Can only a few fairness metrics help us detect all types of bias, or do we need to use all
of them? Moreover, if only a few can satisfy all fairness measures, then which few do we choose?

Recently, the authors faced a similar methodological issue where reviewers challenged the va-
lidity of the metrics they used to assess that work. Prompted by that experience, we examined
how the current SE research community selects metrics for assessing the fairness of algorithmic
decision-making from an empirical point of view. Verma et al. [86] mentions that statistical def-
initions of metrics are often insufficient, and it is often unclear how metrics will perform when
applied in real data. They also said that these theoretical definitions could be biased given the
implicit biases of the expert. Thus an empirical analysis of these metrics is necessary, along with
a theoretical analysis. Also, their theoretical results were not consistent with empirical observa-
tions (specifically, they found that theoretically similar metrics proved to show different empirical
performances). For example, our reading of the literature is that it often contains what might be
called an anti-pattern:

• While the literature proposes a plethora of metrics1

• We could not find a principled argument (across a large space of known metrics) that it was
necessary/unnecessary to report some metric X.

This raises various methodological questions:

• Should we reject papers that “only” use (e.g.,) five metrics? Or should researchers always use
dozens of metrics?
• When we use automatic tools to optimize for fairness, should we optimize for dozens of

goals? Or is optimizing for a smaller set sufficient?

To resolve these methodological concerns, we made the following conjecture. Given the large
space of known metrics (such as the 30 studied in this article), perhaps many of these metrics are
measuring the same thing. As shown by the experiments of this article, this is indeed the case, since
we can cluster these 30 metrics into around half a dozen. While our results pertain to a particular
domain, there is nothing in principle stopping this methodology from being applied to any domain
where researchers keep proposing new metrics without first checking if the new metric is not just
“old wine in new bottles.”

The conjecture of this paper test is that too many spurious metrics all measure very similar things.
If that were true, then it should be possible to simplify the fairness assessment as follows:

1For example, the Fairlearn [18] tool lists 16 metrics; the Fairkit-learn tool [59] comes with its own 16 metrics; IBM AIF360

toolkit [23] offers 45 fairness metrics.
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Run metrics on real-world data. Find clusters of correlated metrics. Prune “insensitive
clusters.”2 Only use one metric per surviving cluster.

This article experiments with seven datasets and finds that (a) 26 classification fairness metrics
can be clustered into just seven groups, (b) four dataset metrics can be clustered into three groups,
and (c) these clusters actually predict for different things. It is no longer necessary (or even possible)
to satisfy all these fairness metrics. Hence, to simplify fairness testing, we recommend (a) deter-
mining what type of fairness is desirable (and we offer a handful of such types), then (b) looking
up those types in our clusters, and then (c) testing for one item per cluster.

This article is structured around these research questions.
RQ1: Do current fairness metrics agree with each other? Our experiments show that current

fairness metrics often disagree with each other.
RQ2: Can we group (cluster) fairness metrics based on similarity? Based on our experimental

framework with agglomerative clustering [5], we could find seven meaningful clusters for 26 clas-
sification metrics and three clusters for four dataset metrics. Each of the resultant clusters mea-
sures different types of bias, and selecting one metric from each should be representative enough
to measure an increase or decrease in bias in other metrics in the same cluster.

RQ3: Are some fairness metrics more sensitive to change than others? Our result shows that while
most metrics are sensitive to the changes in bias in the model, some metrics (specifically between
group individual fairness metrics) are not.

RQ4: Can we achieve fairness based on all the metrics at the same time? Our results show that
while achieving fairness based on some metrics is possible, achieving fairness based on all the
metrics is challenging, since some are competing goals and some are contradictory based on
definitions.

In terms of research contributions, this study is important, since the art of software fairness
testing is evolving rapidly. Studies like this one are essential to documenting what methods are
“best” (as opposed to those that might distract from core issues). Accordingly,

• This article proposes a novel metric assessment tactic that can clarify and simplify future re-
search reports in this field (run metrics on real-world data; find clusters of correlated metrics;
prune “insensitive clusters1”; only use one metric per surviving cluster).
• This article tests that tactic in an extensive case study applying 30 fairness metrics and groups

them into clusters (RQ1 and RQ2). This study is extensive, since it is far more detailed than
prior work. All our empirical results were repeated 100 times. Our study explores multiple
bias mitigation algorithms on seven datasets (than prior work [34, 36–38, 55] was tested on
far fewer metrics and far fewer datasets).
• To the best of our knowledge, this study is the first to perform such a sensitivity meta-analysis

of fairness testing and to warn that some metrics are unresponsive to data changes (RQ3).
• This study also presents a meta-analysis of metrics ability to achieve fairness after applying

the bias mitigation technique (RQ4).
• To support replication and reproduction of our results, all our datasets and scripts are pub-

licly available at https://github.com/Repoanonymous/Fairness_Metrics.

1.1 Preliminaries

Before beginning, we digress to make four points.
First, mitigating the untoward effects of AI is a much broader problem than just exploring bias

in algorithmic decision-making (as done in this article). The general problem of fairness is that

2Note: Here, by “insensitive” clusters, we mean those where changes to the data do not change the fairness scores.
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Table 1. Mathematical Definitions of the Classification and Dataset Metrics Used in This Research

Metric Id
(MID)

Metric Name Description Ideal Value AIF360 Fairkit Fairlearn

Classification Metrics

C0 true_positive_rate_difference T P RD=unprivileged −T P RD=privileged 0 � � �
C1 false_positive_rate_difference F P RD=unprivileged − F P RD=privileged 0 � � �
C2 false_negative_rate_difference F N RD=unprivileged − F N RD=privileged 0 � � �
C3 false_omission_rate_difference F ORD=unprivileged − F ORD=privileged 0 � �
C4 false_discovery_rate_difference F DRD=unprivileged − F DRD=privileged 0 � �
C5 false_positive_rate_ratio F P RD=unprivileged /F P RD=privileged 1 � � �
C6 false_negative_rate_ratio F N RD=unprivileged /F N RD=privileged 1 � � �
C7 false_omission_rate_ratio F ORD=unprivileged /F ORD=privileged 1 � �
C8 false_discovery_rate_ratio F DRD=unprivileged /F DRD=privileged 1 � �
C9 average_odds_difference

1
2 (false_positive_rate_difference
+ true_positive_rate_difference)

0 � �

C10 average_abs_odds_difference
1
2 ( |false_positive_rate_difference |
+ |true_positive_rate_difference |) 0 � �

C11 error_rate_difference ERRD=unprivileged − ERRD=privileged 0 � �
C12 error_rate_ratio ERRD=unprivileged /ERRD=privileged 1 � �
C13 selection_rate Pr (Ŷ = f avor able ) 0 � �
C14 disparate_impact Pr (Ŷ = 1 |D = unprivileged)/Pr (Ŷ = 1 |D = privileged) 1 � � �
C15 statistical_parity_difference Pr (Ŷ = 1 |D = unprivileged) − Pr (Ŷ = 1 |D = privileged) 0 � � �
C16 generalized_entropy_index 1

nα (α−1)

∑n
i=1[(

bi
μ )α − 1] where bi = ŷi − yi + 1 0 �

C17
between_all_groups_generalized
_entropy_index

generalized_entropy_index between all groups 0 �

C18
between_group_generalized
_entropy_index

generalized_entropy_index
between privileged and unprivileged groups

0 �
C19 theil_index 1

n

∑n
i=1

bi
μ ln

bi
μ 0 �

C20 coefficient_of_variation 2 ∗
√

generalized_entropy_index 0 �
C21 between_group_theil_index theil_index between privileged and unprivileged groups 0 �
C22

between_group_coefficient
_of_variation

coefficient_of_variation privileged and unprivileged groups 0 �

C23
between_all_groups_theil
_index

theil_index between all groups 0 �

C24
between_all_groups_coefficient
_of_variation

coefficient_of_variation between all groups 0 �

C25
differential_fairness_bias
_amplification

Smoothed EDF between the classifier and the original dataset 0 �
Dataset Metrics

D0 consistency 1 − 1
n∗n_neiдhbor s

∑n
i−1 |ŷi −

∑
j∈Nnn eiдhbor s (xi )

ˆjy | 1 �

D1
smoothed_empirical
_differential_fairness

Smoothed EDF 0 �
D2 mean_difference Pr (Ŷ = 1 |D = unprivileged) − Pr (Ŷ = 1 |D = privileged) 0 �
D3 disparate_impact Pr (Ŷ = 1 |D = unprivileged)/Pr (Ŷ = 1 |D = privileged) 1 �

Definitions are collected from IBM AIF360 [23], Fairkit-learn [59], and Fairlearn [18]. For definitions of the terms used

here, see Table 3.

influential groups in our society might mandate systems that (deliberately or unintentionally) dis-
advantage sub-groups within that society. An algorithm might satisfy all the metrics of Table 1
and still perpetuate social inequities. For example,

• Its license feeds might be so expensive that only a small monitory of organizations can boast
they are “fair”;
• The skills required to use a model’s API might be so elaborate that only an elite group of

programmers can use it, even if the model is fair.

Gebru et al. [19, 30] argue that inequities arise from the core incentives that drive the organiza-
tions building an AI model, e.g., tools funded by the Defence Department tend to support damage
to property or life. She argues, “There needs to be regulation that specifically says that corpora-
tions need to show that their technologies are not harmful before deploying them.” In terms of her
work, this article addresses the technical issue of how to measure “harm.” As shown in Table 1,
there are dozens of ways we might call software “biased” (and, hence, harmful). However, we can
also show that many measures are relatively uninformative. Hence, if some organization wishes to
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follow the recommendations of Gebru et al., then with the methods of this article, they can make
their case of “harmless” via a smaller and simpler report.

Second, Table 1 lists dozens of metrics currently seen in the SE fairness testing literature. This ar-
ticle makes an empirical argument that this list is too long, since many of these metrics offer similar
conclusions. One alternative to our empirical argument is an analytical argument that, for example,
metric X is equivalent to metric Y. Later in this article (see Section 5.1), we make the case that to
reduce the space of metrics to be explored, that kind of analytical argument may be misleading.

Third, to be clear, while we can reduce dozens of metrics down to 10, there will still be issues of
how to trade off within this reduced set. That said, we assert our work is valuable, since debating
the merits of, say, 10 metrics is a far more straightforward task than trying to resolve all the
conflicts between 30. Further, and more importantly, our methods could be used as a litmus test to
prune away spurious new metrics that merely report old ideas but in a different way.

Fourth, even after our mitigation algorithms, some fairness metrics still can contradict each other
regarding the presence of bias. Hence, in Section 5.3, we offer an extensive discussion on what to
do in that situation.

2 BACKGROUND

2.1 The Problem of Algorithmic Fairness

As software developers, we cannot turn a blind eye to the detrimental social effects of our software.
While no single paper can hope to fix all social inequities, this article shows how to reduce the com-
plexity involved in assessing one particular kind of unfairness (algorithmic decision-making bias).
There is much evidence of ML software showing discriminatory behavior. For example, language
processing tools are more accurate in English written by Anglo-Saxons than written by people of
other races [28]. An Amazon hiring tool was biased against women [11]. YouTube makes more
mistakes while generating closed captions for videos with female voices than males [68, 81]. A
popular risk-score predicting algorithm was found to be heavily biased against African Americans,
showing a higher error rate while predicting future criminals [8]. Gender bias is also prevalent in
Google [31] and Bing [59] translators.

Due to so many undesirable events, academic researchers and big industries have started giv-
ing immense importance to ML software fairness. Microsoft has launched ethical principles of AI
where “fairness” has been given the topmost priority [16]. IBM has built a toolkit called AI Fair-
ness 360 [23] containing the most notable works in the fairness domain. The software engineering
research community has also started exploring this topic in recent years. ICSE’18 held a special
workshop for “software fairness” [13]. ASE’19 held another workshop called EXPLAIN, where
fairness and explainability of ML models were discussed [15]. Johnson et al. have created a public
GitHub repository for data scientists to evaluate ML models based on quality and fairness metrics
simultaneously [59].

As to technology developed to detect and fix these issues of fairness, we can see three groups:
fairness testing, model-based mitigation, and fairness metrics.

Fairness Testing: The idea here is to generate discriminatory test cases and find whether the
model shows discrimination. The first work on this was THEMIS, done by Galhotra et al. [54].
THEMIS generates test cases by randomly perturbing attributes. AEQUITAS [83] improves the
way of test case generation to become more efficient. Aggarwal et al. combined local explanation
and symbolic execution to generate a better black-box testing strategy [20].

Model Bias Mitigation: Three techniques are used to remove bias from model behavior. The
first one is “pre-processing,” where bias is removed from training data before model training. Some
popular prior work includes optimized pre-processing [32], Fair-SMOTE [37], and reweighing [62].
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The second one is “in-processing,” where the trained model is optimized for fairness after model
training. Popular prior work includes prejudice remover regularizer [65] and meta fair classi-
fier [33]. The last one is “post-processing,” where model output is changed to remove discrimi-
nation while making predictions. Some noted works include reject option classification [64] and
calibration [72]. Some work combines two or more of these techniques, such as Fairway [38], a
combination of “pre-processing” and “in-processing.”

While fairness testing and model bias mitigation are essential areas, we note that before we can
declare success in those two areas, we first need some way to measure that success.

Accordingly, this article focuses on the third area called:
Fairness Metrics: Early work in this area was done by Verma et al. [86] who divided 20 fair-

ness metrics into five groups based on the theoretical definitions. They say in their paper that
although statistical definitions of fairness metrics are easy to measure, they are often insufficient,
and it is often unclear how metrics will perform when applied to real data. They also said that
these theoretical definitions could be biased given the implicit biases of the expert. Hinnefeld et al.
made a comparative empirical analysis of six fairness metrics [57] on one dataset (with artificially
introduced bias in the dataset). They showed that not all metrics similarly distinguish bias, and the
sensitivity of metrics differs from metric to metric and is dependent on types of bias. Wang et al.
did a user study to find a relation between fairness metrics and human judgments [88]. There are
also some papers coming from the industry on the topic. LinkedIn has created a toolkit called LiFT
for scalable computation of fairness metrics as part of large ML systems [85]. Recently, Amazon
internally published an empirical study based on 18 fairness metrics [49].

The above work has now generated a plethora of metrics—so many that we are left to speculate
about overlaps and redundancies in all those different measures. Hence, in this article, we check
if we can simplify the current space of metrics by performing an empirical analysis of fairness
metrics that includes verifying their fairness agreement, grouping, and sensitivity.

2.2 Metrics Used in This Study

In our work, we collected all the metric definitions from the IBM AI Fairness 360 GitHub repository.
Table 1 lists the metrics studied in this article. The Fairkit and Fairlearn columns in Table 1 show
the metrics that are common among the IBM AIF360 metrics and metrics from Fairkit [59] (16 of
16 available metrics) and Fairlearn [18] (7 of 16 metrics) toolkit.

Before explaining fairness metrics, we need to understand some terminology. Table 2 contains
seven binary classification datasets. The binary outcomes are favorable if it gives an advantage to
the receiver (i.e., being hired for a job, getting a credit card approved). Each of these datasets has at
least one protected attribute that divides the population into two groups (privileged & unprivileged)
that have differences in terms of benefits received. “sex,” “race,” and “age” are examples of protected
attributes. The goal of group fairness is that privileged and unprivileged groups will be treated
similarly based on the protected attribute. In contrast, individual fairness tries to provide similar
outcomes to similar individuals.

A fairness metric quantifies unwanted bias in training data or models. Table 1 shows a sample
of such metrics. When selecting these particular metrics, we skipped over the following:

• Metrics for which we could not access precise definitions and implementations in IBM
AIF360 toolkit [23];
• Metrics for which we could not find publications to use as baselines in this article.

These two selection rules resulted in the 30 metrics of Table 1, which divide as follows:
Classification Metrics: These measure fairness based on classification results and are labeled

in Table 1 using a Metric Id beginning with C. Two inputs are needed to measure this: The first
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Table 2. Details of the Datasets Used in This Research

Dataset #Rows #Features Protected Attribute Class Label
Privileged Unprivileged Favorable Unfavorable

Adult Census
Income [2]

48,842 14
Sex-Male

Race-White
Sex-Female

Race-Non-white
High Income Low Income

Compas [7] 7,214 28
Sex-Male

Race-Caucasian
Sex-Female

Race-Not Caucasian
Did not reoffend Reoffended

German Credit [3] 1,000 20 Sex-Male Sex-Female Good Credit Bad Credit
Heart Health [4] 297 14 Age-Young Age-Old Not Disease Disease
Bank Marketing [9] 45,211 16 Age-Old Age-Young Term Deposit - Yes Term Deposit - No
Student
Performance [6]

1,044 33 Sex-Male Sex-Female Good Grade Bad Grade

Titanic ML [10] 891 10 Sex-Male Sex-Female Survived Not Survived

Table 3. Mathematical Definition of Various Confusion

Matrix-based Rates

Actual Positive Actual Negative

Predicted
Positive

TP
PPV = TP/(TP+FP)
TPR = TP/(TP+FN)

FP
FDR = FP/(TP+FP)
FPR = FP/(FP+TN)

Predicted
Negative

FN
FOR = FN/(TN+FN)
FNR = FN/(TP+FN)

TN
NPV = TN/(TN+FN)
TNR = TN/(TN+FP)

These are used to calculate fairness metrics defined in Table 1.

one is the original dataset with true labels, and the second one is the predicted dataset. In the case
of binary classification, classification metrics can be calculated from the confusion matrix. Table 3
shows a combined confusion matrix where every cell is divided based on the protected attribute.

Dataset Metrics: While classification metrics relate to predictions made from models, dataset
metrics discuss learner-independent properties of the data. These are labeled in Table 1 using a
Metric Id beginning with D. Only one input is needed to compute this: the original dataset or
transformed (by some bias mitigation algorithm) dataset. It can be applied for both group and
individual fairness.

Distortion Metrics: For completeness, we note that AIF360 includes a third set of metrics called
distortion metrics. While these metrics are not seen extensively in the current literature, they would
be a worthy target for future research.

In Table 1, each metric has an ideal value representing the best-case scenario. This means that
at an ideal value, according to the metric privileged and unprivileged groups are treated equally.
For most metrics, the ideal value is zero, while in some cases where the metric is a ratio, the ideal
value is one. If the ideal value for a metric is zero, then a positive value denotes an advantage
for the unprivileged group, while a negative value denotes an advantage for the privileged group.
However, if the ideal value for a metric is one, then a value <1 denotes an advantage for the
privileged group, and >1 denotes an advantage for the unprivileged group.

To use these metrics, some threshold must be applied to report “fair” or “unfair”:

• For metrics with ideal value 0: The IBM AIF360 toolkit [23] uses the following definition of
“fair”: ranges between −0.1 to 0.1 as “fair” (so “unfair” means values outside that range).
• For metrics with ideal value 1: The IBM AIF360 toolkit [23] uses the following definition of

“fair”: ranges between 0.8 to 1.2 as “fair” (so “unfair” means values outside that range).
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3 METHODS

All our research questions use data collected from the methods described in this section. We first
describe the experimental methodology followed by detailed descriptions of the component used.

3.1 Experimental Setup

We summarize our experimental setup as follows.

3.1.1 Data Pre-processing. Three different pre-processing steps are performed before using the
data [53, 69, 77] for model building. At first, each categorical value in the dataset is converted
either using a label encoder or one hot encoder, as most ML algorithms cannot handle categorical
values directly. Then the protected attributes are changed into ones and zeros from their original
values. Here we denote the privileged attribute as one and the unprivileged as zero. Finally, we use
min-max normalization in the datasets to normalize the data before building the models.

3.1.2 Model Training. We used fivefold cross-validation repeated 20 times with random seeds
build training/test sets (as recommended in References [63, 77, 84, 86]). This step divides the data
into multiple subsets of data with various degrees of bias. We train three models in each iteration.
(a) Baseline model: Here we use the training data to build a logistic regression model. (b) Reweighing
model: Here we first train the reweighing method and then use the learned model to transform the
training data to achieve group fairness. Using the transformed data, we train a logistic regression
from scikit-learn with “l2” regularization, “lbfgs” solver, and maximum iteration of 1,000. (c) Meta
Fair Classifier model: Here to train the meta fair classifier model, we use the training data to build
multiple meta fair classifier model with different values of τ (a hyperparameter for fairness penalty
in the model) and measure the bias in the model using the validation set. Then to build the final
model, we select the τ for which the model had the lowest bias in the validation set and build the
final meta fair classifier model.

3.1.3 Fairness Metric Calculation. We collect the performance of each model based on 26 clas-
sification and four dataset metrics for each iteration of the cross-validation. So for each iteration,
we use the test data for prediction, and then the predicted values, along with the ground truth, are
used for calculating the 26 classification metrics. Similarly, we collect the four dataset metrics on
the baseline and reweighing method. The meta fair classifier is not applicable in the case of dataset
metrics.

3.1.4 Measure for Fairness. Data Pre-processing, Model Training, and Fairness Metric Calcula-
tion steps are performed for each of the seven datasets with fivefold repeat cross-validation. Then,
to measure if the model built on a dataset is fair or unfair according to a metric, we selected a
threshold for each metric. As mentioned in Section 2.2, that threshold is the fair range. If a metric
value falls in that range, then we say it “fair” otherwise “unfair.”

3.1.5 Building Clusters. One of the main goals of this study is to group a set of metrics together
that perform similarly and measure similar kinds of bias. We use 26 classification metrics calculated
on seven datasets with three different methods to calculate metric-to-metric correlation based on
the Spearman rank correlation coefficient. We do the same for the four dataset metrics as well.
This provides us with two correlation matrices: one 26 × 26 and one 4 × 4. After that, to build
the clusters using agglomerative clustering, we convert the similarity matrix into a dissimilarity
matrix [46, 58] using Equation (1). We use this dissimilarity matrix to create the clusters. The
agglomerative clustering process creates a dendrogram, as shown in Figure 1. To select the number
of clusters, we cut the dendrogram at a height where the clusters will remain unchanged with the
most increase/decrease of the cutting threshold. For classification metrics, we cut the dendrogram
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(Figure 1) at 0.57 as the clusters will remain unchanged between the cutoff values 0.49 and 0.64.
Finally, we get the clusters containing classification metrics measuring similar kinds of bias. We
perform the same process for dataset metrics and cut the dendrogram at the height of 0.4,

d (x ,y) = 1 − |sim(x ,y) |. (1)

3.1.6 Calculating Sensitivity. Research question four asks about the consistency of the metric
values for three cases: (a) raw data, (b) after applying Reweighing (RW), and (c) after applying
Meta Fair Classifier (MFC). As we are using fivefold cross-validation with 20 repeats for all the
datasets, we get 100 results for each dataset and report for all seven datasets:

• the median value: the 50th percentile (or Q2);
• the IQR: the (75–25)th percentile (or Q3 −Q1)

3.2 Models

This article analyzes the 30 fairness metrics in Table 1 using the seven datasets described in Table 2.
In that work, we use one baseline model and two models tuned by pre-processing and in-processing
algorithms to generate predictions that will be used for measuring the bias based on the 30 differ-
ent fairness metrics. We decided to use one baseline model (logistic regression) to have a model
that shows bias in different fairness measures, one pre-processing and one in-processing model
to remove that bias from the model based on two different types of techniques. We decided not
to use post-processing algorithms, as these do not create an unbiased model; instead, they modify
the output of the biased model to make the models fairer. We will use those metric values based
on the three models to answer all four research questions in this article:

• Baseline: We used a logistic regression model for creating baseline results. Logistic regres-
sion is widely used in the fairness domain as baseline model [32, 38, 40, 41, 65]. We will
be using this model in all four research questions as the baseline model to create clusters,
check fairness agreement between metrics, or to identify the sensitivity of metrics. We used
scikit-learn implementation with “l2” regularization (which helps to prevent over-fitting),
“lbfgs” solver (which is a quasi-Newton optimization algorithm), and maximum iteration of
1,000 (although the default value is 100 for scikit-learn logistic regression, we used 1,000 as
we tuned the model for convergence).
• Reweighing: This is a widely used [21, 23, 36, 60, 75] pre-processing method proposed by

Kamiran et al. [62]. Here, before model training, examples in each group and label are given
different weights to ensure fairness. We use this method to build the clusters, identify if some
fairness measures are more sensitive to changes than others, and verify if we can achieve
fairness for a model based on all metrics when the model is built using Reweighing.
• Meta Fair Classifier: This is an in-processing method proposed by Celis et al. [33], which

is a widely used meta-algorithm in the fairness research community [24, 34, 55, 71]. The
optimization algorithm is developed to improve 11 fairness metrics with minimal loss in
accuracy. Like Reweighing, we use this method to build the clusters, identify if some fairness
measures are more sensitive to changes than others, and verify if we can achieve fairness
for a model based on all metrics when the model is built using Meta Fair Classifier.

The last two bias mitigation algorithm implementations are taken from IBM AIF360 [23].

3.3 Agglomerative Clustering

Our metrics selection strategy requires a clustering algorithm. Two classes of such clustering
algorithms are (a) partitioning clustering and (b) hierarchical clustering. Here we are grouping
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fairness metrics based on similarity, not on distance, and we have no prior idea about the number
of clusters. Thus, in this case, the ideal choice is hierarchical clustering. Agglomerative cluster-
ing [5] is a hierarchical bottom-up clustering approach that is widely used in the ML commu-
nity [22, 46–48, 51, 70, 74, 79, 90]. In this approach, the closest pairs of items are grouped. The
closest of these groups are then grouped into a higher-level group. This repeats until everything
falls into one group. We used the agglomerative clustering method provided by scikit-learn with
the ward linkage method. Instead of measuring the distance directly, this method analyzes the
variance of clusters. The ward linkage method is based on merging clusters that minimize the in-
crease in sum-of-square errors; thus, clusters will only be merged when they are of similar type. To
achieve this, we used the average pairwise dissimilarity between objects in two different clusters
as linkage criteria between groups. This process creates a dendrogram, a hierarchical structure of
the groups/clusters obtained by between-cluster distance or dissimilarity. From this tree of group-
ings, we use the within-cluster similarity from the dendrogram and use elbow method [1, 44, 82]
to select the number of clusters to be formed. We extract the clusters at the largest change in
dissimilarity (which is similar to Sum of Squared Error).

3.4 Spearman Rank Correlation

To build the clusters and dendrograms, we measure the similarity of the two metrics. In this ar-
ticle, by “similarity” we mean they measure the similar bias in the models/dataset. Similar met-
rics will show a similar pattern of changes in bias when models are built using different parts
of the data or different bias removal algorithms. To compute this similarity, we sample from our
model training procedure (see Section 3.1.2) that computes our metrics 100 times, using different
train/validation/test samples of the data. Next, for each dataset, for those 100 numbers, we use
correlation to assess similarity.

Two widely used definitions of correlation [42, 46–48, 58, 73, 79, 90] are the (a) Pearson
correlation (which evaluates the linear relationship between two continuous variables) and
the (b) Spearman rank correlation (which is a non-parametric measure of rank correlation that
evaluates the monotonic relationship between two continuous or ordinal variables). We choose
Spearman rank correlation, as it measures the monotonic relationship between two variables and
is less affected by outliers.

4 RESULTS

Our results are organized based on four research questions.

First, we need to verify our motivation. In real life, do the fairness metrics contradict? Table 4
contains results for 26 classification metrics; Table 5 contains results for four dataset metrics. The
learner here is logistic regression. The last row contains the percentage of metrics marking the
specific dataset as unfair in both tables. If we combine last rows of Tables 4 and 5 and sort them in
ascending order, then we get the following list:

{23, 34, 50, 50, 50, 54, 58, 65, 75, 75, 75, 75, 77, 100}%.

The median value here is 62%; i.e., nearly half the time, the metrics make different conclusions
about the same data. This means that researchers and practitioners will be spending much effort
trying to understand their systems using disagreeing oracles (a result that motivates this entire
article).
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Table 4. Cluster-based Results for 26 Classification Metrics on Seven Datasets for Models Trained on All

Three Models

Datasets

Cluster
Id

MID Metrics
Adult Compas German Health Bank Student Titanic

Metric
Type

0 C3 false_omission_rate_difference Unfair Fair Fair Unfair Fair Fair Unfair
0 C7 false_omission_rate_ratio Unfair Fair Fair Unfair Fair Unfair Unfair
0 C11 error_rate_difference Unfair Fair Fair Unfair Fair Fair Fair
0 C12 error_rate_ratio Unfair Fair Fair Unfair Fair Fair Fair

fair/Unfair ratio 0/4 4/0 4/0 0/4 4/0 3/1 2/2
Percentage of agreement 100% 100% 100% 100% 100% 75% 50%

Mis-
classification

1 C10 average_abs_odds_difference Unfair Unfair Unfair Unfair Unfair Fair Unfair
1 C25 differential_fairness_bias_amplification Unfair Unfair Unfair Unfair Unfair Fair Unfair

fair/Unfair ratio 0/2 0/2 0/2 0/2 0/2 2/0 0/2
Percentage of agreement 100% 100% 100% 100% 100% 100% 100%

Differential
Fairness

2 C16 generalized_entropy_index Fair Unfair Unfair Fair Fair Fair Unfair
2 C19 theil_index Unfair Unfair Unfair Unfair Unfair Unfair Unfair
2 C20 coefficient_of_variation Unfair Unfair Unfair Unfair Unfair Unfair Unfair

fair/Unfair ratio 1/2 0/3 0/3 1/2 1/2 1/2 0/3
Percentage of agreement 67% 100% 100% 67% 67% 67% 100%

Individual
Fairness

3 C4 false_discovery_rate_difference Fair Fair Fair Fair Fair Fair Unfair
3 C8 false_discovery_rate_ratio Fair Fair Fair Fair Fair Unfair Unfair

fair/Unfair ratio 2/0 2/0 2/0 2/0 2/0 1/1 0/2
Percentage of agreement 100% 100% 100% 100% 100% 50% 100%

Mis-
classification

4 C0 true_positive_rate_difference Unfair Unfair Fair Unfair Unfair Fair Unfair
4 C1 false_positive_rate_difference Fair Unfair Unfair Unfair Unfair Fair Unfair
4 C2 false_negative_rate_difference Unfair Unfair Unfair Unfair Unfair Fair Unfair
4 C5 false_positive_rate_ratio Fair Unfair Unfair Unfair Unfair Fair Unfair
4 C6 false_negative_rate_ratio Unfair Unfair Unfair Unfair Unfair Unfair Unfair
4 C9 average_odds_difference Unfair Unfair Unfair Unfair Unfair Fair Unfair
4 C14 disparate_impact Unfair Unfair Unfair Unfair Unfair Unfair Unfair
4 C15 statistical_parity_difference Unfair Unfair Unfair Unfair Unfair Fair Unfair

fair/Unfair ratio 2/6 0/8 1/7 0/8 0/8 6/2 0/8
Percentage of agreement 75% 100% 88% 100% 100% 75% 100%

Confusion
Matrix Based

Group Fairness

5 C17 between_all_groups_generalized_entropy_index Fair Fair Fair Fair Fair Fair Fair
5 C18 between_group_generalized_entropy_index Fair Fair Fair Fair Fair Fair Fair
5 C21 between_group_theil_index Fair Fair Fair Fair Fair Fair Fair
5 C22 between_group_coefficient_of_variation Fair Fair Fair Fair Fair Fair Fair
5 C23 between_all_groups_theil_index Fair Fair Fair Fair Fair Fair Fair
5 C24 between_all_groups_coefficient_of_variation Fair Fair Fair Fair Fair Fair Unfair

fair/Unfair ratio 6/0 6/0 6/0 6/0 6/0 6/0 5/1
Percentage of agreement 100% 100% 100% 100% 100% 100% 83%

Between
Group

Individual
Fairness

6 C13 selection_rate Unfair Unfair Unfair Unfair Unfair Unfair Unfair
fair/Unfair ratio 0/1 0/1 0/1 0/1 0/1 0/1 0/1

Percentage of agreement 100% 100% 100% 100% 100% 100% 100%

Intermediate
Metric

Percentage of metrics marking dataset as unfair 58% 54% 50% 65% 50% 27% 73%

For a metric with ideal an value of zero, anything below −0.1 and above 0.1 is “unfair.” For a metric with an ideal value

of one, anything <0.8 or >1.2 is “unfair.”

Table 5. Cluster-based Results for Four Dataset Metrics on Seven Datasets for Models Trained

on Logistic Regression

Datasets

Cluster Id MID Metrics
Adult Compas German Health Bank Student Titanic

Metric
Type

0 D0 consistency Fair Unfair Fair Unfair Fair Unfair Fair Individual Fairness

1 D1
smoothed_empirical_
differential_fairness

Unfair Unfair Unfair Unfair Unfair Unfair Unfair Differential Fairness

2 D2 mean_difference Unfair Unfair Unfair Fair Unfair Fair Unfair
2 D3 disparate_impact Unfair Unfair Unfair Fair Unfair Fair Unfair

Confusion
Matrix Based

Group Fairness
Percentage of metrics marking dataset as unfair 75% 100% 75% 50% 75% 50% 75%

For a metric with ideal value of zero, anything below −0.1 and above 0.1 is “unfair.” For a metric with ideal value of one,

anything <0.8 or >1.2 is “unfair.”
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Fig. 1. Agglomerative clustering of classification metrics (using Spearman rank correlation). Here x-axis

shows the classification metric Ids from Table 1 andy-axis shows the dissimilarity measure between clusters.

Figure 1 shows the dendrogram created for the classification metrics using the method described
in Section 3.4. Based on this dendrogram, using the agglomerative clustering process, we created
seven clusters from the 26 classification metrics, as can be seen in Table 4. Table 5 shows that
four dataset metrics can be divided into three clusters using a similar process. These clusters are
formed using the spearman correlation results from all three models with fivefold cross-validation
repeated 20 times with random seed. More importantly, we note that

• RQ1 reported intra-project disagreement on “fair“-vs-“unfair”;
• We note that there is much intra-cluster agreement for each dataset in Tables 4 and 5.

As evidence, we note that the majority fairness decision is always the same within the clusters
for each dataset. In Table 4, the row Percentage of agreement comments on the uniformity of deci-
sions within each cluster (for each dataset). Note that uniformity is very high (often 100%). That
means metrics inside each cluster agree with each other for every dataset. Among the seven clus-
ters, we see six clusters (except cluster two) show 100% agreement considering the median value
across seven datasets. For example, in the case of cluster zero, the percentage of agreement is 100%
for five datasets, 75% for one, and 50% for one. The majority is 100%. That is true for clusters 1, 3,
4, 5, 6, and 7. We see similar agreement pattern inside clusters in Table 5 also.

For reference purposes, the last column of Tables 4 and 5 offers names for those clusters:

• Misclassification (cluster 0, 3): These metrics try to measure the difference or ratio of
misclassification errors between groups;
• Differential fairness (cluster 1): These metrics try to measure if probabilities of the out-

comes are similar regardless of the combination of protected attributes [52];
• Individual Fairness (cluster 2): It measures if two similar individuals with respect to the

classification task receive the same outcome or not;
• Confusion matrix based group fairness (cluster 4): These metrics measure difference

or ratio between groups based on confusion matrix;
• Between group individual fairness (cluster 5): Measures the difference or ratio of indi-

vidual fairness between groups;
• Intermediate metrics (cluster 6): These are intermediate metrics.
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Table 6. This Table Shows Sensitivity of the Classification Metrics on the Three Different Models Used

in This Study: (a) Baseline, (b) RW, and (c) MFC

Compas Health German

Baseline RW MFC Baseline RW MFC Baseline RW MFC
MID

Med IQR Med IQR Med IQR Med IQR Med IQR Med IQR Med IQR Med IQR Med IQR
C3 −0.077 0.081 −0.133 0.016 −0.058 0.041 −0.14 0.032 −0.211 0.062 −0.142 0.137 0 0.49 −0.503 0.676 0 0.587
C7 0.617 0.219 0.682 0.031 0.784 0.102 0.357 0.094 0.158 0.348 0.363 0.346 2.32 0.712 0.002 0.45 1.003 0.524
C11 −0.033 0.062 −0.023 0.032 −0.047 0.032 −0.117 0.01 −0.133 0.014 −0.089 0.121 0.061 0.069 0.059 0.102 0.047 0.056
C12 0.972 0.118 0.881 0.122 0.887 0.062 0.488 0.214 0.339 0.031 0.441 0.512 1.149 0.273 1.172 0.409 1.161 0.225
C10 0.292 0.052 0.03 0.023 0.181 0.042 0.141 0.094 0.106 0.076 0.161 0.062 0.224 0.163 0.045 0.048 0.031 0.119
C25 0.561 0.384 −0.223 0.128 0.361 0.153 0.173 0.25 −0.094 0.392 0.121 0.431 2.402 3.291 1.159 0.445 1.498 2.107
C16 0.209 0.001 0.185 0.012 0.183 0.007 0.103 0.004 0.087 0.014 0.089 0.027 0.073 0.016 0.069 0.021 0.057 0.014
C19 0.262 0.002 0.253 0.017 0.269 0.008 0.137 0.023 0.142 0.049 0.139 0.034 0.083 0.019 0.071 0.019 0.059 0.011
C20 0.908 0.001 0.872 0.037 0.876 0.018 0.592 0.009 0.589 0.061 0.598 0.079 0.561 0.037 0.532 0.039 0.483 0.041
C4 0.044 0.019 0.138 0.057 0.042 0.061 −0.092 0.123 −0.007 0.192 −0.018 0.149 0.061 0.129 0.059 0.109 0.052 0.063
C8 1.009 0.062 1.376 0.203 1.103 0.172 0 0.937 0.898 1.521 0.934 1.287 2.543 0.537 1.173 0.462 1.147 0.213
C0 −0.263 0.102 −0.004 0.102 −0.198 0.052 −0.116 0.119 0.132 0.237 −0.102 0.412 −0.077 0.089 0 0.036 −0.018 0.059
C1 −0.136 0.053 −0.018 0.026 −0.173 0.037 −0.194 0.058 −0.126 0.183 −0.108 0.129 −0.303 0.243 0 0.029 −0.053 0.176
C2 0.183 0.087 0.005 0.052 0.22 0.052 0.113 0.169 −0.131 0.241 0.118 0.392 0.076 0.083 0 0.038 0.017 0.062
C5 0.378 0.036 0.896 0.069 0.464 0.071 0.002 0.219 0.249 0.584 0.162 0.332 0.691 0.232 1.003 0.029 0.923 0.162
C6 1.631 0.251 1.009 0.128 1.421 0.152 1.397 0.493 0.389 1.283 1.429 2.043 3.387 0.52 0.002 5.529 11.362 3.345
C9 −0.182 0.052 −0.028 0.062 −0.172 0.042 −0.142 0.103 −0.052 0.162 −0.139 0.159 −0.219 0.167 0 0.038 −0.031 0.121
C14 0.472 0.076 0.882 0.143 0.571 0.061 0.238 0.14 0.435 0.282 0.367 0.281 0.842 0.123 1 0.045 0.922 0.112
C15 −0.281 0.053 −0.049 0.059 −0.205 0.031 −0.367 0.079 −0.289 0.169 −0.258 0.179 −0.159 0.121 0 0.043 −0.029 0.110
C17 0.003 0.002 0.001 0.003 0.001 0.002 0.001 0.003 0.002 0.002 0.002 0.001 0.001 0.002 0.002 0.001 0.001 0.001
C18 0.003 0.003 0.002 0.002 0.002 0.001 0.003 0.001 0.004 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.001 0.003
C21 0.002 0.002 0.002 0.004 0.001 0.001 0.002 0.001 0.002 0.002 0.001 0.001 0.003 0.002 0.003 0.001 0.002 0.001
C22 0.078 0.049 0.054 0.005 0.055 0.018 0.042 0.037 0.015 0.054 0.045 0.03 0.027 0.063 0.031 0.051 0.029 0.038
C23 0.002 0.005 0.001 0 0.002 0.001 0.003 0.003 0.004 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.004 0.001
C24 0.068 0.049 0.049 0.007 0.061 0.019 0.038 0.037 0.015 0.039 0.045 0.03 0.024 0.065 0.028 0.053 0.036 0.038
C13 0.385 0.019 0.441 0.013 0.413 0.017 0.397 0.05 0.391 0.131 0.411 0.056 0.921 0.015 0.955 0.031 1.001 0.041

The table shows the median and IQR values of three datasets. Here the cells in IQR columns are marked with “red”

those that change by more than a small amount (35th percentile of the standard deviation of the IQR values). The

insensitive metrics are those that usually have white IQR values.

From a practitioner’s viewpoint, this clustering is useful because

• The clustering reduces the confusion of having too many metrics and not knowing their
similarity.
• As the metrics inside the same cluster measure the same kind of bias and behave in the same

manner, we can choose just one metric from each cluster. Thus we measure a few metrics
but can cover a much more comprehensive range of fairness notions.
• If we see agreement among all the metrics inside a cluster for a particular dataset, then one

metric can be chosen as representative of the whole cluster.
• In case of intra-cluster conflicts, choosing only one metric can be risky. Practitioners must

conduct a proper risk assessment before selecting metrics in these cases. That said, if there is
intra-cluster conflict among metrics, then policymakers can choose one from the “fair” group
and one from the “unfair” group to mitigate that risk, i.e., if a cluster shows two metrics are
“fair” and one “unfair,” then we select two metrics from this cluster, one of the metrics that
is from “fair group” and select the metric that shows “unfair.”

As part of this study, we further analyzed each cluster mathematically to verify if our cluster of
metrics and their mathematical definitions coincide. A detailed analysis of these clusters and their
mathematical analysis has been discussed in Section 5.1.
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Table 7. This Table Is Similar to Table 6, Showing the Sensitivity of the Dataset Metrics

on (a) Baseline and (b) RW

Compas Health German

Baseline RW MFC Baseline RW MFC Baseline RW MFC
MID

Med IQR Med IQR Med IQR Med IQR Med IQR Med IQR Med IQR Med IQR Med IQR
D1 0.548 0.023 0.568 0.021 — — 0.814 0.02 0.803 0.02 — — 0.636 0.008 0.641 0.007 — —
D2 0.257 0.043 0 0 — — 0.867 0.325 0.001 0 — — 0.301 0.095 0.002 0 — —
D3 −0.112 0.016 0 0 — — −0.325 0.058 0 0 — — −0.087 0.032 0 0 — —
D4 0.778 0.033 1 0 — — 0.413 0.128 1 0 — — 0.856 0.042 1 0 — —

Table 8. The Number of Classification Metrics That

Move toward or away from the Ideal Value when

Either Reweighing or Meta Fair Classifier Is Used to

Remove Bias in the Models

Reweighing
(RW)

f Meta Fair
fClassifier (MFC)

Dataset
UF FU NC UF FU NC

Adult 13 13 0 11 15 0
Compas 15 7 4 16 6 4
Health 17 5 4 17 7 1
German 19 6 1 19 7 0
bank 16 6 4 15 7 4
Titanic 11 15 0 17 9 0
Student 15 7 4 12 10 4

Here “UF” shows the number of metrics that moved

toward the ideal metric value, while “FU” shows the

opposite. Finally, “NC” shows the number of metrics that

did not change at all.

An ideal metric is responsive to the dataset it examines. An “insensitive” metric is one that
delivers the same conclusions, no matter what data are being examined. An “insensitive” cluster is
one containing mostly insensitive metrics. Such insensitive clusters could be ignored, since they
are not informative.

We measure sensitivity by looking at the variability of our metrics scores using the intra-quartile

range (IQR=Q3 −Q1). For each dataset, we found the IQR across all clusters. Next, we highlight

the sensitive results; i.e., those with an IQR greater than d* standard deviation. The remaining
unhighlighted results are the insensitive metrics.

As to what value of d to use in this analysis, we take the advice of a widely cited paper by
Sawilowsky [76] (this 2009 paper has 1,100 citations). That paper asserts that “small” and “medium”
effects can be measured using d = 0.2 and d = 0.5 (respectively). We will analyze this data by
splitting the difference looking for differences larger than d = (0.5 + 0.2)/2 = 0.35.

Turning now to Tables 6 and 7, we see that most clusters have highlight IQR results. However,

in Table 6, we see the clusters formed by metrics C16, C19, C20 (individual fairness) and C17, C18,
C21, C22, C23, C24 (between group individual fairness) are insensitive. This, in turn, means that
we should not criticize a fairness analysis that ignores these metrics.
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Different fairness metrics measure different kinds of bias. If any of the metrics complain about
the fairness of the test results, then we cannot trust the model blindly, and it should go through
further scrutiny and improvement. Bias mitigation algorithms try to make unfair models fairer.
Here we are verifying whether, even after applying bias mitigation algorithms, we can achieve
fairness based on all the metrics We have chosen two highly cited algorithms from IBM AIF360:
RW by Kamiran et al. [62] and Meta Fair Classifier by Celis et al. [33].

Table 8 shows the results collected for seven datasets after using the RW and MFC algorithms.
For every dataset (row-wise), we show the number of metrics changed toward or away from its
ideal value. In that table:

• FU denotes the metrics that changed toward ideal value;
• UF denotes the metrics that moved away from the ideal value,
• NC means the metrics that did not change.

Note that majority of the metrics move toward “fair,” but there are some metrics that move
toward “unfair.” For Reweighing, some metrics show “no change,” but we have verified they always
remain in the fair range.

The main takeaway is that it is no longer necessary (or even possible) to satisfy all these fairness
metrics. While our analysis can reduce dozens of metrics down to 10, there will still be issues of
how to trade off within this reduced set. Even after applying bias mitigation approaches, some
metrics still conflict with others. This finding is similar to the claim made by others:

• Berk et al. [25] offer an “Impossibility Theorem” that says there is no way to satisfy all kinds
of fairness together.
• As Yuriy Brun said at his keynote at ICSSP’2020 “we need to work the system in a biased way

sometimes” [29].

In terms of the Brun quote, we would say agree that some biases are necessary (to guide a
search), and too many biases mean we cannot make a conclusion (since what satisfies one bias
will not satisfy another). We have shown that dozens of seemingly different biases can be resolved
to a much smaller set, making subsequent reasoning simpler and more straightforward.

5 DISCUSSION

We have described all of our results. Here we summarize the results comprehensibly to reach a
stable conclusion. The main idea of this work is to reduce the complexity of measuring fairness.
That said, it is imperative that we narrate our conclusions in a straightforward way. We discuss
three major concerns arising from Section 4 and try to simplify fairness measurement to our best.

5.1 Why Not Group Metrics via Their Analytical Structure?

This article has offered an empirical analysis that many of the metrics in Table 4 are synonymous,
since, when clustered, they fell together into just a few similar groups. In this section, we check if
the same conclusions can be achieved from a more analytical analysis that looks at the structure
of the equations for the fairness metrics.

Sometimes, a group generated by the formula’s analytical structure is similar to the clusters we
generated above. For example:

• In cluster three (from Table 4), all metrics are based on FDR, which suggests that both from
an empirical and analytical point of view, they should be similar.
• Also, in cluster zero, we see that all those metrics are based on FOR and error rate. Intuitively,

this seems sensible, since metrics try to measure the amount of misclassification here.
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That said, as shown by the following three examples, there are many examples where an equa-
tion’s analytical structure does not predict for its empirical cluster.

• EXAMPLE #1: If we look at cluster five, then all six metrics inside this cluster are related to
“between group individual fairness.” This metric is based on the same benefit function:

y = ŷ − y + 1 (2)

(for more details on that, see Table 1 metric id C16.) We note that cluster two is also based on
Equation (2), but the metrics inside this cluster represent individual fairness for each group
separately. That means

Although all metrics inside cluster two and cluster five are based on the same benefit func-
tion, they measure different definitions of fairness.

That is, a formal analysis of the analysis might combine these clusters, whereas a data-
oriented empirical analysis would argue for their separation.
• EXAMPLE #2: In cluster four from Table 1, the metrics C0, C1, C2, C5, C6, and C9 dependent

on TPR, FPR, and FNR. Recall that FPR and FNR report type one and type two errors (misclas-
sification on fairness). Now TPR can be expressed as 1 - FPR, which means the change in
TPR will mirror changes in FPR. In contrast, in this cluster, the other two metrics, C14 and
C15, are based on selection rate (ratio of the number of predicted positives and number of in-
stances). Although there is not much similarity in the formula between these two and other
metrics in this cluster, we can see they perform similarly when measuring fairness. That is:

An analytical analysis does not always reflect the measurement of fairness in the real-world
scenario.

Verma et al. [86] notice a similar phenomenon where they observe that Equal Predictive
parity (a measure they explore) should also have equal FDR ... but when measured from an
empirical point of view, they showed they are not the same.
• EXAMPLE #3: In cluster one, metrics C10 and C25 have very different mathematical formu-

las. C10 is based on FPR while C25 is based on smoothed empirical differential fairness

(EDF). EDF is calculated based on Dirichlet smoothed base rates for each intersecting group
in the dataset, based on the count of predicted positives. Here as well, we see that

Two formulas with a different analytical structure can have a similar performance w.r.t.
fairness.

To summarize the above, we quote Alfred Korzybski, who warned:

A map is not the territory.

While the analytical structure of the formula offers intuitions about the nature of fairness, those
intuitions had better be checked via empirical analysis.

5.2 Is Our Empirical Analysis Useful?

We have established the requirement of empirical analysis, and we have also done that analysis.
We need to determine whether this analysis would be helpful in real-life applications. Here we
describe various scenarios of fairness contradiction and how our study helps to remove that.

Imagine a college admission decision scenario where the system might be seen as biased against
group B if applicants from group A are accepted more than group B. Here group A and group B
are divided based on different values of a protected attribute. The college applies a bias mitigation
approach to solve this problem using a group fairness metric by changing group A’s or B’s scoring
threshold. Now if a member of group A is rejected, while a member of group B has been accepted
with an equal or lower score, then the system might be seen as biased against that individual. The
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main takeaway from this story is that there is a conflict between “individual fairness” and “group
fairness” [26].

The concept of fairness is very much application specific and choosing the appropriate metric
is the sole responsibility of the policymaker. An ideal scenario will be building a machine learning
model that does not show any kind of bias. However, that is too good to be true. Brun et al. found
out that if a model is adjusted to be fair based on one protected attribute (e.g., sex), then in some
cases model becomes more biased based on another protected attribute (e.g., race) [13]. Kleinberg
and other researchers argue that different notions of fairness are incompatible, and hence it is im-
possible to satisfy all kinds of fairness simultaneously [67]. One thing to remember while making
a prediction is that fairness is not the only concern. Prediction performance is the most important
goal. Berk et al. found that accuracy and fairness are competing goals [25]. This tradeoff makes
the job even more complicated, since damaging model performance while making it fair may be
unacceptable.

As researchers, we know that satisfying all kinds of fairness together is not possible. A policy-
maker has to choose which fairness definitions are most important for a particular domain and
ignore the rest. Our work of dividing fairness tries to make the choice easier, as choosing metrics
from a group of 10 options is much simpler than choosing from 30 options. Using our results of
Tables 4 and 5, in a specific domain, if group fairness is more important than individual fairness,
then cluster four will be given more priority than clusters two and five (Table 4). Once a cluster is
given priority, one or two metrics can be chosen to represent the whole cluster. That means our
whole work boils down to minimizing the number of metrics to look at and covering a wide range
of fairness. We believe future researchers and industry practitioners will use our work as a guide
and that will be the fulfillment of this study.

5.3 What to Do When the Metrics Contradict Each Other?

We have seen that there are scenarios where fairness metrics contradict each other. According to
some metrics, the prediction is fair, whereas others disagree. Fairness metrics find out how critical
the errors of a prediction model are. It is the decision of the policymaker or the domain expert to
choose appropriate fairness metrics based on what kind of bias is more important for the specific
domain. For example, consider scenarios where models of health outcomes or student performance
have been built, which are unfair to certain protected groups (e.g., student progress models can
be unnecessarily biased by zip code of the student; patient health outcomes can be unnecessarily
biased by the income of the patient):

• Suppose we are predicting whether a patient has cancer or not, depending on the symptoms.
Here predicting a benign case as malignant is not very dangerous but predicting a malignant
case as benign is extremely dangerous. A wrong diagnosis for an actual cancer patient will
delay the treatment, and the patient may die. That means false negative is more important
here.
• Suppose we are predicting future performance of a student based on previous records. Here,

if we predict a good student as bad, then that is not that fatal. However, if a student who
needs special attention and help from teachers is given a good rating, then that student will
be miserable. That means false positive is more important here.

Now, based on the metric clusters defined in Table 4 and their definitions, we can say that if re-
searchers just care about bias in misclassification, that is, if the difference in performance between
two groups based on one protected attribute when the wrong classification is being made, then re-
searchers should focus more attention to cluster 0 and 3. While if they care about both correct and
misclassification between two groups based on one protected attribute, then researchers should

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 6, Article 134. Pub. date: September 2023.



134:18 S. Majumder et al.

focus on cluster 4. Now researchers need to focus on cluster 1 if multiple protected attributes are
being used in the model, and the model needs to be fair based on the inter-sectional AI fairness
criterion; that is, the bias in the model is not based on each protected attribute separately but
based on the combination of all. Now, if individual fairness is essential in a system, that is, similar
individuals are treated similarly regardless of their protected attributes, then researchers should
focus on metrics from cluster 2. Finally, researchers should focus on cluster 5 if the system needs
to be fair for each group based on a protected attribute when the fairness is measured for each
individual.

Now that we know which metrics look at what kind of bias, it will be easier for the decision-
maker to choose. That said, based on the guidance we have provided, one metric over another will
be given priority in case of contradiction among metrics.

6 THREATS TO VALIDITY AND FUTURE WORK

This article explores machine learning methods for software engineering. One issue with any paper
like this is a few selection and evaluation biases along with construct and external validity based
on the choice of models, datasets, and methods. In the future, we plan to address the apparent
threats to validity that this article has not fully addressed.

Construct Validity: Here we have used popular hierarchical clustering called agglomerative
approach, as the number of clusters was not known beforehand. In the future, we need to experi-
ment with other clustering techniques to check for conclusion stability. This analysis used logistic

regression (LR), as much prior work on fairness has also used LR [23, 38].
This research also does not explore hyperparameter optimization (HPO) as part of fine-

tuning the models. This is an important point, since some analyses may be biased because of
poorly tuned classification models. That said, we argue that the results of this study are still valid,
despite the lack of HPO, for the following two reasons:

• It is not correct to characterize the models used here as “poorly tuned classification models.”
We say this since this is not the first time we have analyzed this data. We have generated
predictions from these modes in prior publications [39, 41]. There, the observed precision,
recall, and false alarms were healthy (false alarms usually under 20%, never more than a
third; previsions and recalls often over 70 and never less than two-thirds).
• It is not easy to see how HPO could be applied in this context. If HPO was applied to the

metrics of Table 1, then some different results might arise. But given current limitations in
optimization technology, we would doubt the legitimacy of that study. There are 30+ listed in
Table 4. Given our current optimization technology, we cannot tune for 30+ goal problems–
which means to use HPO in this study, we would have to tune for some small subset of the
total set. This seems (at least to us) to be a somewhat perverse experiment, since it would
not result in an “apples-to-apples” comparison.

In the future, we plan to address the apparent threats to validity that this article has not fully ad-
dressed. Also, in other future work, we need to explore some other classification models, including
DL models. Also, the metric clusters found in Tables 4 and 5 are created using the results of our
choice ML models, dissimilarity measures, and cutting point in the dendrogram. Thus, choosing
one metric from each cluster may contain some risk, and researchers must be careful while making
informed choices about metric selection.

Evaluation Bias: We have used 30 metrics taken from IBM AIF360 [23]. We have also cov-
ered most of the metrics from Fairkit-learn [59] and Fairlearn [18]. There are other metrics and
definitions of fairness; thus, the results of this study may not generalize to all available metrics.
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Nevertheless, the 30 metrics covered in this study are widely used in the fairness domain [27, 43,
53, 66, 89]. In future work, we will need to run more metrics.

External Validity: We have used seven datasets. In the fairness domain, one big challenge is
the availability of adequate datasets. In future work, it would be insightful to re-run this study on
new datasets and also on other domains.

Sampling Bias: In this work, we used thresholds recommended by IBM AIF360 (“fair” means
−0.1,0.1 or 0.8,1.2 for different kinds of metrics). Future work should explore the sensitivity of our
conclusions to changes in those thresholds.

Another issue with sampling bias is that our analysis is based on the data of Table 2. We recom-
mend that when new data becomes available, we test the conclusions of this article against that
new data. That would not be an arduous task (and to simplify that, we have placed all our scripts
online in order).

7 CONCLUSION

From these results, we argue that

• There are many spurious fairness metrics, i.e., metrics that measure very similar things.
• To simplify fairness testing, (a) determine what type of fairness is desirable (for a list of types,

see Tables 4 and 5); then (b) look up those types in our clusters; then (c) just test for one item
per cluster.
• While this approach does not entirely remove all issues with fairness testing, it does reduce

a very complex problem of (say) 30 metrics to a much smaller and manageable set.
• Also, the methods of this article could be used as a litmus test to prune away spurious new

metrics that merely report the same thing as existing metrics.
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