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Programmers frequently search for source code to reuse using keyword searches. The search effectiveness

in facilitating reuse, however, depends on the programmer’s ability to specify a query that captures how the
desired code may have been implemented. Further, the results often include many irrelevant matches that
must be filtered manually. More semantic search approaches could address these limitations, yet existing

approaches are either not flexible enough to find approximate matches or require the programmer to define
complex specifications as queries.

We propose a novel approach to semantic code search that addresses several of these limitations and is

designed for queries that can be described using an input/output example. In this approach, programmers
write lightweight specifications as inputs and expected output examples. Unlike existing approaches to
semantic search, we use an SMT solver to identify programs or program fragments in a repository, which have

been automatically transformed into constraints using symbolic analysis, that match the programmer-provided
specification.

We instantiated and evaluated this approach in subsets of three languages, the Java String library, Yahoo!
Pipes mashup language, and SQL select statements, exploring its generality, utility, and tradeoffs. The
results indicate that this approach is effective at finding relevant code, can be used on its own or to filter

results from keyword searches to increase search precision, and is adaptable to find approximate matches
and then guide modifications to match the user specifications when exact matches do not already exist.

These gains in precision and flexibility come at the cost of performance, for which underlying factors and

mitigation strategies are identified.
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1. INTRODUCTION
Today, searching for code is a regular activity for most programmers. Consider a novice Java
programmer who is trying to find a snippet of code that extracts an alias (i.e., username)
from an e-mail address. The programmer turns to the online search engine Google, the most
common approach in practice ([Sim et al. 2011], survey in Section 2), using a search query
with the following keywords: extract alias from e-mail address in Java. As expected, the
query returns millions of results. None of the top ten results (P@10, a typical IR measure to
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assess the precision of search engine results [Craswell and Hawkings 2004]), even provides
a method for decomposing an e-mail address into parts, which is the first step towards
extracting the alias. Now, if the programmer is knowledgable enough about the domain
to refine the query with the term substring, then the top ten results include two relevant
solutions.

Despite the simplicity of the programming task, this illustrates a common situation
for programmers. Following a search for code to reuse, programmers must sift through
many irrelevant results, especially when the desired behavior cannot be tied to source code
syntax or documentation. As repositories of source code grow in size and diversity, and as
programmers continue to turn to search during development [Sawadsky et al. 2013], finding
relevant code becomes increasingly important.

We have designed an approach to code search that addresses many of the shortcomings of
existing search techniques, most notably by allowing programmers to describe what they
want their code to do rather than how it is implemented. When no exact solutions exist,
close enough solutions can be found, which informally means solutions may require minor
modification to fit the target context. The general idea is that programmers provide examples
of the behavior of their desired code as inputs and outputs and an SMT solver identifies
available source code from a repository, which has been encoded as constraints, that matches
the specifications and can be reused. For example, when searching for source code that
extracts the alias from an e-mail address, the input could be the string “susie@mail.com”
and the output the string “susie”. While this form of query changes the search model from
the common keyword query, it lets the programmer specify the desired behavior, without
the need to know how to achieve a certain outcome, just what that outcome is. The results
of the search are source code snippets that behave as specified. The proposed change, then,
is from a syntactic query to a semantic query.

This example-based specification model is inspired by two lines of work, programming by
example (or, programming by demonstration), and program synthesis. Some programming
by example approaches aim to generate programs for tasks that are demonstrated by
example [Cypher et al. 1993], such as providing a string before and after a transformation.
Yet, the programs that can be generated through those approaches are limited and must
follow well-defined templates or sequences. For example, in the TELS text editing by example
system [Witten and Mo 1993], programs are generated by recording and generalizing editing
actions on strings in a text editor. For generalizations that involve string constants, they
use a rigid hierarchy based on common subsequences. Other properties of strings, such as
length or case-insensitive equality, are not included in the hierarchy and thus would not be
part of a generated program. In our work, we find existing code that performs a relevant
transformation, which promotes reuse. The intuition is that someone else has likely created a
solution so there is no need for creating a new one from scratch. Our approach also does not
depend on templates so it can return a larger variety of results, where the variety depends
on the richness of the repository.

The other related line of work, program synthesis, aims to generate programs that match
a provided input/output example, and program generation is guided by a constraint solver.
Similar to programming by demonstration, this approach also relies on predefined functions
and templates to guide the solver in finding a solution. The solver will try every possible
combination of functions and templates to achieve the desired behavior, which can be time
consuming even for small programs (e.g., in a toy problem, insertion and deletion on graphs
can take several minutes to resolve [Singh and Solar-Lezama 2011]). Our approach is not
restricted to predefined functions and templates, allowing us to return code that may be
too complex for a code synthesizer to generate efficiently (we discuss more related work in
Section 6).

Just like any other search engine, our approach indexes a repository of information offline,
independently of the users’ queries. Our indexing is unique in that it requires a transformer
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that uses symbolic analysis [Clarke 1976][Clarke and Richardson 1985][King 1976] to map a
program’s semantics onto constraints that summarize the program behavior. For example,
the indexing process would map the two-line Java snippet:

s1 . int upper = input . indexOf (‘@’ ) ;
s2 . S t r ing output = input . su b s t r i ng (0 , upper ) ;

into the following constraints (roughly):

c1 . ( assert ( input . charAt ( upper ) = ‘@’) ∨ ( upper = −1)))
c2 . ( assert ( f o r (0 ≤ i < upper ) input . charAt ( i ) 6= ‘@’ ) )
c3 . ( assert ( f o r (0 ≤ i < upper ) output . charAt ( i ) = input . charAt ( i ) ) )

Constraints c1 and c2 represent the first line of source code, s1. The first constraint,
c1, defines upper as the location of ‘@’ in input or -1, and c2 asserts upper is the first
index of ‘@’ in input, per the semantics of the indexOf method in java.lang.String.1

Constraint c3 represents the second line of source code, s2. It asserts that the output

matches input within bounds of 0 and upper, per the semantics of the substring method
in java.lang.String. This is the basic process by which our approach indexes programs:
mapping program semantics to constraints by evaluating each program statement. The
constraints are generated automatically, a process we describe in Section 4.2. The constraints
are never shown to the programmer, but rather are consumed by the solver during the search
process to identify viable matches.

With a user-defined input/output query and an encoded repository of programs, the
search can now find results. The first step in this phase is to transform the input/output
into additional constraints. For the previous example:

c4 . ( assert ( input = “susie@mail.com” ) )
c5 . ( assert ( output = “susie” ) )

The second step consists of pairing the input/output constraints with each of the programs
indexed in the repository (described in Section 4.2), and using an SMT solver to identify
which pairs are satisfiable and hence constitute a match. For our email alias example, an
SMT solver would return sat for the conjunction of the snippet encoded through constraints
(c1 ∧ c2 ∧ c3) and the input/output encoded through constraints (c4 ∧ c5), indicating
that the code indeed matches the specification. Contrastingly, if the specified output was
instead “mail.com” (the programmer meant to identify the e-mail domain instead of the
alias), the SMT solver would return unsat when paired with the previous code snippet,
indicating that the code does not match the specification.

The previous example illustrates the essence and novelty of the approach, but it does
not address some critical issues such as the broader applicability of the approach to other
domains, handling richer specification models required by diverse domains, and refining the
set of potential matches. In this work, we begin to explore those issues.2 We instantiate
and assess various aspects of the approach in three domains: the Java String library, Yahoo!
Pipes mashup programs, and SQL select statements (Section 4.2). These domains were
selected in part to illustrate the generality of the approach by utilizing three diverse forms
of input/output specification (Section 3) and in part because of their relative simple and
common underlying semantics and the availability of repositories that could be searched for
evaluation (Section 5). To refine the search results, we describe how the approach supports
incremental strengthening of the specifications (queries) to prune the result set of coincidental

1According to the API, the value of upper must be -1 only in the event that ‘@’ is not a character of input.
Some additional constraints, not shown here for brevity, are required to prevent upper from defaulting to -1,
which would make this system of constraints trivially satisfiable.
2Our previous work in this area presented a brief and preliminary instantiation of our approach on the
Yahoo! Pipes mashup language [Stolee and Elbaum 2012b].
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matches and evaluate these concepts in the Java domain. Weakening the program encodings
can enrich the results set with approximate matches that can be modified to match the
specification, a process guided by the satisfiable model produced by the solver (Section 4),
which we explore in the Yahoo! Pipes domain. In the evaluation, we also explore how our
Java search results compare to syntactic search results and illustrate how our technique
can improve the results from a syntactic search engine, how changes in search parameters,
specifically solving time and abstraction of the program encodings, affect the search results
in Yahoo! Pipes, and how changes in the size and complexity of the search queries impacts
the search performance in SQL. The contributions of this work are:

(1) Characterization of how developers use search to find code based on a survey of 99
participants

(2) Evidence of programmers using examples to explain their problem using an analysis of
300 questions posted to stackoverflow

(3) Definition of a novel approach to semantic code search that uses an SMT solver to
identify matches given input/output examples and given programs encoded as constraints
using symbolic analysis

(4) Instantiation of the approach in three domains: Java String library, Yahoo! Pipes, and
SQL, illustrating the applicability of this approach and a range of potential specification
models

(5) Preliminary and broad evaluation of the approach:
(a) Comparison of search result relevance between a keyword-based approach and our

approach in Java from the perspectives of 19 programmers
(b) Proof-of-concept for combining syntactic and semantic search approaches to reduce

the effort of evaluating search results
(c) Exploration of the impact of solver time, specification size, and abstraction on

precision and recall in Yahoo! Pipes
(d) Evaluation of the impact of specification size and complexity on solver time in SQL

The rest of the paper is organized as follows. Section 2 motivates this work using a survey
of programmer search habits, and motivates the use of input/output queries by analyzing
questions asked on an online help forum. Section 3 illustrates how we have instantiated the
approach in each of the three targeted domains. Section 4 formalizes the approach definition
and describes the domain-specific implementation details required for each instantiation of
our approach. Our research questions, study, results, and threats to validity are presented
in Section 5, followed by a discussion and related work in Section 6 and the conclusion in
Section 7.

2. MOTIVATION

Developers’ contexts, workflows, tools, and languages vary widely. In this work we conjecture
that code search is used across that variation and the input/output query model is a practical
one. In this section, we motivate the need for further research in code search using a survey
of 99 programmers about their code search habits. Next, we provide evidence for the utility
of an input/output query model by exploring the frequency of input/output examples within
questions asked in an online help forum.

2.1. Developer Survey on Code Search Habits

Previous work has studied the question of how and why programmers search for source
code [Sim et al. 2011], with a survey that focused on graduate student behavior. Sim, et al.
showed that programmers most commonly search for code to reuse or to use as a reference
example and that Google is the most common, and often effective, tool for finding source
code. To confirm the findings and understand more about how and why developers search
for code and the the tools used in code search, we conducted a survey with similar goals.
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Table I. Programming and Search Frequency

Activity Daily Weekly Monthly
Programming 42 49 8
Code Search 25 52 22

Our survey contained ten questions with the goal of addressing the following research
questions:3

RQ1. How and why do programmers search for source code?
RQ1(a). How frequently do programmers search for code?
RQ1(b). Why do programmers search for source code?
RQ1(c). Which tools do programmers use to search for code?

2.1.1. Participants. We targeted two populations with this survey, students in two under-
graduate classes at the University of Nebraska-Lincoln and workers on Mechanical Turk.
Mechanical Turk [mechanicalturk 2010] is a service hosted by Amazon that allows people to
reach and compensate others to complete tasks that require human input, such as tagging
images or answering survey questions. It hosts the tasks, manages payment, and makes the
tasks accessible to a large and existing workforce. With the Mechanical Turk population, we
delivered the survey with four programming questions that required potential programmers
to analyze the behavior of simple Java methods. Correct responses were required for two or
more questions in order for respondents to participate, as a means to control for quality.

In total, we received valid responses from 99 participants.4 Of those, 42 came from
junior/senior undergraduate classes at UNL while the remaining 57 came from Mechanical
Turk. In a question about programming experience, 17 had less than two years of experience,
53 had between two and five years of experience, and 29 had more than five years of
programming experience.

2.1.2. Search Frequency. To address RQ1(a), we asked how frequently the participants write
source code and how frequently they search for code. Table I summarizes our findings.
Among all participants, 42 reported they program daily and 49 program on a weekly basis.
Among the participants who program daily, over half (25 of 42) also search for code daily.
As a summary, among those participants who program daily or weekly, 85% search for code
at least weekly. This finding is consistent with a recent (and independent) survey that looked
at the search habits of 36 graduate students [Sim et al. 2011]. It was reported that 50% of
the participants search for code “frequently” while 39% did it “occasionally.”

2.1.3. Why Programmers Search for Code. To address RQ1(b), we asked participants what
they did with the source code they were looking for. Once useful code is found, Table II
summarizes what the participants did with it (using a multi-select question). Half of the
participants reported that they would copy/paste and modify found code. Nearly three-fourths
would use it to get ideas for implementation, and 11% would copy/paste as is. This is
consistent with the previous findings that reuse and implementation examples are the most
common purposes for a code search [Sim et al. 2011].

2.1.4. Tools Used in Code Search Activities. To address RQ1(c), we asked participants about the
tools they use for code search and the types of information they use for their search queries.
In a free response answer about where the participants search for code, 69% mentioned using
the web, the internet, or specifically Google. Nearly one-quarter (23%) mentioned searching

3Full survey details are available [Stolee 2013]
4Three participants were removed from the pool on account of inconsistent responses. These participants
claimed to program weekly but search for source code daily, and this seemed suspicious. Ten participants
from Mechanical Turk self-reported to have no programming experience, so those results were excluded as
well.
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Table II. Uses of Matched Code

Code Use Count Percent
Copy/paste as is 11 11%
Copy/paste and modify 52 52%
Get ideas for implementation 71 71%
Link to found code 9 9%
Other 4 4%

stackoverflow specifically, a free question and answer site for programming and technology-
related questions. Only 17% mentioned using a code-specific search engine like Koders or
Planet Source Code. Despite the availability of code-specific search engines, information
search engines are the most common tools used for code search, echoing the findings in a
previous survey [Sim et al. 2011].

Finding relevant source code however, is not always easy with the current tools. The
participants reported that they must explore an average of 3.5 snippets of code before something
useful is found. A previous study found that approximately 3 out of the first 10 matches
were useful, which aligns with our finding [Sim et al. 2011]. It is important to mention that
neither survey accounted for the process of query reformulation, which involves re-stating
a query after viewing irrelevant search results, is quite common in searching [Huang and
Efthimiadis 2009], and adds to the overhead. Evaluating the cost of a syntactic search for
finding source code to reuse is still an open question.

2.2. Input/Output Examples in the Wild

For the Yahoo! Pipes and SQL languages, our previous work has shown that programmers are
able to compose input/output queries with 92% accuracy and in less than two minutes [Stolee
and Elbaum 2013]. Yet how amenable programmers would be to this new query model has
not yet been explored. In this section, we motivate the use of the input/output query model
by investigating the extent to which programmers already employ that query model in online
help forums. We observe that Java, Yahoo! Pipes, and SQL programmers, often turn to peer
communities when they are looking for help. One popular community is stackoverflow, so
this is the forum we use to identify input/output examples in the wild.

2.2.1. Sampling. We collected questions related to Yahoo! Pipes using the tag
[yahoo-pipes], questions related to SQL using the tags [mysql] and [select], and
questions related to Java using the [java] and [string] tags. The second tag in SQL
was used to restrict the questions to those dealing with select statements, as that is the
scope of our SQL implementation. The second tag in Java is meant to restrict the question
to those dealing with strings, as this has been the primary focus of our implementation
(Section 4.2.1). In Yahoo! Pipes, 248 questions were returned on March 27, 2013, in SQL,
over 1,500 questions were returned on February 19, 2012, and in Java 7,420 questions were
returned on June 17, 2013. In each domain, we sorted the results according to popularity
(i.e., votes) and retained the top 100.

2.2.2. Analysis. An initial analysis was performed in the SQL domain to observe common
question themes. This involved two passes over the questions. The first pass was for content
analysis to collect common question themes and the second pass categorized the questions.
This same process was repeated for the Yahoo! Pipes domain, and then on Java. When a
question fit two or more categories, we selected the category that most closely fit based on
the accepted or highest-voted answer from the community. Eight categories emerged from
this analysis. The next step was to check if the questions also had examples to illustrate the
context of the question, and if those examples were in the form of an input and output.

2.2.3. Results. In each domain, there were a handful of dominant question types, shown
in Table III. In a question containing X, it represents a specific task, such as remove a
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Table III. Question type categories in stackoverflow. Reported are the number of questions for each category as well as
the number and percentage of those questions that contain descriptive or input/output examples.

Question Type
SQL YPipes Java

# Examples # Examples # Examples
How do I do X with {SQL, YP, Java}? 74 53 (72%) 58 40 (69%) 43 29 (67%)
Can I do X with/without Y ? 8 4 (50%) 18 14 (78%) 9 4 (44%)
What’s wrong with . . . , or Why does . . . work? 7 2 (29%) 9 8 (89%) 15 14 (93%)
How does Y work? 6 1 (17%) 4 1 (25%) 19 8 (42%)
What is an alternative to {SQL, YP, Java} for X? 0 0 (0%) 10 0 (0%) 0 0 (0%)
Best way to do X? 0 0 (0%) 0 0 (0%) 5 4 (80%)
Y versus Z? 4 1 (25%) 0 0 (0%) 9 4 (44%)
unrelated 1 0 (0%) 1 0 (0%) 0 0 (0%)

field from an RSS item in Yahoo! Pipes, combine two tables in SQL, or capitalize the first
letter in a string in Java. Y refers to a language construct, such as the Regex module in
Yahoo! Pipes, the Inner Join construct in SQL, or the hashCode() function in Java. For
each question, we provide the frequency of occurrence in each language (column #), as well
as the number of those questions with which a descriptive or input/output example was
provided (column Examples shows a count and the percentage). As an example, How does Y
work? questions describe six questions from SQL, four questions from Yahoo! Pipes, and 19
questions from Java; one question in each of Yahoo! Pipes and SQL provided an example to
more clearly illustrate the question being asked (representing 17% and 25% of the questions,
respectively). In Java, examples were more common with eight of those questions providing
examples, representing 42%.

The dominant type of question for all languages is “How do I do X”. This represents 74
questions in SQL, 58 questions in Yahoo! Pipes, and 43 questions in Java. A sample of this
type in Java is:

“How does one convert a String to an int in Java? I have a string which contains only numbers
(1-4 numbers to be specific), and I want to return the number which it represents.
For example, given the string “1234” the result should be the number 1234.”5

This question is asking for how to do a type conversion in Java. Generally, syntactic search
mechanisms are not well equipped to answer this type of question as the developer does not
know what query or query components may be used to solve the problem; the developer
asking this type of question knows only the behavior that is desired.

We also observed that these questions usually come with examples that help developers
better specify the required behavior. Of the 74 “How do I do X” questions in SQL, 53
contained examples. Further, 36 examples were actual snippets of tables that serve as inputs
and records that they expect as outputs. Of the 58 questions in Yahoo! Pipes of this type, 40
contained examples and 8 of those had inputs and outputs. In Java, 29 of the 43 questions
contained examples, and 13 of those were inputs and outputs. In some questions, the outputs
were difficult to specify. One Java question asks how to convert a string to a Date() object. 6

While the input is easy to specify, the output is not, and thus this was not counted as an
input/output example. To work around that difficulty, some questions used test cases to
illustrate input/output examples in a more standard format. 7

From this analysis, we see evidence that programmers already think in terms of examples
when trying to accomplish tasks using the SQL and Java, and to a lesser extent, the Yahoo!
Pipes language. Another interesting observation is that “How does Y work” questions are
not asked often by programmers to their community, particularly for SQL and Yahoo! Pipes.
This may indicate that this type of question is well handled by existing resources like existing
documentation, tutorials, or other syntactic search engine findings.

5http://stackoverflow.com/questions/5585779/how-to-convert-string-to-int-in-java
6http://stackoverflow.com/questions/4216745/java-string-to-date-conversion
7http://stackoverflow.com/questions/2559759/how-do-i-convert-camelcase-into-human-readable-names-in-java
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2.3. Summary

We have presented the results of a survey that asked 99 participants about their programming
experience and search habits. We observed that code search is common, Google is the most
frequently-used tool, and the overhead, which comes from examining and determining whether
or not a match is useful, is non-trivial. However, these results are based on self-reported
answers on a survey and may not be representative of actual behavior. Observing search
habits in practice would allow us to validate these results.

Next, since the state-of-the-practice code search requires the use of a keyword query
and our approach uses an input/output query model, we also explored the frequency of
input/output specifications in the wild, observing that examples are commonly used in
questions asked on stackoverflow.

The next section provides some illustrative examples of our input/output search approach
in the three targeted language, Java, Yahoo! Pipes, and SQL.

3. ILLUSTRATIVE EXAMPLES

We started exploring this approach to semantic search in the context of end-user program-
ming languages, specifically a Web mashup language called Yahoo! Pipes, which performs
operations on lists of RSS items. To generalize the approach to a more common language
with similar semantics, we targeted SQL select statements, which perform similar filtering
operations (in order to reuse the transformation infrastructure we had developed), but over
tables of data, which added a dimension of complexity to the implementation. Supporting
the Yahoo! Pipes language fragment also requires operations on strings, specifically identify-
ing equality and substring relationships. To build on that support and explore our search
approach in a broader context, we have targeted Java program snippets that contain calls to
the java.lang.String library.

In this section, we illustrate the benefits and unique features of our approach to search
through a series of examples. These examples are intended to represent situations in which
the input/output example-based search may be useful. Additionally, for each domain, we
briefly describe how search is currently performed and how our approach is instantiated.

3.1. String Manipulations in Java.

The alias extraction example in Section 1 illustrates a state-of-the-practice search for code
to reuse, which returns many irrelevant results that must be evaluated manually. Similar
situations are likely quite common given that most programmers we surveyed frequently
utilize syntactic search to find code to reuse or to obtain examples (Section 2.1).

Our search approach requires a query consisting of example input and expected output
pairs, such as “susie@mail.com” as input and “susie” as output. In the context of the
Java String library, those inputs and outputs could be one of several datatypes; integers,
characters, strings, and booleans are supported by our current implementation. Here, we
provide four examples in the Java domain to illustrate key aspects of our search. First, we
show how to bind input/output specifications to snippets of code; second, we show how
refinement on the specification can impact search results; third, we show how to handle more
complex code examples; fourth, we illustrate how ambiguity in code snippets is handled.

Example 1. Consider a programmer that wants to find the length of a file extension
(including the dot). For the desired code snippet, the query’s input is the file name, let’s
assume as a string, and the query’s output is the length of the extension as an integer. A
concrete query to illustrate this behavior could be the input “foo.txt” with an expected
output of 4. To provide a data point on performance (more extensively assessed in Section 5),
our search with that concrete query identifies 83 potential matches from a repository with
hundreds of encoded programs. The following snippet is a match that involves four API
calls:
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int begin = s . l a s t IndexOf (“.” ) ;
int end = s . l ength ( ) ;
S t r ing ext = s . su b s t r i ng ( begin , end ) ;
int l en = ext . l ength ( ) ;

Here, the input is bound to the only undefined variable in the code snippet, s (inferred
to be of type string). The output is bound to the LHS of the final assignment statement,
len, which is the only unused variable. These bindings are calculated by the approach by
computing and exploring the def-use pairs [Nielson et al. 2004].

There may be many potential bindings of an input/output specification to an arbitrary
code snippet, with some bindings being better than others. For instance, if there are multiple
undefined variables in a snippet and multiple elements in the input, some bindings may lead
to a satisfiable results whereas others may not; we discuss this later in Section 4.2.

Example 2. For the previous example, the input/output specification yielded 83 potential
matches. In Section 1, we presented a specification that could be used as a query to find
code that extracts an alias from an email address. The input, “susie@mail.com” and the
output, “susie”, form the specification. With this input/output pair encoded as constraints,
our search returned 51 matches. In these searches, the specifications are relatively weak so
many results may be irrelevant. For the alias extraction example, consider the following
independent results, r1 and r2:

r1 . S t r ing scheme = u r i . s u b s t r i n g (0 , 5 ) ;
r2 . username = to . s ub s t r i ng (0 , to . indexOf ( ‘@’ ) ) ;

The first result, r1, is found by binding the output to scheme and the input to uri. The
second result is found by binding the output to username and the input to to. Deciding
which results are actually relevant, rather than coincidental, may not be straightforward.
To help with this process, the developer can provide additional input/output pairs to prune
coincidental matches. For example, adding the input/output pair, input2 = “alex@univ.edu”
and output2 = “alex”, will remove r1 from the result set (i.e., it only matches the first
input/output because the string “susie” has five characters), leaving r2 as a result.

Example 3. This approach is also effective at retrieving larger snippets of code. Consider
a programmer who wants to obtain the subdomain from a domain name, for example, by
providing an input of “http://subdomain.example.com” and output, “subdomain” 8. The
following code snippet will match the specification:

int l a s t I n d e x = domain . l a s t IndexOf (“.” ) ;
S t r ing noext = domain . su b s t r i n g (0 , l a s t I n d e x ) ;

l a s t I n d e x = noext . l a s t IndexOf (“.” ) ;
S t r ing subdomain = noext . su b s t r i n g (0 , l a s t I n d e x ) ;

int f i r s t I n d e x = subdomain . l a s t IndexOf (“/” , l a s t I n d e x ) ;
f i r s t I n d e x = f i r s t I n d e x + 1 ;

return subdomain . su b s t r i n g ( f i r s t I n d e x , l a s t I n d e x ) ;

For this code, the variable, domain, is used but never defined, making it the input.
The return statement forms the output values, as would be the case if this snippet was
encapsulated in a method. Encoding will follow the same process as with the other examples,
mapping the code to constraints. Unlike the previous examples, this code involves more
complexity from the definition and use of several String and integer variables, and illustrates
how the approach can work with larger, more complex code. Constructs that modify the
control flow, such as loops and predicates, are not part of the current implementation

8http://stackoverflow.com/questions/1189128
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(Section 4.2.1), but are increasingly being supported by symbolic analysis engines. We
discuss this related work in Section 6.

Example 4. In some snippets, there may be additional variables that are used, but are not
defined and also not bound to the input. Consider the following snippet, which matches for
the input/output used in Example 1:

int index = names . l ength ( ) − names . indexOf ( f l a g ) ;

After binding the input to names and the output to index, this code is not executable because
we know nothing about the value of flag, so state-of-the-art semantic search engines that
utilize test cases to identify matching code (e.g., [Lazzarini Lemos et al. 2007][Podgurski
and Pierce 1993][Reiss 2009]), would fail. In our approach, the uninitialized variables in the
snippet remain uninitialized in the encoding, and we make no assumptions about the values
they hold (though we must use type inference to reveal that flag is either a character or a
string, and we assume the more expressive case of string). This snippet is identified as a
match because the satisfiable model produced by the solver reveals that the specification
matches this snippet when flag is set to “.txt” (the solver could have identified “.”, “.t”,
or“.tx” as possible values, but it only needs to find one to complete the model). By encoding
the behavior of the snippets as constraints, we can identify incomplete code as a match and
leverage the solver to guide its instantiation. Applying that guidance yields the following,
modified and complete code:

int index = names . l ength ( ) − names . indexOf ( “.txt” ) ;

Clearly, this code would not be considered a match for other input/output examples in which
the file extension is not “.txt”. A working solution could be found by adding additional
input/output examples and forcing flag to equal “.”.

We refer to uninstantiated variables, like flag, as symbolic and variables that hold values,
like the string “.txt”, as concrete.

3.2. Yahoo! Pipes Mashups.

Often, existing search capabilities of domain-specific languages are even more limited than
those for more mainstream languages. Yahoo! Pipes is a mashup language with over 90,000
users [Jones and Churchill 2009], and a public repository of over 100,000 artifacts [pipes
2012]. These programs combine, filter, sort, annotate, and manipulate RSS feeds. To write
a Pipes program, programmers use the Pipes Editor, dragging and dropping predefined
modules and connecting them with wires to define the data and control flow. Example pipes
are shown in Figure 2(a) and Figure 2(b). A pipe can have multiple sources (e.g., a Fetch
Feed module), which access external data sources (e.g., URLs), and exactly one sink, the
Pipe Output module shown at the bottom.

Each Fetch Feed module provides a list of RSS items to the pipe. Each item is a map data
structure with key-value pairs. An example item, also called a record, from an RSS feed is
shown in Figure 1. The keys are Title, Description, Link, and Date. The first three keys
map to values of type string, and the last key maps to an integer (i.e., the date is converted to
an integer). Mashup programs perform operations on the lists of RSS items. The operations
are defined by the modules that connect the source(s) and the sink. In Figure 2(a), the pipe
performs a head operation on the list (the Truncate module), and then a tail operations (the
Tail module). In Figure 2(b), the pipe concatenates two data sources with a Union module
and then retains items in the RSS feeds that contain the word “tennis”.

In the state-of-the-practice, programmers can search for pipes by URLs accessed, tags,
keyword, or program components. To illustrate the challenges programmers face with current
search support, we performed five searches by URL (see Table VII in Section 5). The
number of matches can be in the thousands which is not surprising as many mashups include
common URLs. The precision among the top ten results (P@10 [Craswell and Hawkings

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



A:11

2004]), determined by the behavior of the pipe, is 0.06. Using other built-in search capabilities
does not fare much better. Searching by components retrieves even more results and requires
the programmer to know how the pipe implementation details. The effectiveness of searching
with tags is highly dependent on the community’s ability and decision to systematically
categorize their artifacts.

The external data sources accessed by the Fetch Feed modules are the inputs to the
pipe. In our approach instantiated in the Pipes domain, the programmer provides the URLs
for RSS feed(s) as input, just as they would to build a pipe from scratch. Like the Pipes
Editor environment, our framework fetches the RSS feed; this produces the input list. The
programmer modifies this list by reordering, removing, or modifying items to form the output
list. An example of this process is shown in Figure 4. The programmer provides the URL,
such as the Input in Figure 4, and our framework retrieves the RSS feed, which has n items.
The programmer selects item(s) as the desired output.

In this domain, entire programs are encoded as constraints. The URL information is
abstracted away so the pipe can be solved for any URL provided as input; this abstraction
is imperative to find pipes that behave as desired given their defined input and output.

The encoding process is briefly illustrated in Figure 3 for the pipe in Figure 2(b). Each
module is mapped to a set of constraints, and each connector (called wires) defines the
relationships between the modules. The module constraints are expressed in terms of the
input to and output from the module (e.g., in(Filter) refers to the list that enters the Filter
module, and out(Filter) refers to the list that exists the Filter module). Constraints c1 and
c3 assign input variables to each of the Fetch Feed (succinctly, Fetch) modules. Constraints c2
and c4 ensure that the output from the Fetch modules are the same as the input. Constraints
c5 and c6 connect the output from the Fetch modules to the Union module as inputs. The
Union module concatenates its input lists, which is described by constraints c7a, c7b, and c8.
The first, c7a, ensures that all the items at the front of the output list, out(Union) come
from the first input list, in(Union1), and the second constraint, c7b, ensures that the next
items are from in(Union2). This is called inclusion. The next constraint, c8, ensures that all
items in the output list from the module exist in one of the two input lists, and in this way no
extra items are appended to the end, enforcing exclusion. The output from the Union module
goes to the Filter module per c9. Representing the Filter module requires three constraints
that enforce inclusion, exclusion, and order properties. The first, c10, ensures that all items
in in(Filter) that contain “tennis” in the description also exist in the out(Filter) list.
The exclusion constraint, c11, ensures that all records in the output are also from the input
(i.e., out(Filter) ⊆ in(Filter)). The final constraint, c12, ensures that if two records
exist in the output list, their ordering is the same as in the input list. In this way, the module
is order-preserving. Constraint c13 ensures that the output from the Filter module goes to
the input of the Output module, and c14 ensures that the output of the pipe, out(Output)
is the same as in(Output).

Example 5. Say a programmer wants to collect news about tennis from a website, and
created the specification shown in Figure 4 (the selected item for the output list contains

Field Value
Title Your Local Doppler Radar
Description This map shows the location and intensity of precipitation in your area.

The color of the precipitation corresponds to the rate at which it is falling.
This map is updated every 15 minutes.

Link http://www.weather.com/weather/map/93012
Date Fri Jan 13 11:15:22 CST 2012

Fig. 1. Example Record/Item from an RSS Feed
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(a) Pipe 1 (b) Pipe 2

Fig. 2. Two Example Pipes, Possible Solutions to Input/Output Example in Fig 4

Module Encoding as Constraints

Fetch1
c1: (assert (in(Fetch1) = URL1))
c2: (assert (out(Fetch1) = in(Fetch1)))

Fetch2
c3: (assert (in(Fetch2) = URL2))
c4: (assert (out(Fetch2) = in(Fetch2)))

wire1 c5: (assert (in(Union1) = out(Fetch1)))
wire2 c6: (assert (in(Union2) = out(Fetch2)))

Union

c7a: (assert (for (0 ≤ i < size(in(Union1)))
recOf(out(Union), i) = recOf(in(Union1), i)))

c7b: (assert (for (size(in(Union1)) ≤ i < (size(in(Union1)) + size(in(Union2))))
recOf(out(Union), i) = recOf(in(Union2), (i - size(in(Union1))))))

c8: (assert (for (0 ≤ i < size(out(Union)))
(hasRec(in(Union1), recOf(out(Union), i)) = true)
∨ (hasRec(in(Union2), recOf(out(Union), i)) = true)))

wire3 c9: (assert (in(Filter) = out(Union)))

Filter
c10: (assert (for (0 ≤ i < size(in(Filter)))

((recOf(in(Filter), i) = r) ∧ contains(field(r “descr”), “tennis”))
⇒ (hasRec(out(Filter), r) = true)))

c11: (assert (for (0 ≤ i < size(out(Filter)))
(hasRec(in(Filter), recOf(out(Filter), i)) = true)))

c12: (assert (for (0 ≤ i < size(out(Filter)))
(for (i < j < size(out(Filter)))
((recOf(out(Filter), i) = r1) ∧ (recOf(out(Filter), j) = r2))
⇒ (∃ k, l ((k < l)
∧ (0 ≤ k < size(in(Filter))) ∧ (0 ≤ l < size(in(Filter)))
∧ (recOf(in(Filter), k) = r1)
∧ (recOf(in(Filter), l) = r2))))))

wire4 c13: (assert (in(Output) = out(Filter)))
Output c14: (assert (out(Output) = in(Output)))

Definitions: Let l be a List, i be an Integer, r be a record, and s1, s2 be strings
contains(s1, s2) = true ⇐⇒ s2 ⊆ s1
recOf(l, i) = r ⇐⇒ l[i] = r
hasRec(l, r) = true ⇐⇒ ∃i | ((0 ≤ i < size(l)) ∧ (l[i] = r))

Fig. 3. Mapping the Pipe in Figure 2(b) onto Constraints

“tennis” in the description). Searching a repository of programs (Section 5) reveals two possible
matches, both shown in Figure 2. The first solution performs head and tail operations on the
list to extract the third item, whereas the second solution joins two RSS feeds and permits
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Fig. 4. Yahoo! Pipes Input/Output Example

items that have “tennis” in the description. While both match the specification, the first is
likely a coincidental match, and could be pruned by adding another input/output example,
as demonstrated in Example 2.

Much like in Example 4 where the variable flag was symbolic, since the specification only
had one input URL, the pipe solution in Figure 2(b) has an uninitialized input, URL2. In
this domain, instead of leaving the RSS feed symbolic, we assume unbound fetch modules
have empty input lists. That is, URL2 is set to an empty list. This is done because the RSS
feeds are external resources, and if left symbolic, the solver may identify a program as a
match, but require an RSS feed that does not exist.

Example 6. When a matching program cannot be found, we can apply abstractions to the
encodings to find code that does not exist as such, but is a close enough match that can be
instantiated to meet the user specifications. For example, say a programmer wants to filter
an RSS feed based on “volleyball” rather than “tennis”. The inclusion constraint for the
Filter module in Figure 2(b), c10, contains as part of the implication, contains(field(r
“descr”), “tennis”)). At a concrete abstraction level, the string “tennis” is encoded as is,
which would not satisfy a specification that requires “volleyball”. However, with a weaker
encoding consisting of constraint contains(field(r “descr”), s)) for some string s, an
SMT solver could determine that for s = “volleyball”, this program is a match.

This form of abstraction allows the search to identify programs that are approximate
matches for the desired behavior, and can be modified systematically to satisfy the in-
put/output specifications, similar Example 3 where flag was instantiated. We implement
and evaluate two abstraction levels within the pipes domain (Section 5).

3.3. SQL Select Statements.

SQL select statements support data retrieval, operating on their own or being embedded
into other languages. Given the simplicity of the SQL syntax and its popularity, even well
conceived syntactic searches for examples will return many irrelevant results.

When instantiating our approach for SQL, the input and output take the form of database
table(s). The indexed SQL select statements are encoded as constraints, which are the
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programs for which programmers search. Given example tables as input and output, the
SMT solver determines, for each encoded SQL select statement, if it matches the specification.

Example 7. Consider the programmer who asked the question on stackoverflow, “I have
table with records ‘user’ and ‘balance’. How to show 10 usernames with highest balance? ...
How to show but only when they have more than 1.000.000$?”9 The programmer knew the
desired behavior and described it through a concrete input example table:

id | username | balance | status
-----+-----------+-------------+--------
145 | rekin76 | 469370.44 | 0
56 | avcio | 466921.90 | 0

705 | shantee | 149160.09 | 0
5725 | ter | 93004.45 | 0
3414 | rut1999 | 80944.80 | 0
... | ... | ... | ...

Based on the accepted answer from stackoverflow, we created an output table:

username
-----------
rekin76
avcio
shantee

With this input/output specification in the form of tables, our approach identifies as a match
the recommendation of three positively voted responses in stackoverflow:

SELECT username FROM table WHERE balance >= 1000000 ORDERBY balance DESC
LIMIT 10 ;

An interesting aspect of this domain is that the input/output specifications can be large
since they may come from live databases. It becomes important to understand the impact of
large specifications on solver time. As we explore in Section 5.4, it is not just the size of
specification that matters but also the complexity of behavior exhibited in the specification.

Example 8. Consider a programmer that wants to extract salary information for employees
from a database. The programmer has two database tables, one called employee with fields
[id, name, address], and another called payroll with fields [id, account, salary].
Their desired output table contains [name, salary] for each employee id, which requires
combining the two input tables, as is done in the following query:

SELECT name , s a l a r y FROM employee , p a y r o l l WHERE employee . id = p a y r o l l . id
ORDERBY s a l a r y ;

This query requires an implicit join on the id field for the two input tables in order to create
the output table. Our approach supports the case when multiple inputs form a single output.
Such a query is possible in any of the supported domains (e.g., multiple strings in Java,
multiple URLs in Yahoo! Pipes, or multiple tables in SQL), and is common in database
queries that require merging multiple tables.

3.4. Summary

At this point, we have discussed several interesting aspects of our approach to semantic
code search in three domains, illustrating the generality of the approach, showing how it can
overcome many of the limitations of state-of-the-practice syntactic searches, and addressing
challenging issues associated with state-of-the-art semantic searches. Specifically, our search
approach is semantic, rather than syntactic, returning results that match a behavioral
example rather than a set of keywords. Our approach is not limited to complete programs,

9http://stackoverflow.com/questions/11599636
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Fig. 5. Building and Encoding the Repository (Offline)

but can also work with incomplete code. We have also shown how a programmer can identify
relevant code when there are many coincidental matches by adding additional input/output
examples and how our search can use abstraction to identify and instantiate matching code
that did not previously exist.

4. APPROACH

We present the general definitions of each piece of our approach, followed by details on our
instantiation of the approach in each of the three supported domains: Java String library,
Yahoo! Pipes programs, and SQL select statements, and a discussion on the performance
and effectiveness of the approach.

4.1. Components

Our general approach is illustrated in Figure 5 and Figure 6. The offline process of building
the repository is depicted in Figure 5 and the online search process is depicted in Figure 6.
The gray boxes indicate the key components and technical challenges: defining input/output
specifications (Figure 6), encoding programs (Figure 5) and specifications (Figure 6) as
constraints, abstracting program encodings when too few matches are found (Figure 6),
and refining specifications when too many matches are found (Figure 6). The crawling and
program encoding processes happen offline, whereas the query specification, query encoding,
and solving for relevant code happen online.

4.1.1. Specifying Behavior. Instead of keyword queries, our approach takes behavioral specifi-
cations that characterize an example of the code behavior (Input/Output Specifications in
Figure 6). These are lightweight specifications, LS, in that they are incomplete and weak.
As illustrated in Section 3, the inputs and outputs take different forms depending on the
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Fig. 6. Search Process (Online)
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domain. To more completely specify the desired behavior, multiple input/output pairs can
be defined: LS = {(i1, o1), . . . , (ik, ok)}, for k pairs, as was illustrated with Example 2 in
Section 3.1. The size of k defines, in part, the strength of the specifications and hence the
number of potential matches.

The last step of this process is the automated encoding of LS into constraints, CLS , for
the solver to consume when the search starts (recall the transformed specifications, c4 and
c5, from Section 1).

4.1.2. Encoding. In our approach, encoding and solving are analogous to crawling and
indexing performed by search engines [Langville and Meyer 2006]. Offline, a repository
(Code Repository in Figure 5) is crawled to collect programs. These programs are parsed
and encoded as constraints using symbolic analysis [Clarke 1976][Clarke and Richardson
1985] [King 1976]; the constraints are stored in a Constraint Repository.

More formally, given a collected set of programs RepP = {P1, P2, . . . Pn}, our encoding
engine first uses a grammar to parse the programs. Since our approach is meant to support
many languages, a different grammar is required for each language (see Section 4.2). For
each parsed program P , we identify its input and output, which are encoded symbolically
so the program can be matched against any arbitrary LS with matching types. We then
use a symbolic analysis on P to create a symbolic summary of the behavior of the code,
represented in conjunctive normal form as CP = c1∧c2∧· · ·∧cm. Encoding occurs at a given
abstraction level, as discussed with Example 6 in Section 3.2 and described in Section 4.1.5.
In the end, the encoding process maps every program to a set of constraints such that
RepPenc = {CP1

, CP2
, . . . , CPn

}.
Critical to the efficiency of the approach is the granularity of the encoding. The finest

granularity corresponds to encoding the whole program behavior in CPi . At the coarsest
granularity the encoding would capture none of the program behavior so CPi = true. These
extremes correspond to the least and the greatest number of matches and the worst and the
best search speeds respectively, but there is a spectrum of choices in between. In Section 4.2,
we explore encoding at the component level (Yahoo! Pipes), query level (SQL), and library
level (Java).

4.1.3. Solving. The constraint repository, RepPenc, is used by the solver, in conjunction
with the encoded specifications CLS , to determine matches (SMT Solver in Figure 6). Given
CLS , for each CP ∈ RepPenc such that the types on the inputs and outputs match the types
in CP , the approach invokes Solve(CP ∧ CLS). The potential return values are sat, unsat,
or unknown. Solve returns sat when a satisfiable model is found or unsat when no model is
possible. When the solver is stopped before it reaches a conclusion or it cannot handle a
set of constraints, unknown might be returned. The search results, or SatP, consists of all
programs that return sat.

In practice, to invoke the SMT solver for a given specification and encoded program, some
additional information is needed, which we call search parameters. The first parameter is the
abstraction level of the encoded programs, which is set using the Abstraction Selector, shown
in Figure 6. We begin by trying to solve for the strictest (most concrete) level, but this may
be relaxed as the search process iterates in the presence of tight or complex constraints. The
second parameter is the solver time, which defines how long the solver is allowed to run on
a particular constraint system. In some cases, as shown in Section 5.4, it can take several
minutes for the solver to return sat or unsat, so setting a short maximum solver time can
lead to an efficient search, though it can miss some matches and impact recall.

4.1.4. Strengthening and Weakening the Specifications. If the specifications or the encoded
program constraints are too weak, many matches may be returned (too many in Figure 6).
Refinement is a process that helps to address these situations by tuning the lightweight
specifications (LS′). A programmer may strengthen the specifications by providing additional
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(i, o) that further demonstrate the desired behavior, similar to query reformulation [Fischer
et al. 1991; Haiduc et al. 2013]. The programmer can also replace an input/output pair with
one that captures a more distinguishable aspect of the desired behavior.

Conversely, a programmer may weaken the specifications when a match is not found or
when the search takes too long to provide a response. An example of this last case occurs
when the tables provided as input for SQL have hundreds of rows causing the solving time
to take minutes; in this case it may useful, if possible, to select the subset of the table that
still captures the key desired behavior. We explore the impact of input size on precision in
Yahoo! Pipes in Section 5.3 and on search efficiency for SQL in Section 5.4.

4.1.5. Abstraction on Program Encodings. If the program encodings are too strong, the solver
may not yield any results (too few in Figure 6). Abstraction is a process that uses weakened
program encodings to find solutions that are close enough when no exact solutions exist, as
was illustrated by Example 6 in Section 3.2. These approximate solutions can be instantiated
to match the users specifications by resetting the abstracted variables’ values. Selecting
weaker encodings for the search process is controlled by the feedback loop to the Abstraction
Selector in Figure 6.

To weaken the encodings, we exploit the fact that most languages contain constraints
over multiple data types (e.g., strings, characters, integers, booleans) for which the variable
values can be relaxed and encoded as symbolic. Encoding weakening is performed by
systematically making the constraints on a particular datatype symbolic, similar to the
pre/postcondition lattices in previous work on specification matching [Penix and Alexander
1999][Zaremski and Wing 1997]. Weakening : CP → CP

′ means that (Solve(CP ∧ CLS) =
unsat) ∧ (Solve(CP

′ ∧ CLS) = sat) for some relaxation of CP that yields C ′
P . We explore

the impact of various abstraction levels on search time in Yahoo! Pipes in Section 5.3.

4.2. Implementation

For each of the three supported languages, we present the grammar that is used in the
encoding process and domain-specific details about the symbolic analysis required for each
implementation.10 Our encoding engine transforms programs into SMT-LIB2 [smtlib2 2012]
format. Solving is performed by Z3 v.4.1 [De Moura and Bjørner 2008].

4.2.1. String Manipulations in Java. Our implementation supports the subset of the Java
language shown in Figure 7. Following the ANTLR syntax, all terminals are identi-
fied using single quotes. Angle-brackets are used to denote non-terminals. Some non-
terminals are not defined here, specifically <stringLiteral>, <charLiteral>, <integer>,
and <booleanLiteral>, as these follow the standard definitions in the Java grammar. From
java.lang.String, we support the following library calls: charAt, concat, contains,
endsWith, equals, indexOf, lastIndexOf, length, startsWith, and substring. To
efficiently support these operations, we consider bounded strings, where the bound is config-
urable (in line with recent work on solving string constraints [Bjørner et al. 2009][Kiezun
et al. 2009]).

Two types of statements are supported in this grammar, assignment and return statements.
For assignment statements, the LHS constitutes the program output. For both assignment
and return statements, the receiving object on the expression of the RHS is the input. For
snippets that contain multiple statements, as with Example 1 in Section 3.1, the statements
are in-lined to form a single assignment statement. To illustrate, the snippet in Example 1
becomes:

int l en = s . substring ( s . l a s t IndexOf (“.”) , s . l ength ( ) ) . l ength ( ) ;

10The programs we currently support contain only a single program path, so full symbolic execution is
unnecessary for the work presented here; see Section 6 for a more thorough discussion on this.
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Fig. 7. Java Supported Grammar

〈statement〉 ::= 〈assignment〉 | 〈return〉
〈assignment〉 ::= 〈type〉? 〈ident〉 ‘=’ 〈expr〉 ‘;’

〈return〉 ::= ‘return’ 〈expr〉 ‘;’

〈expr〉 ::= 〈ident〉 (‘.’ 〈method〉)*
| 〈stringLiteral〉
| 〈charLiteral〉
| 〈integer〉
| 〈booleanLiteral〉
〈method〉 ::= 〈noparam〉 ‘(’ ‘)’
| 〈oneparam〉 ‘(’ 〈expr〉 ‘)’
| 〈twoparam〉 ‘(’ 〈expr〉 (‘,’ 〈expr〉)? ‘)’

〈noparam〉 ::= ‘length’

〈oneparam〉 ::= ‘charAt’ | ‘concat’ | ‘contains’ | ‘endsWith’ | ‘equals’ | ‘startsWith’
| ‘substring’

〈twoparam〉 ::= ‘indexOf’ | ‘lastIndexOf’

〈type〉 ::= ‘char’ | ‘String’ | ‘int’ | ‘boolean’

〈ident〉 ::= ( LETTER | ‘ ’ | ‘$’ )( LETTER | ‘ ’ | DIGIT | ‘$’ )*

Fig. 8. Yahoo! Pipes Supported Grammar

〈pipe〉 ::= ‘output’ 〈composition〉
〈composition〉 ::= 〈operator〉? 〈grouping〉
| 〈init〉
〈grouping〉 ::= ‘union’ 〈segment〉+
〈segment〉 ::= ‘(’ 〈init〉 ‘)’
| ‘(’ 〈operator〉? 〈grouping〉 ‘)’
| ‘(’ ( ‘(’ 〈operator〉 ‘)’ )* ‘)’ ‘split’ 〈composition〉
〈init〉 ::= 〈interior〉? ‘fetch’

〈operator〉 ::= (‘filter’ | ‘sort’ | ‘truncate’ | ‘tail’)+

After a search, the results are returned to the programmer ordered according to the density
of concrete variables in the program, as these are more likely to fit the programmer’s query
as is and without modification.

4.2.2. Yahoo! Pipes Mashups. We support the subset of the Yahoo! Pipes grammar shown
in Figure 8. As Yahoo! Pipes is a visual language, we transform each program into a
parallel-serial graph [Stolee et al. 2012] for recognition by the grammar. To illustrate, the
program in Figure 2(a) would be represented as: output tail truncate fetch, and the
program in Figure 2(b) would be represented as: output filter union (fetch) (fetch).
Our encoding supports the following modules: fetch, filter, output, sort, split,
tail, truncate, and union, representing six of the top 10 most commonly used constructs.
Encoding this language fragment requires evaluating substring and equality relations over
strings, and enumeration over all elements in a list; as with Java, we consider bounded
strings and additionally bound the lists. In the Yahoo! Pipes language, specific modules are
associated with inputs (e.g., Fetch modules) and the output (the Output module), so binding
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Fig. 9. SQL Supported Grammar

〈select statement〉 ::= ‘SELECT’ 〈modifier〉? 〈column ref 〉 ‘FROM’ 〈table ref 〉
〈where clause〉 〈orderby clause〉? 〈limit clause〉? ‘;’

〈modifier〉 ::= ‘DISTINCT’

〈column ref 〉 ::= 〈column〉 (, 〈column〉)*
| ASTERISK

〈column〉 ::= 〈table ident〉 DOT ASTERISK
| 〈table ident〉 DOT 〈column ident〉
| 〈column ident〉
〈table ref 〉 ::= 〈table ident〉 (‘,’ 〈table ident〉)*
〈where clause〉 ::= ‘WHERE’ 〈factor〉 〈op〉 〈factor〉 (〈andor〉 〈factor〉 〈op〉 〈factor〉)*
〈factor〉 ::= 〈column ref 〉 | 〈integer〉
〈op〉 ::= ‘<’ | ‘>’ | ‘<=’ | ‘>=’ | ’=’ | ’ !=’

〈andor〉 ::= ‘AND’ | ‘OR’

〈orderby clause〉 ::= ‘ORDER BY’ 〈column ident〉 (‘ASC’ | ‘DESC’)?

〈limit clause〉 ::= ‘LIMIT’ 〈integer〉

the specifications to programs is straightforward. To reduce encoding effort (and consequently
the search time), we refactor all pipes to obtain a more uniform representation, remove the
duplicates, and then proceed with the encoding. These refactorings focus on decreasing the
size of the pipes and standardizing them according to the community standards, and the
programs were refactored using a tool developed as part of our previous work [Stolee and
Elbaum 2011]. This is not a necessary step for the encoding process, though it may have led
to performance gains. since the sizes of the programs (and thus the number of constraints)
are smaller. Measuring such gains is left for future work.

4.2.3. SQL Select Statements. We can encode SQL select statements according to the grammar
in Figure 9. Our encoding supports SQL queries with the distinct function and with
limit, order by, and where clauses, covering three of the seven most common MySQL
select clauses.11 Joins are also supported, but are implicit and can occur when the user
specifies multiple input tables, as illustrated in Section 3.3, Example 8.

For SQL select statements, the program inputs are tables and the output is a table. We
consider bounded table sizes in terms of the number of rows, similar to the bounded string
and list sizes in the other domains. During encoding, the table names and column names used
in the select statements are assigned symbolic names. For example, consider the following
SQL query:

SELECT deduction , person FROM d i s count s ORDERBY deduct ion ;

The table, discounts is assigned a symbolic name, sym tbl1, and the columns deduction
and person, are also assigned symbolic names, sym col1 and sym col2. This produces
the following, more general select statement:

SELECT sym col1 , sym col2 FROM sym tbl1 ORDERBY sym col1 ;

During the search, the table name(s) and column name(s) from the input table(s) are
bound to symbolic names in each encoded select statement. For example, given an input

11There other four clauses are group by, having, procedure, and into, per the reference: http://dev.mysql.
com/doc/refman/5.0/en/select.html

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

http://dev.mysql.com/doc/refman/5.0/en/select.html
http://dev.mysql.com/doc/refman/5.0/en/select.html


A:20

Table IV. Basic Operations for Current Implementation

Term Java Strings Yahoo! Pipes SQL Select

Accessor
charAt : S x I 7→ C value: Row x Col 7→ I
indexOf : S x S x I 7→ I field: R x S 7→ I | S getCol: T x S 7→ Col
lastindexOf : S x S x I 7→ I recordOf: L x I 7→ R index: T x R 7→ I

Join concat : S x S 7→ S union: L x L 7→ L join: T x T x Col 7→ T

Filtering substring: S x I x I 7→ S
truncate: L x I 7→ L limit : T x I 7→ T
tail : L x I 7→ L where: T x Col x Op 7→ T
filter : L x S x Op 7→ L distinct : T x Col 7→ T

Copy split : L 7→ L x L

Permute sort : L x S 7→ L order by: T x Col 7→ T

Size length: S 7→ I height: T 7→ I
size: L 7→ I

Operators (Op)

<, ≤, >, ≥: I x I 7→ B equals: I x I 7→ B equals: B x B 7→ B
contains: S x S 7→ B

equals: C x C 7→ B equals: T x T 7→ B
equals: S x S 7→ B

startsWith: S x S 7→ B
equals: L x L 7→ B containsRow: T x Row 7→ B

endsWith: S x S 7→ B
equals: R x R 7→ B

containsCol: T x Col 7→ B
hasRec: L x R 7→ B

C = Character, I = Integer, B = Boolean, S = String, R = Record (map with names as
strings), L = List, T = Table, Col = Column (in Table), Row = Row (in Table)
Functions in italics indicate actual names of language constructs

table, Payroll with fields [name, salary], these would be bound to the symbolic names
as follows:

c1 . ( assert ( sym tbl1 = Payro l l ) )
c2 . ( assert ( ( sym col1 = name ∧ sym col2 = s a l a r y ) ∨ ( sym col1 = s a l a r y ∧

sym col2 = name) ) )

Constraint c1 binds the input table name, Payroll, to the symbolic table name. Constraint
c2 binds the input column names to the symbolic column names. There are two possible
bindings for the columns, which requires a disjunction. The output table in the specification
binds to the result of the select statement. This allows the SQL query to be an eligible
results for any arbitrary input/output example, similar to how URLs are abstracted away
from Yahoo! Pipes programs.

4.2.4. Language Mapping. The effort to map a programming language to constraints involves
several steps. These include determining which parts of the language grammar are worth
supporting, mapping those grammar elements of interest to constraints, and defining the
input/output model for the domain. For example, in the Java implementation, we chose to
focus on the java.lang.String library, which is among the most common Java libraries.
One method in this library that we support, s.endsWith(t), is mapped to constraints by
analyzing the API semantics and representing those semantics in first-order-logic, as shown
in Figure 10. If, in fact, s ends with t, then these constraints will be satisfied. The converse
is also true. The input/output model is defined as variables and their values with the types

Fig. 10. Transformation Rules for java.lang.String.endsWith(t)

length restrictions on s, t (length(s) ≥ length(t))
value of s ends with t (∃j

((j ≥ (length(s)− length(t))) ∧ (j < length(s))
∧(∀i

(((i < length(s)) ∧ (i ≥ j))
→ (charAt(s, i) = charAt(t, (i− j)))))))
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supported by the grammar, and for our Java implementation, these are booleans, characters,
integers, and Strings.

One thing to note is that many of the data structures and libraries are commonly found
across many programming languages, so some of the effort can be harnessed for multiple
language implementations. For example, string manipulation, list/array manipulation, and
arithmetic operations are quite common across many programming languages. Table IV
provides a classification of the operations supported by the current implementation. Using
these basic data types, there are seven basic operations to capture the core semantics of the
programs we analyze. These operations are listed in the Term column of Table IV, followed
by a mapping to the supported language subsets. For example, filtering is supported in all
three languages, by the substring function in Java (returning only a subset of a string),
the filter module in Yahoo! Pipes, and the where clause in SQL select statements. The
charAt accessor function is part of the Java language, but is also used by Yahoo! Pipes.
The operator functions all return booleans based on some criteria, such as two booleans
being equal (supported in all languages), two strings being equal (supported in Java and
Yahoo! Pipes), or determining if one string startsWith another (supported in Java). The
concat method in Java joins strings like the union module in Yahoo! Pipes joins lists and
the implicit join in SQL joins tables. The sort module in Yahoo! Pipes reorders list elements
like the order by clause does in SQL.

Building support for a language can be incremental, as we have done it. Less support means
fewer matches in the search, but growth can be incremental according to a community’s
needs. In our current implementation, we support three primitive types (characters (C),
integers (I), booleans (B)) and one composite type (list (L)). These basic types are sufficient
to represent all the constructs we support across the three domains. For example, a string
(S) is a shorthand given as a list of characters, a Yahoo! Pipes record (R) is a map of
strings to objects with names modeled as strings, SQL tables (T) are lists of lists, and
a column (Col) is a named list where the name is modeled as a string. As mentioned in
Section 3.1, constructs that modify the control flow, such as loops and predicates, are not
part of the current implementation (Section 4.2.1). Symbolic execution [Clarke 1976; Clarke
and Richardson 1985; King 1976] seems promising for handling such constructs as a means
of identifying distinct paths through a program for encoding; this is left for future work.

4.3. Effectiveness and Performance

Several factors can influence search efficiency and effectiveness in terms of precision and
recall. In our approach, the primary factors include the solver speed and supported theories,
query complexity, repository size and complexity, and the developer’s context. We explore
each in turn.

4.3.1. Solver Speed and Sophistication. The performance of our approach is bound in part
by the performance of SMT solvers and supported theories. A slow solver will result in
slow performance, directly impacting usability. Our current implementation uses the Z3
SMT solver [De Moura and Bjørner 2008] and the UFNIA: Non-linear integer arithmetic
with uninterpreted sort and function symbols theory in the encoding of all programs, which
requires strings to be represented as composite datatypes with two properties, value and
length. Recent research has adapted the Z3 SMT solver to support part of the theory
of strings, treating strings as primitives [Zheng et al. 2013], which may increase solver
performance in the presence of string constraints.

Although we performed the search serially in our studies, we have designed this search
approach to be highly parallelizable, where several solver invocation can happen in parallel.
Further performance improvements may be possible by caching and reusing duplicate
constraints [Visser et al. 2012]. We can also improve performance by setting a maximum
solver time, forcing the solver to return unknown in some cases. Treating the unknown
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programs as results sacrifices precision as there may be some false positives; ignoring those
programs sacrifices recall as there may be some missed matches. We evaluate our approach
performance in Yahoo! Pipes program with complex specifications in Section 5.3 and in SQL
with large specifications in Section 5.4.

4.3.2. Query Complexity. Our approach supports multiple input/output pairs in a specifica-
tion, as illustrated in Section 3.1 and defined in Section 4.1.1. The size of the query input or
the query output, such as the length of a string, or the number of input/output pairs, all
impact efficiency. As with any search approach, the quality of the query impacts the quality
of the results. Redundant queries can lead to slow performance since each input/output pair
needs to be checked. A good query will use examples that are succinct but illustrate the
behavior of the desired code, potentially including edge cases. Three of the queries in the
Java evaluation contain multiple input/output pairs. We briefly explore the impact of the
number of input/output pairs on the number and quality of search results in Section 5.1.2.

The performance of the approach can be controlled to some extent at the cost of precision by
bounding the sizes of the encoded data structures representing variables in the programs or the
input/output pairs. For example, the lengths of strings in Java and Yahoo! Pipes, lengths of
lists lists in Yahoo! Pipes, and number of rows in tables in SQL have a configurable maximum
bound. In Section 5.3.3 with Figure 11, we explore the impact of various specification sizes
on the search precision in the Yahoo! Pipes domain; in Section 5.4.3, we explore the impact
of specifications sizes on the search performance in SQL.

4.3.3. Repository Size, Complexity, and Abstraction. The content of the repository has a profound
impact on the efficiency and effectiveness of any search approach. A small repository may not
have diverse enough code to meet the needs of a user query, while a large repository may lead
to long search times and relevant code may not be found efficiently. For encoded programs,
those with higher complexity may take longer for the solver to process whereas programs
with lower complexity may be too trivial and not worth searching for. Programs encoded
at the most concrete abstraction level may be too specific, but more abstract programs
may require too many modifications to be useful. These factors will each require thorough
experimentation to measure the sensitivity of the approach to changes in each dimension.

Presently, our encoding supports strings, lists, tables, booleans, characters, and integers,
so the approach implementation is limited in this way. Previous work on symbolic execution
indicates that as long as the data structures can be modeled, then their symbolic analysis is
feasible, although more costly. The main challenge we foresee is with objects that live on
the heap. Other challenges include handling of predicates (as mentioned in Example 3 in
Section 3.1) and loops.

4.3.4. Developer Context. This search approach is particularly useful and effective when the
programmer has a concrete idea of what they want the code to do and can illustrate that
with an example. Such a situation may manifest during general development activities, but
may be particularly common during test-driven development where the programmer creates
stubs and test cases for their desired code. Using the test cases as input/output examples,
the code search would identify potential code candidates to fill in the stubs. In this way,
the search would operate behind-the-scenes and the developer could continue designing and
developing code as the search finds candidate source code.

As with the above scenario, depending on how the approach is used, performance issues
may not be a problem. Specifically, the matched results will behave as specified, which is not
the case for most matched results returned by state-of-the-practice syntactic searches. Thus,
programmers may be inclined to trade speed for quality. For example, novice programmers
may know what their desired code should do but not how to code it. A more experienced
programmer who is new to a language may run into the same situation while learning new
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syntax and libraries. In these cases, it may be useful to provide an example of the desired
behavior and see how, in the new language, such behavior can be achieved.

While these situations provide scenarios when slower search performance may be tolerated,
studying that tolerance is left for future work.

4.4. Summary

In this section, we have defined and provided the implementations details for our code
search approach in subsets of three languages, Java, Yahoo! Pipes, and SQL, providing
the grammars and describing the language coverage. We have also identified challenges
and opportunities for this approach as the research moves forward. Next, we evaluate each
language by manipulating several of the factors and exploring the impact on effectiveness
and performance.

5. EVALUATION

The study is designed to provide a preliminary assessment of the approach across multiple
dimensions while highlighting some key aspects in the three supported domains: Java, Yahoo!
Pipes, and SQL. It is not exhaustive, but rather is designed to explore the potential of
this approach to serve the diverse needs of programmers across many domains and outline
potential areas of future exploration. Comparing our search to state-of-the-art and state-of-
the-practice searches is difficult since the query models are heterogeneous across approaches
(e.g., keyword, formal specification, input/output example, etc.) and the content of the
repositories may vary significantly. We took a mixed approach to mitigate these challenges,
using the opportunities provided by each domain to explore various aspects of the approach
more fully. Thus, the evaluations are different for each domain.

To evaluate our approach in Java, we begin by comparing our approach to the state-of-the-
practice code searches by searching a local repository using our search and a Google-powered
keyword-based search engine pointed to a local repository. The relevance of the search results
was judged by programmers in an empirical study. This evaluation is designed to address
our first research question:

RQ1. How do our search results compare to those found using a keyword-based approach,
from the perspective of the programmer?

While RQ1 aims to compare our approach to syntactic searches, we hypothesized that
these search approaches are complimentary and can be used together. The goal of RQ2 is
to explore the benefits of combining the two search approaches in Java; we evaluate how
Google and our approach can work together by evaluating our second research question:

RQ2. How much can existing search approaches be improved by augmenting results
with our search approach?

As discussed in Section 3.2, programmers can search the Yahoo! Pipes repository by URL,
which is also the input used by our search approach. However, our search includes another
piece of information, the output. In order to obtain specifications to evaluate our approach
in this domain, we identify representative pipes from which we extract input/output queries.
We first explore the shortcomings of existing search techniques to identify the potential
for gains. Second, we use our approach to search a local repository for relevant pipes and
explore the impact of tweaking the search parameters on the effectiveness of the search. This
evaluation aims to address our third research question:

RQ3. What is the impact of tweaking search parameters, specifically abstraction, speci-
fication size, and solver time, on the search effectiveness?

The Yahoo! Pipes domain is better suited than Java to evaluate RQ3 for two reasons.
First, in our current Java evaluation, the specifications and snippets are small, so the solver
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times are fast. In Yahoo! Pipes, the specifications can get quite large and solving can take
minutes, leaving much opportunity for improvement through specification manipulation
(e.g., considering partial specifications, trading precision for efficiency). Second, the Java
code snippets we encode are taken out of context, so many variables are already symbolic.
The Yahoo! Pipes programs, on the other hand, are encoded in their entirety, which leaves
more opportunity to gain from abstraction.

Scalability is a concern as the size of a specification can have a big impact on the search
time. Increasing the bounds for the specification sizes (i.e., strings, lists, tables) can give an
idea of how our approach scales with respect to specification size. We manipulate the size
and content of specifications in SQL to better understand the impact of specification size
and complexity on search time. This evaluation aims to address our fourth research question:

RQ4. What is the impact of query complexity on search time?

For each research question, we describe how the repositories were built, the metrics we
use, and the results. All of the study artifacts are available online.12 For the studies related
to RQ3 and RQ4, our data were collected under Linux on 2.4GHz Opteron 250s with 16GB
of RAM. For RQ1 and RQ2, our data were collected under OS X on 2.4GHz Intel Core 2
Duo with 4GB of RAM.

5.1. RQ1: Comparing Our Search to Syntactic Searches – Java

RQ1 aims to compare a keyword-based search approach against our approach in Java. We use
a local repository that we created and control as a common baseline to compare the results
obtained by our search against the results obtained by a Google-powered syntactic search
engine pointed at the local repository. Performing a similar comparison of our approach to a
general Google search is impractical, since it would require us to index the same scope of
programs and web pages that Google has indexed and our encodings are limited. Instead,
we opt to compare the results of a syntactic approach with our approach using a common
baseline repository.

5.1.1. Metrics. To compare the results across the search techniques on the local repository,
we use the number of results and P@10, which represents the precision, or relevance, of the
top 10 results. To calculate relevance, we performed an empirical study where each of the
top 10 results was shown to programmers who determined whether or not the code was
relevant to the problem. The average relevance among the top 10 search results forms the
P@10 metric.

5.1.2. Artifacts. Comparing the search approaches requires the same query and the same
repository so the results can be compared. Since our encodings are limited, we could not
simply index all programs on the web, but we could control the space of potential matches
by pointing both search approaches at the same repository. The following describes how we
formed the repository, gathered queries, and obtained search results for evaluation.

Local Repository. We built a local repository by issuing syntactic searches on
Koders.com [koders 2012] for each of the java.lang.String functions supported by our
encoding. We scraped all lines of Java source code that contained a call to at least one of
the supported functions, totaling 5192 lines. We pruned out duplicates, lines that contained
functions we do not support, and those that are not assignment or return statements, per
the grammar in Figure 7. This left 713 unique snippets of code that form the Java code
repository used in this evaluation. By making this repository available online, we were able
to create a custom Google search engine that points to the local repository, which was used
as the keyword-based search approach.

12https://sites.google.com/site/semanticcodesearch
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Table V. Java Artifacts Specifications for RQ1 and RQ2

Q Title Input String Output String

1
Just copy a substring in Animal.dog Animal
java World.game World

2 extract string including whites-
paces within string (java)

23 14 this is random this is random

3 How to get a 1.2 formatted string
from String?

1.500000154 1.5

4 How to pull out sub-string from
string (Android)?

<TD>TextText</TD> TextText

5 Trim last 4 characters of Object Breakfast($10) Breakfast

6
Removing a substring between two
characters (java)

I <str>really</str> want ... I really want ...

7 Splitting up a string in Java i i i block of text block of text
8 How to find substring of a string

with whitespaces in Java?
c not in(5,6) true

9 Limiting the number of 124891 1248
characters in a string, difference diff
and chopping off the rest 22.348 22.3

montreal mont

10
Trim String in Java while preserve
full word

The quick brown fox jumps The quick brown...

11 How to return everything after x
characters in a string

This is a looong string is a looong string

12 Slice a string in groovy nnYYYYYYnnnnnnn YYYYYY
13 How to replace case-insensitive FooBar Bar

literal substrings in Java fooBar Bar
14 Removing first character of a string Jamaica amaica
15 How to find nth occurrence of char-

acter in a string?
/folder1/folder2/folder3/ folder3

16 Java finding substring **tok=zHVVMHy... zHVVMHy
17 Finding a string within a string ...MN=5,DTM=DIS... DTM=DISABLED

Search Queries. Our search and a keyword-based search use different query models,
input/output examples and textual queries, respectively, so we found a source that would
allow us to extract both input/output examples and keywords to perform the searches.
Using questions posted on stackoverflow, we use the posting title as the keyword query and
the input/output example(s) as the query for our approach. Of the 67 questions tagged
in stackoverflow with java, string, and substring, 40 (60%) contain some form of explicit
example. For 17 of those cases, our current Java implementation supports encoding the
input/output example. The remaining 23 involve constructs we do not currently support,
such as regular expressions or arrays. The titles and input/output for the 17 questions
are shown in Table V. The Q column identifies the question number, and Title is as it
appears in stackoverflow. Each of these questions has an input and output example, which
are shown in the Input String and Output String columns. For some questions, specifically,
Q1, Q9, and Q13, multiple examples were provided, and we consider all of those in the query
simultaneously.

Search Results. Results for the keyword-based approach were obtained by issuing each
title from Table V as a keyword query against the local repository, using a Google-powered
keyword-based search engine. The top 10 results were retained for evaluation.

For our approach, we encoded the input/output as CLS for each of the 17 stackoverflow
questions and searched our local repository for matches. The top 10 results were retained
for evaluation. When multiple input/output examples were given, as was the case with Q1,
Q9 and Q13, the examples were considered simultaneously to identify results. This means
that if there exists a free variable in a solution, such as the upper bound on a substring,
that variable needs to be set to the same value for all examples in order for the result to be
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considered. For example, with the first specification in Q1, the input is “Animal.dog” output
is “Animal”. The following code is among the 51 code snippets identified as a match:

St r ing f i e ldname = l i n e . s ub s t r i ng (0 , idx ) ;

With the input bound to line and the output bound to fieldname, the variable idx is
symbolic. The solver determines this example matches when idx 7→ 6. However, considering
the second specification, “World.game” and “World”, this match is eliminated since idx 7→ 5.
Other results set the upper bound based on a property of the input variable. For example,
the following code matches both specifications since the upper bound is set to be the index
of the string “.” in the input variable, typel:

packagename = type l . s u b s t r i n g (0 , type l . l a s t i n d e x o f (“.”) ) ;

5.1.3. Human Evaluation. For each of the top 10 results returned by either search approach,
we asked programmers if the source code was relevant to the programming task described
by the original stackoverflow title. The following describes the experimental setup and
implementation.

Experimental Tasks. An experimental task presents a participant with a programming
task (i.e. the title from Table V) and five source code snippets. These snippets are the search
results from the keyword-based search and the input/output search, alternating. For half of
the tasks, a result from the keyword-based search appeared first; the other half had results
from the input/output search appearing first. Participants were not made aware of which
search approach was responsible for which snippet. Then, participants state whether or not
each code snippet is relevant to the task (yes/no response) and why (free response). Relevance
was defined by “source code [that] is directly applicable except for variable renaming or
resetting.” For example, for Q1, the following snippet was determined to be relevant if the
variable, querystring, is set to “.”.

u r l = u r l . s u b s t r i n g (0 , u r l . i ndexo f ( que ry s t r i ng ) ) ;

We created 64 different tasks; this is calculated by the 17 questions * 10 search results *
2 search approaches = 340 snippets. For Q6 and Q10, our approach returned zero results,
reducing this to 320 snippets. With five snippets per experimental task, there were 320/5 =
64 experimental tasks available. When there were fewer than 10 responses (e.g., Q1 and our
approach, Q5 and the keyword-based approach), the search results were repeated, starting
with the first result, to fill up 10 slots; otherwise, each search rest appeared exactly once.
This maintained the alternating pattern of responses in the experimental task design.

Deployment. As with part of the survey in Section 2.1, this study was deployed on
Amazon’s Mechanical Turk [mechanicalturk 2010]. This platform has been effective for
gathering programmer opinions regarding source code in our previous projects [Stolee and
Elbaum 2010]. Each experimental task is implemented as a human intelligence task, or
HIT. In order to perform HITs in the study, participants had to correctly answer at least
two of four Java competency questions correctly. These questions required the potential
participants to read and analyze the behavior of Java methods.

Each HIT paid $0.50 and participants could complete all 64. For replication, five partici-
pants performed each HIT. The study was available from September 22, 2013 until October
22, 2013.

Subjects. Our study involved 19 participants. The average participant had over four years
of Java experience; 68% of the participants reported to program daily while the remaining
six participants programmed less frequently. Approximately half the participants reported
to search for code daily or “whenever I code”.

The median number of hits per participant was 7, with a maximum of 62 and a minimum
of 1. While the quantity of HITs performed by a couple participants was high, the impact
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Table VI. Java results for RQ1 where P@10 is based on an assessment using 19 programmers and for RQ2 where
our approach is combined with Google

RQ1 RQ2
Our Approach Keyword Approach Google Global + Us

Q # P@10 # P@10 S@10 Discarded S’@10 % Reduction

1 4 1.00 99 0.28 25 18 7 72%
2 24 0.84 34 0.36 17 0 17 0%
3 48 0.90 37 0.30 0 0 0 –
4 13 *0.88 100 *0.28 36 12 +24 33%
5 48 0.98 5 0.14 3 0 3 0%
6 0 0.00 99 0.42 37 6 31 16%
7 21 0.82 42 0.28 16 4 12 25%
8 20 0.54 99 0.26 38 7 31 18%
9 49 *0.86 41 *0.20 0 0 0 –
10 0 0.00 40 0.42 9 2 7 22%
11 23 *0.72 70 0.42 6 3 3 50%
12 13 *0.92 38 0.22 7 2 +5 29%
13 24 0.86 2 0.04 29 11 17 38%
14 22 *0.76 38 0.24 0 0 0 –
15 13 0.96 42 0.26 0 0 0 –
16 14 0.94 2 0.08 26 14 12 54%
17 13 0.90 34 0.16 8 7 1 88%

Average 20.5 0.76 48.4 0.26 15 5 10 34%

Key:
#: The number of results from the search
P@10: Relevant results from the search (according to programmers)

(* indicates some results match Stackoverflow responses)
S@10: Count of Java snippets from top 10 Google pages
Discarded: Snippets from S@10 that we support and are unsat
S’@10: The reduced pool of snippets to evaluate
Reduction: The reduction in snippets that need to be evaluated

(+ indicates a results returned sat)

on the overall P@10 was minimal. For example, removing the responses from the participant
who completed 62 HITs had a -0.017 impact on P@10 for our approach and a +0.003 impact
for the keyword-based approach.

Each HIT took participants approximately 4.5 minutes to complete for an effective hourly
rate of $6.52.

5.1.4. Results. The results for both RQ1 and RQ2 (see Section 5.2.3) are shown in Table VI.
The Q column matches the specifications shown in Table V. The next sets of columns, Our
Approach and Keyword Approach show results for RQ1.

On average, our approach found 20.5 matches for each query, ranging from zero (in two
cases, Q6 and Q10 ) to 49 results. As an example, for Q2 in Table V, given the input “23
14 this is random” and output “this is random”, our search approach finds 24 matches
including, for example,

St r ing message = name . su b s t r i n g (6 ) ;

Although queries can be refined by adding extra examples, some refinements are better
than others. Adding the second input/output pair reduces the number of results for Q1 from
51 to four. For Q9 and Q13, there is no reduction in the search results when considering all the
input/output pairs in the specification compared to considering just the first input/output
pair. This may be because the examples were too similar, or because the results actually
capture the intention of the programmer. Specifically, for Q9, the at least one result matched
the community-approved result on stackoverflow.
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Using the keyword-based search, on average, 48.5 matches were found for each query,
ranging from two to 100. These results are under the Keyword Approach column in Table VI.
In Q2, for example, we see that the keyword-based approach returns 34 results.

Comparing all results to the solutions proposed and positively voted by the stackoverflow
community, our approach returns results that match the community solutions for five of
the 17 searches (Q4, Q9, Q11, Q12, and Q14, each marked with the *), and keyword-based
results matched for two searches (Q4 and Q9 ). A match was determined if all API calls
were the same between two snippets.13 For example, consider Q9. Our search returns 49
snippets, including relevant snippets s1 and s2:

s1 . r e p o s i t o r y = l o c a t i o n . s ub s t r i ng (0 , colon index ) ;
s2 . S t r ing f i e ldname = l i n e . s ub s t r i n g (0 , idx ) ;

The keyword-based approach returned 41 results, including relevant snippets s3 and s4:

s3 . S t r ing = s t r i n g . s ub s t r i ng (0 , end ) ;
s4 . S t r ing a x i s p a r t = mdxquery . su b s t r i n g ( mdxquery . indexOf ( s e l e c t ) , mdxquery .

indexOf ( from ) ) ;

Stackoverflow suggests snippet s5 as a result:

s5 . S t r ing . su b s t r i n g (0 , maxLength ) ;

While s4 can be instantiated to fit the specification in Q9, snippets s1, s2, and s3 match
the API calls used in s5.

The ultimate oracle for the relevance, however, is a human judge. For this reason, we also
turned to programmers to determine the relevance of the search results with respect to the
problems and to calculate P@10.

The average relevance among the top 10 search results for our approach was 0.76 versus
0.26 for the keyword-based approach. The breakdown per question is shown in Table VI. For
our approach, the best results came from Q1 where all the results were found to be relevant
(P@10 = 1.00). This may have been due, in part, to the fact that multiple input/output
examples were given, leading to highly relevant results. For the other questions that had
multiple input/output pairs, Q9 and Q13, the relevance was slightly lower at 0.86 each.
For the keyword-based approach, the highest relevance came from Q6, Q10, and Q11 with
P@10 = 0.42 for each. While the keyword-based results’ relevance was always lower, this
demonstrates a complementary nature among the search approaches. For two of the highest-
performing questions for the keyword-based approach, our approach was not able to find
any search results (i.e., Q6 and Q10 ).

In summary, we observed that using the same repository, the keyword-based approach
returns over twice as many results as our approach, but among the top ten, our approach is
nearly three times more effective at returning relevant results. For four of the 17 searches
(Q5, Q8, Q13, and Q16 ), our approach provides matches when the keyword-based approach
does not find any as the syntactic query was not good enough to identify results.

In terms of performance, encoding all 713 snippets takes 2.991 seconds (averaged over ten
runs), which is approximately 4ms per snippet. Among all the input/output examples in
Table VI and all searches, the average solver time to determine sat is 0.0483 seconds and to
determine unsat is 0.0051 seconds. However, given that the snippets and the specifications
are small, this may represent a best-case scenario. In the presence of larger and more
complex programs, and larger and more complex specifications, these performance measures
will drop, as we observe with RQ3 and RQ4.

13The stackoverflow community often proposed solutions that used regular expressions, string tokenizers, and
arrays, which are not currently supported by our encoding and thus do not appear in any of our result sets.
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5.2. RQ2: Combining Our Search with Google – Java

Rather than treating our search approach as an alternate to a keyword-based search engine,
we hypothesized that these two approaches are complementary. For RQ2, we perform Google
searches on the web and explore how the results could be filtered and improved by also using
our search approach.

5.2.1. Metrics. A syntactic search returns many webpages that could contain several snippets
of code that must be evaluated. To capture the space of code that must be evaluated by
a programmer, we define new metrics, S@10 and S’@10. The metric S@10 represents the
number of code snippets returned in the top ten results from a general Google search.

To capture S@10, we issue Google queries, then scrape and count the Java code snippets
from the top 10 page results. The metric S’@10 represents the number of snippets the
programmer must evaluate after applying our search technique on top of the Google results.
To capture S’@10, we first attempt to encode all the snippets in S@10. Next, we run
our search technique using the encoded S@10 snippets as a repository and the example
input/output as a specification, and discard snippets that return unsat. This set of Discarded
snippets represents those that the programmer does not need to evaluate by hand. S’@10 is
calculated as the difference (S@10 − Discarded), representing the reduced space of snippets
for the user to evaluate.

5.2.2. Artifacts. We use the same artifacts gathered for RQ1, shown in Table V. The initial
queries to Google were formed using the titles. For each of the top 10 page results, we
collected the source code snippets. This formed a temporary repository for the input/output
search, which used the input/output examples from Table V as the query.

5.2.3. Results. The results for RQ2 are shown in Table VI in the last set of columns, Google
Global + Us. On average, 15 snippets were gathered from the top 10 search results per search,
with a range from zero to 38 (zero occurred when none of the retrieved pages were in the
Java language).

By trying to encode each of these snippets, we were able to check the input/output pairs
from Table V against the retrieved snippets as a way to identify matches and prune the result
set. The number of snippets for which the SMT solver returns unsat given the input/output
specification is shown in the Discarded column. The programmer must then only look at
S’@10 snippets. Overall, the number of snippets returned could be reduced by 34% just by
using our semantic search on top of the Google results, though the search time would clearly
increase. In two cases, Q4 and Q12 (marked with + in Table VI), at least one snippet
returned sat, indicating that the snippet matches the specification and would be a solution.
Since we do not support the entire Java language, matches were not as common; for those
snippets that we do support, most could be quickly discarded.

While our approach can assist syntactic searches by removing irrelevant results, it should
be noted that if a syntactic query misses a possible solution (i.e., a snippet of code that
would provide a solution is not in the Google result set), then our search would not have
the opportunity to evaluate that solution. Here again, the effectiveness of the search is
dependent on the programmer’s ability to write a query tied to documentation or syntax, a
limitation that is addressed when our search is used in isolation, as was done for RQ1. Still,
integrating syntactic search capabilities may be useful for programmers who know a little
about the implementation they desire, though clearly the programmer would sacrifice some
performance over just a syntactic search.

5.3. RQ3: Impact of Tweaking Search Parameters – Yahoo! Pipes

In Yahoo! Pipes, the specifications can be quite large and complex, and tweaking the
search parameters can have a profound impact on the results. We begin by looking at the
effectiveness of the state-of-the-practice search approach, to show when the existing search
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succeeds, and when it fails. Then the results for RQ3 are presented, exploring the impact of
tweaking search parameters, specifically solver time, specification size, and the abstraction
level of program encodings, on the effectiveness of the search in Yahoo! Pipes. We measure
effectiveness using precision and recall, where the baseline is our search at the most abstract
encodings. This is different from the previous study because we are not comparing our results
to another search engine, but rather are comparing against an oracle.

5.3.1. Artifacts. To evaluate RQ3, we require a repository of Yahoo! Pipes programs and
specifications to search the repository. In a previous study with Yahoo! Pipes [Stolee et al.
2012] we scraped 32,887 pipes programs from the public repository by issuing approximately
50 queries against the repository and removing all duplicates. Among these pipes, 2,859 are
supported by our encoding (Section 4.2.2), which forms the local repository.

To perform the searches for the study, we gathered specifications from five representative
pipes in the repository. These pipes were identified as follows: the pipes were clustered based
on their structural similarity (i.e., modules and wires match in topology, but the field values
within modules can differ). The clusters were ordered according to size and one pipe was
selected from each of the median five clusters. Each specifications was obtained by retrieving
the RSS feeds to form the input list(s) and executing the pipe to capture the output list.

The pipes used to generate the specifications are described in the Structure column in
Table VII. The first pipe has one URL that gathers weather information. The specification
retrieved from this pipe is specification 1. The second pipe has one URL and retains records
that contain “hotel” in the description field, then sorts the list and retains the first three
records. The retrieved specification is specification 2. The third pipe has three URLs and
forms specification 3. The fourth pipe one URL and is similar to the pipe shown in Figure 2(a);
the retrieved specification is specification 4. The fifth pipe creates specification 5. It aggregates
and sorts the items from the two URLs.

5.3.2. Metrics. To explore the effectiveness of the state-of-the-practice search, we searched
repositories of Yahoo! Pipes programs using the URLs from each of the derived specifications.
We report the number of matches returned by the search, and P@10, which is determined
by executing each pipe and evaluating the results. This search is preformed on the global
Yahoo! Pipes repository and on our local repository.

We manipulate three search parameters, the abstraction of the program encodings, the
specification size, and the maximum solver time. We report the number of pipes in the local
repository that return sat, unsat, and unknown (?) at each of four solver times, 1, 10, 100,
and 1,000 seconds (sec.), considering four sizes of specification and two levels of abstraction
on the program encoding.

The specification sizes are measured as a percentage of the full specification from which the
precision and recall are computed. The levels considered are 25%, 50%, 75%, and 100%. For
example, if a specification has 10 RSS items in the input, as is the case with specifications
1, 2, and 5, then 75% of the input size would consider the first 8 items, and 50% would
consider the first 5 items. The output is adjusted according to the input. For example, the
ninth item in specification 2 is included in the output, but when considering the first 75% of
the specification, this item is dropped also from the output. Abstraction has two levels, all
concrete and all symbolic, on the string and integer fields. That is, the symbolic encoding,
all configurable string and integer fields in the operator modules (<operator> in Figure 9)
are relaxed.

We also calculate precision and recall, where

precision =
relevant ∩ sat

sat
and recall =

relevant ∩ sat
relevant
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Table VII. State-of-the-Practice Search by URL Query on Global and Local Repositories

Global Search Local Search
Pipe Structure URLs Matches P@10 Matches P@10

1
output union
((filter) (filter))
split fetch

rss.weather.com 71 0.2 1 0.1

2 output truncate sort
filter fetch

feeds.feedburner.com 16,990 0.0 881 0.0

3
output sort union anunturi-gratis.ro

1,281 0.0 220 0.0
(truncate fetch) anunturi-utile.ro
(truncate fetch)
(truncate fetch)

feedproxy.google.com

4 output tail truncate
fetch

ocregister.com 38 0.0 1 0.1

5
output sort union feeds.gawker.com

4 0.1 1 0.1
(fetch filter)(fetch) lifehacker.com.au

Using the results of our own search as a baseline, relevant results are those that will eventually
(given infinite time) return sat with a symbolic encoding, which represents the pipes for
which some instantiation of the module field values can achieve the desired behavior.

5.3.3. Results. To explore the impact of tweaking search parameters, we use our approach
to search our local repository using each of the five input/output specifications, given the
solver times, specification sizes, and abstraction levels described. These search parameters
are relevant to our semantic approach only, so we cannot directly compare our results
to a syntactic search on the local repository. To gain a better understanding of how
programmers currently search in this domain and the potential for improvement with
our proposed input/output search, we also provide the results of state-of-the-practice searches.

State-of-the-Practice: The results for the state-of-the-practice searches on the global
repository are shown in Table VII in the Global Search columns, and varied substantially
among the five example specifications. For each search, the number of matches and P@10
are reported.14 For two of the searches, specification 2 and 3, thousands of matches were
returned in the search. Specification 5, on the other hand, only returned four results one
was relevant; two pipes were relevant for specification 1. Repeating this search on our
local repository (Local Search in Table VII), which is much smaller, yields one match
for specification 1, specification 4, and specification 5, with and P@10 = 0.1 (the pipe
from which the specifications were generated). Specification 2 returns 881 results and
specification 3 returns 220 results, with P@10 = 0.0 for both. What this illustrates is that
for the more common URLs, programmers must sift through a lot of irrelevant results, and
a pipe that behaves as they want might not be easy to find. In all cases, to determine
relevance, each pipe must be either executed or manually inspected.

Impact of Abstraction on Recall: We consider two levels of abstraction, a concrete level
where the programs (sans URLs) are encoded as is, and a symbolic level in which the strings
and integers in the program encodings are made symbolic. The results of our experiments
are shown in Table VIII and Table IX for the impact of abstraction and solver time on recall.

In Table VIII, the first set of columns reports the results for the Concrete abstraction
level, and the second set for the Symbolic abstraction level. Each row represents the results
given a specific maximum solver time. The number of matches is shown in the Sat column,
and the number of discarded programs are shown in the Unsat column. If the solver was
stopped before it could make a decision, then the solver returned unknown, which is shown
in the ? column, followed by the recall metric.

14Search results reflect the state of the repository on February 22, 2012
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Table VIII. Pipe Specification Search Results

Specification 1

Concrete Symbolic
sec. Sat Unsat ? Recall Sat Unsat ? Recall
1000 17 2842 0 0.165 100 2756 3 0.971
100 16 2842 1 0.155 24 2756 79 0.233
10 0 2836 23 0.000 0 2723 136 0.000
1 0 2794 65 0.000 0 2572 287 0.000

Specification 2

Concrete Symbolic
sec. Sat Unsat ? Recall Sat Unsat ? Recall
1000 1 2858 0 0.333 2 2856 1 0.667
100 0 2858 1 0.000 0 2853 6 0.000
10 0 2836 23 0.000 0 2785 74 0.000
1 0 2783 76 0.000 0 2567 292 0.000

Specification 3

Concrete Symbolic
sec. Sat Unsat ? Recall Sat Unsat ? Recall
1000 3 2856 0 0.143 18 2838 3 0.857
100 0 2856 3 0.000 0 2833 26 0.000
10 0 2835 24 0.000 0 2651 208 0.000
1 0 2798 61 0.000 0 2554 305 0.000

Specification 4

Concrete Symbolic
sec. Sat Unsat ? Recall Sat Unsat ? Recall
1000 1 2858 0 0.011 89 2770 0 1.000
100 1 2858 0 0.011 86 2770 3 0.966
10 1 2858 0 0.011 3 2770 86 0.034
1 0 2795 64 0.000 0 2758 101 0.000

Specification 5

Concrete Symbolic
sec. Sat Unsat ? Recall Sat Unsat ? Recall
1000 1 2858 0 1.000 1 2858 0 1.000
100 1 2858 0 1.000 0 2857 2 0.000
10 0 2851 8 0.000 0 2773 86 0.000
1 0 2799 60 0.000 0 2607 252 0.000

For all searches and abstraction levels, at least one match is found with the maximum
solver time of 1000 seconds, which is fitting as each specification was derived from a pipe
in our local repository. Symbolic encodings yields as many or more results than concrete.
For instance, with specification 4 in Table VIII at 1000 seconds, all the programs have been
determined to be sat or unsat for the concrete and symbolic encodings (? = 0 for both). Yet,
the symbolic encoding yields 89 possible matches while the concrete encoding only finds one.

Even though the concrete encodings yield fewer results, in all cases, our search on the local
repository (Table VIII) returns at least as many relevant results as the syntactic searches on
either the global or the local repository (Table VII). For specification 3, we find three results
with the concrete encoding whereas neither of the syntactic searches return any relevant
results among the top 10. For specification 2, one result is found, compared to zero relevant
results in the syntactic searches. We observe that it does take some time to find results, yet,
for the other three specifications, a result is returned in the concrete encoding within 100
seconds, and in the case of specification 4, within 10 seconds.

Based on the differences in the number of results for symbolic versus concrete encodings,
the impact of abstraction on the solver time warrants further investigation. In the Symbolic
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Table IX. Comparative Runtime in Seconds After Applying Abstraction

Concrete Slowdown Abstracted
Encoding SICS SSCI Symbolic Strings Integers

Pipe 1 181 sec. -1% +908% +960% 2 0
Pipe 2 131 sec. +1000% +247% +1763% 1 1
Pipe 3 511 sec. -58% +3% -52% 0 3
Pipe 4 4.9 sec. -27% +0% -31% 0 2
Pipe 5 78 sec. +1% +237% +212% 1 0

encodings reported in Table VIII, both integers and strings were abstracted. Using the five
example pipes from which the specifications were derived, we teased apart the symbolic
encodings to create two additional levels of abstraction between Concrete and Symbolic;
these are SICS (Symbolic Integers, Concrete Strings) and SSCI (Symbolic Strings, Concrete
Integers). We paired the specification with its original pipe at each of the four abstraction
levels and invoked the solver, measuring the runtime. Table IX presents the results for
the concrete encoding in the Concrete Encoding column, averaged over three runs. The
next three columns show the Slowdown of the runtime for the various levels of abstraction.
The final two columns of the table indicate the number of strings and integers that were
Abstracted in each pipe.

For pipes where only integers were ever abstracted, namely pipe 3 and pipe 4, a speedup
was observed when the integers were removed (i.e., indicated by negative slowdown in SICS
and Symbolic). For the SICS encoding, a 58% speedup is observed for pipe 3, and a 27%
speedup is observed for pipe 4. On the other hand, when strings are abstracted, which
happened for pipe 1, pipe 2, and pipe 5, there is a slowdown of at least 200%. Combining
abstracted strings with abstracted integers, which happens for pipe 2, causes the largest
slowdown we observed. In terms of complexity, pipe 2 includes filter, sort and truncate
modules, whereas each of the other pipes contains only one or two of those module types; we
hypothesize that the combination of complex modules contributes to the poor performance.
Using this information will be important when optimizing the performance of the search
approach in the presence of abstraction.

Impact of Solver Time on Recall: The concrete encodings can discard irrelevant
programs faster than the symbolic encodings, in part because the constraint systems
are tighter and the solver has fewer decisions to make. For all examples, and all
ranges of solver times, the number of unsat programs for the concrete encoding is
always greater than or equal to the number for its symbolic counterpart. Since cutting
the solver time before it has reached a conclusion returns unknown, the recall is re-
duced as only sat pipes are considered results. Treating the unknown pipes as results will
increase recall to 1.00, but at the cost of precision. Studying this tradeoff is left as future work.

Impact of Specification Size on Precision: Larger specifications seems to have a bimodal
profile, either returning nothing because they run out of time, or returning a precise match
if they are allowed to run longer. Figure 11 shows the impact of modifying the specification
size on precision for each of the specifications and two abstraction levels, with a range of
solver times from 1 to 1000 seconds. Each combination of specification and abstraction
level is presented in a graph. The x-axis shows the solver time in seconds on a base-10
logarithmic scale (i.e., 0.6 represents 100.6 ≈ 4.0 seconds, 3.0 represents 103.0 = 1000 seconds).
The y-axis shows the search precision. Each line in each graph represents a percentage of
the specification size used in the search, either 25%, 50%, 75%, or 100%. For example,
with specification 1, the concrete encoding, 100 seconds (2.0 on x-axis), and 50% of the
specification, the search precision is 0.719. In this case, 32 results are found in total, and
only 23 of those are relevant based on pipe behavior.
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Fig. 11. Impact of Specification Size and Solver Time on Precision. The x-axis represents time in seconds and
the y-axis represents precision. Each line represents a specification size. The full specification is represented
as 100%. A three-quarter specification is represented by the 75% line, and so forth.
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Overall, we see that a smaller specification can yield results faster, but at the cost of
precision. For example, with specification 3, a concrete encoding and a full specification,
no results are found until 600 seconds (2.78 on x-axis). However, considering 25% of the
specification yields 13 results in 6 seconds (0.8 on x-axis), but only with a precision of 0.231.
Considering 50% of the specification yields perfect precision at 20 and 30 seconds, but the
precision drops to 0.600 after 40 seconds (this happens because the incomplete specification
can return false positives; for this specification, those do not appear until after 40 seconds).
Considering 75% of the specification returns results within 200 seconds (2.3 on x-axis) with
100% precision. For specification 1 and a concrete encoding, 50% of the specification reaches
a plateau of precision at 0.719 after 50 seconds. Using a full specification requires a wait
of 60 seconds and yields precision of 1.000. With the symbolic encoding of specification
4, 75% of the specification yields precision of 1.00 within 1 second. Results are also found
with 50% and 25% of the specification, but the precision is much lower; the precision for
the 25% specification never rises above 0.239. Given the potential for parallelization of the
approach, it may be worthwhile to launch solvers with different maximum times in parallel
with different spec lengths.

While the smaller specifications can yield results faster, care must be taken. In specifica-
tion 5 and a symbolic encoding, considering 25% of the specification returns 45 results in 10
seconds, yet none are relevant and precision is 0.0. Understanding when it is appropriate to
consider a reduced specification size is left for future work, but what we see is an opportunity
to decrease the search time at the cost of precision, which could make the approach more
amenable to being combined with other approaches (e.g., such as syntactic searches as
explored in RQ2 ).

5.4. RQ4: Impact of Query Complexity on Search Time – SQL

In our search approach, we have two primary concerns with respect to scalability: increasing
the size of the repositories, and increasing the size and complexity of the programs and
specification. In the former case, scalability may be improved by introducing parallelization,
more clever heuristics, and higher level encodings, which we leave for future work. RQ4
explores the impact of size and complexity of specifications on the time for the solver to
return sat, indicating a match. Since SQL tables can become very large in practice, it was
the natural domain for evaluating this question.

5.4.1. Artifacts. To address RQ4, we required a careful manipulation of the specification to
vary size and complexity. We selected a program (SQL select query) from stackoverflow15

and systematically decomposed it to generate input/output of different sizes and complexity.
To identify that program, we searched stackoverflow postings for select statements containing
the clauses we support, and selected the first one when ranked by number of votes that also
had an input/output example:

SELECT username FROM table WHERE balance >= 1000000 ORDERBY balance DESC;

To vary specification complexity, we decompose the statement into component clauses,
where and order by, and generate four SQL statements using the combinations. These
statements are:

s1 . SELECT username FROM table ;
s2 . SELECT username FROM table WHERE balance >=1000000;
s3 . SELECT username FROM table ORDERBY balance DESC;
s4 . SELECT username FROM table WHERE balance >= 1000000 ORDERBY balance DESC;

To vary the specification size, we generate input tables with 10 to 100 rows in increments of
10, for each of the component combinations. The values of balance in the input tables were

15http://stackoverflow.com/questions/11599636/
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Fig. 12. Specification Size versus Solver Time in SQL

pulled a normal distribution N (µ = 1, 000, 000, σ2 = 200, 000). For each decomposed select
statement and each specification size, the output tables were generated from the input table
to satisfy the query and cause the solver to return sat.

5.4.2. Metrics. We report the time to return sat, averaged over ten runs, for each decomposed
select statement and each specification size. On each run, a new input table was pulled from
the normal distribution and a new output table was generated.

5.4.3. Results. Figure 5.4.3 shows the results of the experiment, with solver time on the
y-axis in seconds (on a logarithmic scale) and the input size, in number of rows, on the
x-axis. Each of the four decomposed programs is represented by a symbol on the graph.

The solving time increases exponentially with the number of rows for all the specifications.
In all cases, the output table size is a function of the input size. When the where clause is
present, the number of rows in the output is approximately half of the rows in the input
since the balance values were pulled from a normal distribution where µ was equal to the
critical value in the query (i.e., 1,000,000). When the where clause is omitted, the sizes of
the input and output tables are equal. In the graph, the performance of the select where
statement and select where order statement are very close to the performance of the
select statement. This is not entirely intuitive since the output table size for the former
two is approximately half the input table size, and for the latter the table sizes are equal.
The select order statement is the least efficient, and the input and output table sizes are
the same. Regardless, there is a clear relationship between the size of the input table and
solver time.

It is more subtle how the complexity of the specification may impact the solving time.
Specifications that require more clauses to be matched do not necessarily require more
time. For example, the specification with select order takes more time than the one with
select where order, as the expensive sorting constraints from order need to operate on
the smaller filtered dataset generated by where. Further study is needed to tease apart these
nuances, but it is clear that the application of multiple clauses makes the results harder to
predict and that there is a trend of exponentially increasing solver time as the input size
increases.
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5.5. Threats to Validity

Our evaluation explores different aspects of the approach in each of the three languages, and
each comes with its own limitations and threats to validity.

In the Java study for RQ1, we show that our search approach finds more relevant results
than a keyword-based search when using our local repository. In practice, however, syntactic
searches thrive in large repositories in terms of finding matches at the cost of precision.
By applying our technique on top of snippets gathered from general Google searches, as
in RQ2, we are able to quickly discard many irrelevant snippets, and also identify some
matches. We recognize four primary threats to validity. First, the syntactic queries were
taken from the titles of the stackoverflow questions, and may differ from queries issued by
the programmers. Second, our local repository is small, and some queries may require a
solution that we have not encoded. By our current methodology, those potential solutions
are ignored. 16 Third, our encodings are limited to a small subset of the Java language
that handles single-path programs. Regardless, these small programs were still found to
be relevant to the programming tasks according to the opinions of 19 participants in an
empirical evaluation. Fourth, by pointing a keyword-based search engine at a local repository,
the ranking capabilities may have been handicapped, which may have artificially reduced the
relevance of the top 10 results captured by the P@10 metric. As we move forward, comparing
against generic Google will be necessary, and necessitate the development of our own ranking
algorithms.

In the Yahoo! Pipes study for RQ3, symbolic encodings found more relevant examples,
but the concrete encodings could more quickly discard irrelevant results. The relevant results
were identified as those that would return sat eventually for some instantiation of the pipe.
With this domain, the input is generated from a URL, which is stateful. Gathering the RSS
feeds at a different time can yield a different input/output, and consequently a different set
of relevant results.

With the SQL study for RQ4, solving time increased with input size. Our instantiation
of SQL only works on integers, and it is likely that the time would be much longer in the
presence of more complex datatypes; further study is needed.

Selection bias and potential implementation errors are two threats that may have affected
the results on all three domains. We made our selection process explicit and developed
extensive test suites to mitigate these threats.

As this approach has been implemented in only three languages, applicability beyond
those languages is yet to be explored so generality is a concern. Adapting the approach to
a new language takes an effort, but we did not evaluate it from that perspective at this
exploratory stage.

The query model of input/output pairs may not be representative of a general and
realistic programming model for programs. Based on the evaluation of questions asked
on stackoverflow, the input/output model seems reasonable (Section 2.2). Combining the
input/output with keywords, allowing partial programs, or negative examples, may be useful
and a part of our future work.

An additional threat to validity comes from the fact that we have developed an approach
to code search that is designed to help programmers, but we do not evaluate it in the hands
of users beyond the evaluation of search results in RQ1. To show the benefits in practice
requires an empirical study with actual programmers, which will require a robust prototype
with complete interface. Still, illustrating the generality, effectiveness, and efficiency of the
approach are the first steps toward the ultimate goal of building an efficient code search
engine for programmers.

16To alleviate this threat, we can apply abstractions to expand the space of matching program behavior,
which is evaluated for Yahoo! Pipes.
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The final point of discussion here comes from the legal implications of encouraging code
reuse. In the evaluations, the source code repositories we have used come from open source,
publicly-available repositories. However, within a company, reuse of public resources may
be discouraged or constraint to specific types of licenses. Implementing the search within
a company where the repository is built from company code would skirt these issues. It is
also worth pointing out that these issues are not just faced by us, but by any researcher or
practitioner involved with search.

5.6. Summary

To summarize the studies, we revisit the research questions and discuss the findings. In
general, although our approach covers only a limited amount of each language, the results
are promising. As our language support increases and our implementation is able to handle
larger and more complex programs, we anticipate that this search approach will become
even more effective when compared to the state-of-the-practice.

5.6.1. RQ1: How does our search compare to syntactic searches from the perspective of the program-
mer?. In this study, we used the Java language and evaluated how well our search results
compare to the results found using a keyword-based search from the programmer’s perspec-
tive. We found that when using the same repository, a keyword-based search returns over
twice as many results as our approach, but among the top ten, our approach is nearly three
times more effective at returning relevant results based on the opinions of 19 programmers
in an empirical study.

5.6.2. RQ2: How much can existing search approaches be improved by augmenting results with our
search approach?. In this study, we conducted a Google search and extracted all code snippets
from the top 10 results. Using those as a local repository, we conducted a search with
input/output examples to prune the space of results. By using our search on top of Google,
the number of snippets returned could be reduced by 34%.

5.6.3. RQ3: What is the impact of tweaking search parameters on the search effectiveness?. In this
study, we used Yahoo! Pipes and evaluated the impact of tweaking three search parameters,
solver time, abstraction, and specification size, on precision and recall. The results showed
that a search using concrete pipe encodings can discard irrelevant programs faster than with
symbolic encodings. The maximum allowed solver time has a clear impact on recall where
lower solver times lead to lower recalls. A similar effect was observed with manipulations on
the specification size, where smaller specifications led to lower precision. However, smaller
specifications also returned results faster.

5.6.4. RQ4: What is the impact of query complexity on search time? . This study considered SQL,
and the results show that the size of the specification has a clear impact on the solver time,
and that the complexity of the specification likewise has an impact on solver time. This
echoes some findings in RQ3 where the size of the specification had an impact on precision.
The differences are that with the SQL study, the specifications were designed to return sat,
so precision was 1.00 by design. Additionally, the SQL specification considered only integers
whereas the Yahoo! Pipes specification considered integers and strings. Understanding which
factors lead some specifications to have a longer runtime is left for future work.

6. RELATED WORK

We have motivated, defined, instantiated and evaluated a new approach to source code
search that uses input/output examples as specifications and an SMT solver to identify
search results. In this section, we discuss the related work.

Our approach is related to recent work in code search, code reuse, verification and
validation, and program synthesis.
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6.1. Code Search

We have described an approach to code search that is semantic and uses input/output
examples to define the queries, which is closely related to research in code search.

Recent studies have revealed that programmers frequently use general search engines to
find code for reuse [Sim et al. 2011], and our own study confirms these findings [Stolee and
Elbaum 2012a]. More specialized syntactic code search engines in the state-of-the-practice
(e.g., Koders, Krugle) also incorporate filtering capabilities (e.g., language, libraries) and
program syntax into the query to guide the matching process, such as type signatures of
desired code [Sim et al. 2011]. These approaches search at an internet-scale, whereas our search
approach operates over repositories. Other approaches in the state-of-the-art add natural
language processing to increase the potential matches [Grechanik et al. 2010][McMillan et al.
2011]. Our work is different in that the search is semantic, but as we show (Section 5.2.3),
both approaches are complementary and can be combined.

Early work in semantic code search required developers to write complex specifications
using first-order logic or specialized languages (e.g., [Ghezzi and Mocci 2010][Penix and
Alexander 1999][Zaremski and Wing 1997]), which can be expensive to develop and error-
prone. The cost of writing specifications can be reduced by using incomplete behavioral
specifications, such as those provided by test cases (a form of input/output) [Lazzarini Lemos
et al. 2007][Podgurski and Pierce 1993][Reiss 2009], but these approaches require that the
code be executed to find matches. Some approaches also require a keyword query to first
prune the search space, which could miss some solutions [Reiss 2009]. Further, executing test
cases only returns exact matches, missing many relevant matches that may have a slightly
different signature (e.g., extra parameter). Other search approaches use sequences of API
calls [Mishne et al. 2012] or sequences of textual statements [Chan et al. 2012] as queries to
find code that performs the specified actions in a specified order, but implementation details
are required for an effective search.

6.2. Code Reuse

In the code reuse process, there are two primary activities: finding and integrating. Our
approach focuses on finding, which is what we have evaluated, but it has potential to be
useful with integration.

For effective reuse, scope and dependencies must be understood for developers to effectively
integrate code [Garlan et al. 1995]. Some recent work assists programmers with integrating
new code by matching it to structural properties in their development environment (e.g.,
method signature, return types) [Cottrell et al. 2008][Holmes et al. 2006]. Real-time clone
detection can promote reuse by identifying code clones as they are developed, but again this
depends on a developer having a sense of how to implement code [Lee et al. 2010]. Further,
while these approaches guarantee structural matching, the behavior of the integrated code
may not be well understood.

6.3. Verification and Validation

In this work, we have talked about how symbolic analysis is used to generate constraints that
represent the program behavior, and that this representation is used in the search process.
Symbolic execution [Clarke 1976][Clarke and Richardson 1985][King 1976] is a technique that
executes code with symbolic, rather than concrete, values, and can generate such symbolic
summaries of source code. These are similar to the summaries that our implementation
generates to represent code behavior. For two of our languages presented in this work, SQL
and Yahoo! Pipes, symbolic execution tools are not readily available. For Java, however,
tools like the symbolic execution extension [Khurshid et al. 2003][JPF-symbc 2012] to the
Java PathFinder model checker [Visser et al. 2003] can generate symbolic summaries that
we can use, but are limited in the data types that are supported. At this point, part of our
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ongoing work is to integrate our encoding process with such tools, taking advantage of their
capabilities to generate summaries for certain complex code structures.

In validation, constraint and SMT solvers have been used extensively for test case gener-
ation. Toward the goal of database generation for testing, reverse query processing takes
a query and a result table as inputs and using a constraint solver, produces a database
instance that could have produced the result [Binnig et al. 2007]. Other work in test case
generation for SQL queries has used SMT solvers to generate tables based on queries [Veanes
et al. 2010]. In our work, we do not generate database tables, but rather determine if a given
query could have produced a specified result set (output) from specified input table(s).

6.4. Program Synthesis

Previous work in the area of automated program generation [Balzer 1985] relates to our
work in that the high level specifications are used as the basis to derive programs. Closer
to our work is that in the area of program synthesis, more specifically, that which makes
use of solvers to derive a function from input/output examples (e.g., [Godefroid and Taly
2012][Gulwani et al. 2011][Harris and Gulwani 2011]). The key difference is that our approach
uses the solver to find a match against real programs that have been encoded, while these
synthesis efforts have to define templates [Godefroid and Taly 2012] or a domain specific
grammar that can be traversed exhaustively [Gulwani et al. 2011][Harris and Gulwani 2011]
to generate a program that matches the programmers’ examples. A similar approach uses
the source and destination (akin to input and output) objects to synthesize for find code
snippets based on types, as is done in Jungloid [Mandelin et al. 2005]. This approach is
particularly useful for type conversion. Our search, on the other hand, returns results based
on concrete examples of desired behavior.

7. CONCLUSION

We present an approach to source code search that uses input/output examples as queries
and searches a repository for source code that matches the defined behavior. The novelty of
the approach resides in using an input/output example as a query and in using a constraint
solver to assist with the matching process. This necessitates a transformation process on the
source code and the specifications into first-order-logic so the solver can identify matches.

To motivate the need for better code search, we surveyed 99 programmers about their
search habits, finding that code search is a common task and that current search tools are
often inadequate. To assess the viability of an input/output model for queries, we explored
questions asked by the community on stackoverflow and found that questions are frequently
accompanied by input/output examples, indicating that programmers already think in this
way when looking for help online.

We discuss the potential and tradeoffs of our search approach over the state-of-the-practice
and the state-of-the-art, describe how to encode search queries and programs in three
languages, the Java string library, Yahoo! Pipes, and SQL select statements, and explore
the effectiveness of our approach in each of these domains. Generality and efficiency in the
context of richer programs, such as those contains loops and other complex constructs, are
concerns that still need to be addressed. Despite this, we have shown that this approach
is applicable in a variety of languages, can handle non-trivial specifications, is flexible in
finding programs that are close matches that can be easily modified to satisfy the user
specifications, and can be used in lieu of or to complement the state-of-the-practice code
searches. This is just one step toward our ultimate goal of leveraging existing resources, such
as source code repositories, to positively impact programmer productivity.
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