PROGRAM ANALYSIS FUELED SEARCH

Dr. Katie Stolee Assistant Professor North Carolina State University

85% search for code at least weekly [TOSEM JEVELOPERS 2014] SEARCH THE WEB FOR CODE ...

Average of 12 queries per day [FSE 2015]

...BUT WEB SEARCH WAS NOT BUILT FOR CODE.

Code searches require more effort. [MSR 2018]

CODE SEARCH IS DIFFERENT.

A different kind of search

FUELED BY: STATIC ANALYSIS

SMT Solvers

Matching

Satisfiability **M**odulo **T**heory solvers determine if a logical formula is satisfiable

- Facts Assertions
- a >= 0 (assert (>= a 0))
- b = 2 (assert (= b 2))
- c = 2 (assert (= c 2))

c = a * b (assert (= (* a b) c))

Result sa $t \rightarrow 1$

SMT Solvers

Matching

Satisfiability **M**odulo **T**heory solvers determine if a logical formula is satisfiable

Facts	Assertions	
a >= 0	(assert (>= a 0))	
b = ?	(assert (= b ?))	
c = 2	(assert (= c 2))	
c = a * b	(assert (= (* a]	b) C))
Resi	ult sa $a\mapsto 2\wedge b\mapsto t$	2

SMT Solvers

Matching

Satisfiability **M**odulo **T**heory solvers determine if a logical formula is satisfiable

Facts	Assertions	
a = 0	(assert (= a 0))	
b = ?	(assert (= b ?))	
c = 2	(assert (= c 2))	
c = a * b	(assert (= (* a b) c))	
Res :	sult <mark>unsa</mark> t	

Matching

Matching

 $\begin{array}{ll} \mathrm{PC1:} \ d > e \wedge d > f \wedge return = d \\ \mathrm{PC2:} \ d > e \wedge d \leq f \wedge e \leq d \wedge return = f \\ \mathrm{PC3:} \ d \leq e \wedge e > d \wedge e > f \wedge return = e \\ \mathrm{PC4:} \ d \leq e \wedge e > d \wedge e \leq f \wedge return = f \\ \mathrm{PC5:} \ d \leq e \wedge e \leq d \wedge return = f \end{array}$

Search Get email alias in Java Input: Sporty@spice.co M Output: Sporty

SMT-based search

Satsy often returns more relevant search results than Google!

[Stolee, Elbaum, and Dobos. "Solving the Search for Source Code." TOSEM 2014.]

[Stolee, Elbaum and Dwyer. "Code Search with input/output queries: Generalizing, ranking, and assessment."

FUELED BY: DYNAMIC ANALYSIS

[Mathew, Parnin and Stolee. "SLACC: Simion-based Language Agnostic Code Clones." ICSE 2020.]

ICSE 2020.]

[Mathew, Parnin and Stolee. "SLACC: Simion-based Language Agnostic Code Clones." ICSE 2020.]

[Mathew, Parnin and Stolee. "SLACC: Simion-based Language Agnostic Code Clones." ICSE 2020.]

ICSE 2020.]

WHAT DOES THIS MEAN FOR SEARCH?

	А	В
1	Input	Output
2	3	21
3	5	
4	6	
5	7	

=sum(A2:A5) =sum(A2:A12) =A2*A5 =3*A3+A4 =2*(A4+A5)-A3=3*A4+2*A3-A5=(A2*A3*A4)-(A3*13)-4=if(A2>2,sum(A2:A5),0)=A4*A5/2=(A3*A4)-(A2+A4)=(A2*A2*A2)-A4

This is the solution space

	А	В
1	Input	Output
2	3	21
3	5	
4	6	
5	7	

Example 1 : 11 programs

=sum(A2:A5) =sum(A2:A12) =A2*A5=3*A3+A4 =2*(A4+A5)-A3 =3*A4+2*A3-A5=(A2*A3*A4)-(A3*13)-4=if(A2>2,sum(A2:A5),0)=A4*A5/2=(A3*A4)-(A2+A4)=(A2*A2*A2)-A4

=sum(A2:A5) =sum(A2:A12) =A2*A5=3*A3+A4 =2*(A4+A5)-A3=3*A4+2*A3-A5=(A2*A3*A4)-(A3*13)-4=if(A2>2,sum(A2:A5),0)=A4*A5/2=(A3*A4)-(A2+A4)=(A2*A2*A2)-A4

[Shriver, Elbaum and Stolee. "At the end of synthesis narrowing program candidates." ICSE-NIER 2017]

User Gives More Example s

	А	В
1	Input	Output
2	3	24
3	6	
4	7	
5	8	

Example 1 : 11 programs Example 2 : 5 programs

=sum(A2:A5) =sum(A2:A12) =A2*A5=3*A3+A4=2*(A4+A5)-A3=3*A4+2*A3-A5 =(A2*A3*A4)-(A3*13)-4=if(A2>2,sum(A2:A5),0)=A4*A5/2=(A3*A4)-(A2+A4)=(A2*A2*A2)-A4

[Shriver, Elbaum and Stolee. "At the end of synthesis narrowing program candidates." ICSE-NIER 2017]

User Gives More Example s

	А	В
1	Input	Output
2	3	27
3	7	
4	8	
5	9	

User Gives More Example s Example 1 : 11 programs Example 2 : 5 programs Example 3

=sum(A2:A5) =sum(A2:A12) =A2*A5=3*A3+A4=2*(A4+A5)-A3=3*A4+2*A3-A5 =(A2*A3*A4)-(A3*13)-4=if(A2>2,sum(A2:A5),0)=A4*A5/2=(A3*A4)-(A2+A4)=(A2*A2*A2)-A4

HOW CAN WE MAKE IT EASIER FOR THE USER?

Example 1 : 11 programs

=sum(A2:A5) =sum(A2:A12) =A2*A5 =3*A3+A4 =2*(A4+A5)-A3=3*A4+2*A3-A5=(A2*A3*A4)-(A3*13)-4=if(A2>2,sum(A2:A5),0)=A4*A5/2=(A3*A4)-(A2+A4)=(A2*A2*A2)-A4

User gives output only

Example 1 : 11 programs Example 2

=sum(A2:A5) =sum(A2:A12) =A2*A5=3*A3+A4 =2*(A4+A5)-A3=3*A4+2*A3-A5=(A2*A3*A4)-(A3*13)-4=if(A2>2,sum(A2:A5),0)=A4*A5/2=(A3*A4)-(A2+A4)=(A2*A2*A2)-A4

Example 1 : 11 programs Example 2 : 1 program

=sum(A2:A5) $-\operatorname{sum}(\Lambda 2; A12)$ =A2*A5 =2*(A4+A5)-A3 =3*A4+2*A3-A5 =(A2*A3*A4)-(A3*13)-4=if(A2>2,sum(A2:A5),0)=A4*A5/2=(A3*A4)-(A2+A4)=(A2*A2*A2)-A4

FIND INPUT THAT MAXIMIZES THE DIVERSITY OF THE OUTPUT VALUES

Solution Space Reduction on Example

WHAT WE CAN DO WITH BEHAVIORAL CODE SEARCH

Automated Program Repair

Test Suite

Test Case 1 🗸

Test Case 2 X

[Afzal, Motwani, Stolee, Brun, and Le Goues. "SOSRepair: Expressive Semantic Search for Real-World Program Repair." TSE 2020]

CANIT PATCH REAL BUGS?

Python bug #69223

THE FUTURE IS SEARCH

THANKS

Funding:

- [2018-2023] NSF CAREER #1749936: On the Foundations of Semantic Code Search
- [2016-2020] NSF SHF Medium #1645136: Collaborative Research: Semi and Fully Automated Program Repair and Synthesis via Semantic Code Search
- [2014-2016] NSF SHF EAGER #1446932: Collaborative Research: Demonstrating the Feasibility of Automatic Program Repair Guided by Semantic Code Search.

.... All the undergrads: Joshua Kayani, Sydney Paul, Jed Barson, Daniel