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Code search is frequent

● ~12x per developer per day [in 2012]
 

● Search sessions involve multiple queries

● Code search with Google takes more time, 
more clicks, and more query reformulation than 
non-code search
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Two Most Common Needs

1. Example Code, how to do something (33%)

2. Explaining what it does (26%)
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FIND IT THINK IT CHOOSE IT
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Code-to-Code Search

Mystery
Box
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The Halting Problem 😱
IT MAY NEVER WORK IN THEORY.



Haskell: List of even numbers using recursion

Haskell: List of even numbers using chaining

Python: List of even numbers using 
list-comprehension Python: List of even numbers using recursionJava: List of even numbers using IntStream

Java: for loop to populate array of odd numbers

Code-to-code Search



Haskell: List of even numbers using recursion

Haskell: List of even numbers using chaining

Python: List of even numbers using 
list-comprehension Python: List of even numbers using recursionJava: List of even numbers using IntStream

Java: for loop to populate array of odd numbers

Code-to-code Search - Language



Haskell: List of even numbers using recursion

Haskell: List of even numbers using chaining

Python: List of even numbers using 
list-comprehension Python: List of even numbers using recursionJava: List of even numbers using IntStream

Java: for loop to populate array of odd numbers

Code-to-code Search - Behavior



Haskell: List of even numbers using recursion

Python: List of even numbers using 
list-comprehension Python: List of even numbers using recursion

Haskell: List of even numbers using chaining

Java: List of even numbers using IntStream

Java: for loop to populate array of odd numbers

Code-to-code Search - Structure



Code-to-code Search - In Practice
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Code Search Underpinnings
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Looking Ahead…
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Are they same? Different? 
How do I know? 



FIND IT THINK IT CHOOSE IT
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Comparative Comprehension
The cognitive activity of understanding how algorithms behave relative 
to each other
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Controlled Experiment

● 4 independent dimensions of 
variation

○ Behavior (same or not)
○ Language (same or not)
○ Structures (similar AST or not)
○ Meaningful names (original or 

obfuscated)
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Controlled Experiment

Thinkaloud Interviews Survey
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n=16
Undergraduate students

Graduate students

Professionals

n=95
Unknown

Graduate students

Professionals



Comparison Accuracy
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Overall correct: 292 of 439 (66.5%)

Correctness (%) for…
Similarity Dissimilarity

Clone Truth 85.3 46.7
Language 70.9 62.7
Structure 75.0 59.9

Names 
(Meaningful|Obf.) 66.8 66.2

Overall correctness: 292 of 439 — 66.5%

***

*

*



Comparison Strategies
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Structural

Schematic

Textual



Comparison Strategies
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Structural

Schematic

Textual

“I didn't even need to [understand the 

logic] because they were so similar.” - P4



Comparison Strategies
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Structural

Schematic

Textual

U4 on cross-language deduplicators



Comparison Strategies
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Structural

Schematic

Textual

U4 on cross-language deduplicators



Comparison Strategies
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Textual



Comparison Strategies
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Structural

Schematic

Textual



Comparison Strategies
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Structural

Schematic

Textual



What happens when 
comparative comprehension  
is done… on real code?
i.e., software engineering students reviewing code changes on GitHub in a 
code base they used in their class project.

it’s a step in the right direction. 
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Refactoring Review Study
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RQ1: What barriers do student 
developers face when 
comprehending code changes?

RQ2: How accurately do student 
developers recognize behavioral 
impact in code review tasks?



Study Context

Interviews (20 minutes)
On Zoom
Before the tasks

8 Tasks (40+ minutes)

In-class study on refactoring 
review using GitHub

Familiar code base
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n=29 n=44

Junior-level undergraduate students



Interviews

● Prior to class activity
● 10-20 minutes
● Semi-structured
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Tasks
6 refactoring review tasks were retained for 
analysis (some true refactorings, some 
non-refactorings )

1. for loop → for each loop
2. loop → pipeline
3. consolidate conditional

+ extract variable
4. consolidate conditional 

+ extract and move function
5. Replace magic literal 

+ Steam.collect.size → 
steam.count

6. Extract function + slide statement
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Post-Task Reflection
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RQ1: What barriers do student 
developers face when 
comprehending code changes?

Refactoring Review Study
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Interviews

Task Outcomes

Task Reflections

Final Reflection

RQ2: How accurately do student 
developers recognize behavioral 
impact in code review tasks?



Results RQ2 - Accuracy
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Responses # Refactoring #Non-Refactoring

for loop → for each loop 42 35 (83%) 7 (17%)

loop -> pipeline 43 34 (79%) 2 (5%)

consolidate conditional + extract variable 44 38 (86%) 5 (11%)

consolidate conditional 
+ extract and move function 44 31 (70%) 10 (23%)

Replace magic literal 
+ Steam.collect.size → steam.count 38 27 (71%) 4 (11%)

Extract function  + slide statement 31 22 (71%) 2 (6%)

true refactorings 
non-refactorings

Overall Accuracy: 106 / 242 = 43.8%



Results RQ1 - Barriers

35



Results RQ1 - Barriers
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[Code] Comprehension

P25: “The new boolean statements 
were somewhat difficult to parse”

P29: “Yes, trying to understand 
certain methods and what the code 
was accomplishing [was difficult].”
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[Code] Unfamiliar Code

P8: “This was a bit more difficult as I 
am not experienced in using array 
streams”

P32: “I did not know what the 
code's purpose was, so I had to 
look at the entire file...Only looking at 
the change lines was difficult.”
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[Code] Large Scope

P27: “Given that there were a huge 
change, at first it was overwhelming 
to read all of the code.”

P12: “This [pull request] could be 
improved by separating smaller 
changes into more commits, but 
that doesn't appear possible in this 
example.”
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Results RQ1 - Barriers

40



[Context] Social Friction

P12: “I don't know I don't like giving people negative feedback when it's when 
it's like really strongly negative.”

P43: “some group members, … always think that they're right.”

P44: “If I told someone to review code, they could write a comment and there's no 
way to check and see if they've actually looked through the code”
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Results RQ1 - Barriers
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[Comparative Comprehension] 
Unclear Motivation

P23: “When I don't have [change] 
documentation, that definitely slows 
down the process of me being able to 
understand and interpret what their code is 
doing.
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P2: “The code change was a little 
confusing as I didn't see a compelling 
"code smell".”



Results RQ1 - Barriers
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[Tool] Limited or Misaligned Views
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P24: “The changes were on two 
different files, which made it a bit 
trickier to compare them.”

P11: “it was little difficult to 
understand since the changed 
codes are scattered all around two 
different codes.”

1

2



Implications

● Social friction is likely a bigger issue than what we observed
○ Industry has seen this, too

● Support is needed to help with comprehension
○ Code summarization for single code? 
○ Diffs of code summaries? 
○ Behavioral diffing?
○ Test case generation to demonstrate differences?
○ … I’m just speculating here
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Come see us at ICSE 2024!
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FIND IT THINK IT CHOOSE IT
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Looking Ahead…
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How to best compare 
these options?



Participatory Design - an HCI technique

RQ1: What interface features do 
developers want to navigate multiple 
similar snippets?

RQ2: What interface arrangements 
do developers want to navigate 
multiple similar snippets? 
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Participatory Design
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Code Comprehenion + Behavioral Diffing?
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How does it help with comparative 
comprehension? 

(Hey grad students! I believe this would 
be a straightforward project. Want to 

collaborate?)



FIND IT THINK IT CHOOSE IT
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Teamwork makes it happen. 

…. And 
more!
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Teamwork makes it happen. 

…. And 
more!
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Thanks!
ktstolee@ncsu.edu
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ICSE 2024: labels vs. explanations
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