
Code Search and 
Comprehension in Software 

Engineering
Dr. Kathryn (Katie) Stolee

Associate Professor with tenure
North Carolina State University

1



2



Code search is frequent

● ~12x per developer per day [in 2012]
 

● Search sessions involve multiple queries

● Code search with Google takes more time, 
more clicks, and more query reformulation than 
non-code search

3



Two Most Common Needs

1. Example Code, how to do something (33%)

2. Explaining what it does (26%)

4



FIND IT THINK IT CHOOSE IT

5



Code-to-Code Search

Mystery
Box

6



The Halting Problem 😱
IT MAY NEVER WORK IN THEORY.



Haskell: List of even numbers using recursion

Haskell: List of even numbers using chaining

Python: List of even numbers using 
list-comprehension Python: List of even numbers using recursionJava: List of even numbers using IntStream

Java: for loop to populate array of odd numbers

Code-to-code Search



Haskell: List of even numbers using recursion

Haskell: List of even numbers using chaining

Python: List of even numbers using 
list-comprehension Python: List of even numbers using recursionJava: List of even numbers using IntStream

Java: for loop to populate array of odd numbers

Code-to-code Search - Language



Haskell: List of even numbers using recursion

Haskell: List of even numbers using chaining

Python: List of even numbers using 
list-comprehension Python: List of even numbers using recursionJava: List of even numbers using IntStream

Java: for loop to populate array of odd numbers

Code-to-code Search - Behavior



Haskell: List of even numbers using recursion

Python: List of even numbers using 
list-comprehension Python: List of even numbers using recursion

Haskell: List of even numbers using chaining

Java: List of even numbers using IntStream

Java: for loop to populate array of odd numbers

Code-to-code Search - Structure



Code-to-code Search - In Practice

Source Code
Behavior Similar 

Code

Tokens / 
Context

Structure

Non-dominated 
Sorting

Word 
Embedding

+
Tree 

Embedding

����🏽 ♀
Query ✅

12[ICSE 2020] [FSE 2021]



Code Search Underpinnings

IdealDynam
ic Analysis Sym

bolic 

Analysis

13Precision

G
en

er
al

iz
ab

ili
ty

Generative AI



Looking Ahead…

14

Are they same? Different? 
How do I know? 



FIND IT THINK IT CHOOSE IT

15



Comparative Comprehension
The cognitive activity of understanding how algorithms behave relative 
to each other

16

16



Controlled Experiment

● 4 independent dimensions of 
variation

○ Behavior (same or not)
○ Language (same or not)
○ Structures (similar AST or not)
○ Meaningful names (original or 

obfuscated)

17



Controlled Experiment

Thinkaloud Interviews Survey

18

n=16
Undergraduate students

Graduate students

Professionals

n=95
Unknown

Graduate students

Professionals



Comparison Accuracy

19

Overall correct: 292 of 439 (66.5%)

Correctness (%) for…
Similarity Dissimilarity

Clone Truth 85.3 46.7
Language 70.9 62.7
Structure 75.0 59.9

Names 
(Meaningful|Obf.) 66.8 66.2

Overall correctness: 292 of 439 — 66.5%

***

*

*



Comparison Strategies

20

Structural

Schematic

Textual



Comparison Strategies

21

Structural

Schematic

Textual

“I didn't even need to [understand the 

logic] because they were so similar.” - P4



Comparison Strategies

22

Structural

Schematic

Textual

U4 on cross-language deduplicators



Comparison Strategies

23

Structural

Schematic

Textual

U4 on cross-language deduplicators



Comparison Strategies

24

Structural

Schematic

Textual



Comparison Strategies

25

Structural

Schematic

Textual



Comparison Strategies

26

Structural

Schematic

Textual



What happens when 
comparative comprehension  
is done… on real code?
i.e., software engineering students reviewing code changes on GitHub in a 
code base they used in their class project.

it’s a step in the right direction. 
27



Refactoring Review Study

28

RQ1: What barriers do student 
developers face when 
comprehending code changes?

RQ2: How accurately do student 
developers recognize behavioral 
impact in code review tasks?



Study Context

Interviews (20 minutes)
On Zoom
Before the tasks

8 Tasks (40+ minutes)

In-class study on refactoring 
review using GitHub

Familiar code base

29

n=29 n=44

Junior-level undergraduate students



Interviews

● Prior to class activity
● 10-20 minutes
● Semi-structured

30



Tasks
6 refactoring review tasks were retained for 
analysis (some true refactorings, some 
non-refactorings )

1. for loop → for each loop
2. loop → pipeline
3. consolidate conditional

+ extract variable
4. consolidate conditional 

+ extract and move function
5. Replace magic literal 

+ Steam.collect.size → 
steam.count

6. Extract function + slide statement
31



Post-Task Reflection

32



RQ1: What barriers do student 
developers face when 
comprehending code changes?

Refactoring Review Study

33

Interviews

Task Outcomes

Task Reflections

Final Reflection

RQ2: How accurately do student 
developers recognize behavioral 
impact in code review tasks?



Results RQ2 - Accuracy

34

Responses # Refactoring #Non-Refactoring

for loop → for each loop 42 35 (83%) 7 (17%)

loop -> pipeline 43 34 (79%) 2 (5%)

consolidate conditional + extract variable 44 38 (86%) 5 (11%)

consolidate conditional 
+ extract and move function 44 31 (70%) 10 (23%)

Replace magic literal 
+ Steam.collect.size → steam.count 38 27 (71%) 4 (11%)

Extract function  + slide statement 31 22 (71%) 2 (6%)

true refactorings 
non-refactorings

Overall Accuracy: 106 / 242 = 43.8%



Results RQ1 - Barriers

35



Results RQ1 - Barriers

36



[Code] Comprehension

P25: “The new boolean statements 
were somewhat difficult to parse”

P29: “Yes, trying to understand 
certain methods and what the code 
was accomplishing [was difficult].”

37



[Code] Unfamiliar Code

P8: “This was a bit more difficult as I 
am not experienced in using array 
streams”

P32: “I did not know what the 
code's purpose was, so I had to 
look at the entire file...Only looking at 
the change lines was difficult.”

38



[Code] Large Scope

P27: “Given that there were a huge 
change, at first it was overwhelming 
to read all of the code.”

P12: “This [pull request] could be 
improved by separating smaller 
changes into more commits, but 
that doesn't appear possible in this 
example.”

39



Results RQ1 - Barriers

40



[Context] Social Friction

P12: “I don't know I don't like giving people negative feedback when it's when 
it's like really strongly negative.”

P43: “some group members, … always think that they're right.”

P44: “If I told someone to review code, they could write a comment and there's no 
way to check and see if they've actually looked through the code”

41



Results RQ1 - Barriers

42



[Comparative Comprehension] 
Unclear Motivation

P23: “When I don't have [change] 
documentation, that definitely slows 
down the process of me being able to 
understand and interpret what their code is 
doing.

43

P2: “The code change was a little 
confusing as I didn't see a compelling 
"code smell".”



Results RQ1 - Barriers

44



[Tool] Limited or Misaligned Views

45

P24: “The changes were on two 
different files, which made it a bit 
trickier to compare them.”

P11: “it was little difficult to 
understand since the changed 
codes are scattered all around two 
different codes.”

1

2



Implications

● Social friction is likely a bigger issue than what we observed
○ Industry has seen this, too

● Support is needed to help with comprehension
○ Code summarization for single code? 
○ Diffs of code summaries? 
○ Behavioral diffing?
○ Test case generation to demonstrate differences?
○ … I’m just speculating here

46



Come see us at ICSE 2024!

47



FIND IT THINK IT CHOOSE IT

48



Looking Ahead…

49

How to best compare 
these options?



Participatory Design - an HCI technique

RQ1: What interface features do 
developers want to navigate multiple 
similar snippets?

RQ2: What interface arrangements 
do developers want to navigate 
multiple similar snippets? 

50



Participatory Design

51



Code Comprehenion + Behavioral Diffing?

52

How does it help with comparative 
comprehension? 

(Hey grad students! I believe this would 
be a straightforward project. Want to 

collaborate?)



FIND IT THINK IT CHOOSE IT

53



Teamwork makes it happen. 

…. And 
more!

54



Teamwork makes it happen. 

…. And 
more!

55



Thanks!
ktstolee@ncsu.edu

56



ICSE 2024: labels vs. explanations

57


