Code Search and
Comprehension in Software
Engineering

Dr. Kathryn (Katie) Stolee

Associate Professor with tenure
North Carolina State University

NC STATE UNIVERSITY

[jmport csv python

} Search

Sort: Best match ~

Google

Google Search I'm Feeling Lucky

I'd like Python code

Certainly! You can

list. Here's the Pyth

Repositories (B 6,279,643 code results
‘ Code @
o companje/companje.nl
Commits D pages/python.md
[ssues @ 114 ## replace broken words based on lookup table
115 " 'python
Discussions @ 116 #!/usr/bin/env python3
117
Packages (3] 118 import re,csv
119 from collections import defaultdict
Marketplace 0 120 import os.path
T o o -
8 collaborators: ["John Doe", "Karen Smith"]
9 «* 1,
10 * { name: "Skittles the Cat",
11 * collaborators: []
12 = }
13 %]
w */

15 function collaborators_map(json: any): Map<string, Set<string>> {
16 | const map = new Map<string, Set<string>>();

17 | for (const item of json) {

item.name;

const collaborators

18
19
20
21
22 }

const name =

map.set(name, set);

23 return map;

24 |3

= item.collaborators;
const set = new Set<string>(collaborators);

chromium

An open-source browser to help move the web forward.

‘Q
ProjectHome Downloads Wiki Issues | Code Search

Search code

regular expressions

Search via regular expression, e.g. Ajava/.*"\.java$
Search Options
Language

File Path

Class

Any language

Function
Symbol
Case Sensitive | No

Exact No

“"

Search Code

In Search Box
lang:c++
file:(code|[*or]g)search
class:HashMap
function:toString
symbol:std::vector
case:yes

exact.yes

| Search projects

Code search is frequent

o ~12x per developer per day [in 2012]
e Search sessions involve multiple queries

o Code search with Google takes more time,
more clicks, and more query reformulation than
non-code search

Two Most Common Needs

1. Example Code, how to do something (33%])

2. Explaining what it does (26%)

@ o

FIND IT THINK IT CHOOSE IT

Code-to-Code Search

isEven :: Int -> Bool
isEven x = x “mod~ 2 ==

getEvens Int :: [Int]
getEvens n = filter (isEven x) [0..n]

def filter_nums(max_val):

—> nums = range(max_val)

return [i for i in nums if i % 2 == 0]

Integer[] func(int x) { sift :: [Int] -> [Int]

int[] n = IntStream.range(@, x).toarrav(); sift [1 = []

List<Integer> e = new ArrayList<>(); sift (x:xs) = if (x “mod™ 2 == @) then

for Lint i=@; i<".1-.’"iit'l(). i"":' X Slft XS

if (n.get(i) X 2 == 1) else
e.add(n.zet(i)); sift xs

return o, tosrray();
1
L twoMultiples Int :: [Int]

twoMultiples n = sift [0..n-1]

The Halting Problem ()

IT MAY NEVER WORK IN THEORY.

Code-to-code Search

List<Integer> getOdds(int max) {
List<Integer> odds = new ArraylList<>();
for(int i = 0; 1 < max; i++)

if 1% 2==1)
odds.add(i);
return odds;

3

Java: for loop to populate array of odd numbers

Integer[] func(int x) {
int[] n = IntStream.range(@, x).toArray();
List<Integer> e = new ArraylList<>();
for (int i=0; i<n.length(); i++)
if (n.get(i) % 2 == 1)
e.add(n.get(i));
return e.toArray();

}

Java: List of even numbers using IntStream

sift :: [Int] -> [Int]

sift [1 = []
sift (x:xs) = if (x "mod™ 2 == @) then
xz sift xs
else
sift xs

twoMultiples Int :: [Int]
twoMultiples n = sift [0..n-1]

Haskell: List of even numbers using recursion

def filter_nums(max_val):
nums = range(max_val)
return [i for i in nums if i % 2 == 0]

Python: List of even numbers using
list-comprehension

isEven :: Int -> Bool
isEven x = x “mod~ 2 ==

getEvens Int :: [Int]
getEvens n = filter (isEven x) [@..n]

Haskell: List of even numbers using chaining

def func(nums):
if not nums:
return nums
elif nums[0] % 2 == 0:
return [nums[@]] + func(nums[1:])
else:
return func(nums[1:])

Python: List of even numbers using recursion

Code-fo-code Search - Language

List<Integer> getOdds(int max) {
List<Integer> odds = new ArraylList<>();
for(int i = 9; i < max; i++)

if (1% 2==1)
odds.add(i);
return odds;

3

Java: for loop to populate array of odd numbers

Integer[] func(int x) {
int[] n = IntStream.range(@, x).toArray();
List<Integer> e = new ArraylList<>();
for (int i=0; i<n.length(); i++)
if (n.get(i) % 2 == 1)
e.add(n.get(i));
return e.toArray();

}
Java: List of even numbers using IntStream

isEven :: Int -> Bool
isEven x = x “mod~ 2 ==

getEvens Int :: [Int]
getEvens n = filter (isEven x) [@..n]

Haskell: List of even numbers using chaining

n _— n _— n _— n _— n _— *

— L] —] _— L] —] _— L] —] _— L] —] _— L] —] _— L] —] _— L] —] _— L] —] _— L] —] d

r sift :: [Int] -> [Int]
| sift [1 =[]
. sift (x:xs) = if (x "mod™ 2 == @) then
I xs sift xs
. else
I sift xs
i twoMultiples Int :: [Int]
twoMultiples n = sift [0..n-1]
| Haskell: List of even numbers using recursion
r llllllllllllllllll
[
° def filter_nums(max_val):
I nums = range(max_val)
i return [i for i in nums if i % 2 == 0]
| Python: List of even numbers using
* . listcomprehension_. . . . — . - . —

def func(nums):
if not nums:
return nums
elif nums[0] % 2 == 0:
return [nums[0Q]] + func(nums[1:])I
else: -
return func(nums[1:]) [

. Pvthon: List.of even numbers.us.ing.recu:siom;

Code-to-code Search - Behavior

sift :: [Int] -> [Int]

twoMultiples n = sift [0..n-1]
Java: for loop to populate array of odd numbers

_ . l . isEven :: Int -> Bool I
List<Integer> getOdds(int max) { . Isift [1= []_ . o NEEVER K = & “Wed- @ u= -
List<Integer> odds = new ArraylList<>(); | sift (x:xs) = if (x rp?d 2 == Q) then I
for(int i = 9; i < max; i++) . elsz' SITE xs getEvens Int :: [Int] .

if (1 %2==1) I Sift xs getEvens n = filter (isEven x) [0..n] |
odds.add(i); . s

) return odds; | twoMultiples Int :: [Int] Haskell: List of even numbers using chaining |
I i

Haskell: List of even numbers using recursion

—-—-—-—-—I—'—'J

|

. Integer[] func(int x) {

int[] n = IntStream.range(@, x).toArray();

List<Integer> e = new ArrayList<>();)

for (int i=0; i<n.length(); i++) def flltef_nums(max_vali.
if (n.get(i) % 2 == 1) nums = range(max_val)

! def func(nums):

|
e.add(n.get(i)); return [i for i in nums if i % 2 == 0] |

|

|

if not nums:

return nums
elif nums[0] % 2 == 0:

return [nums[@]] + func(nums[1:])
else:

return func(nums[1:])

return e.toArray();

}

Python: List of even numbers using
Java: List of even numbers using IntStream

list-comprehension

Python: List of even numbers using recursion

Code-to-code Search - Structure

List<Integer> getOdds(int max) {
List<Integer> odds = new ArraylList<>();
for(int i = 9; i < max; i++)
if 1% 2==1)
odds.add(i);
return odds;

m | | L] n] |}

Java: for loop to populate array of odd numbers

&nteger[] func(int x) {

I int[] n = IntStream.range(@, x).toArray();

. List<Integer> e = new ArraylList<>();

| for (int i=0; i<n.length(); i++)
if (n.get(i) % 2 == 1)

: e.add(n.get(i));

I return e.toArray();

),

|

Java: List of even numbers using IntStream

18

Int -> Bool
X “mod™ 2 ==

isEven ::
isEven x =

getEvens Int :: [Int]
getEvens n = filter (isEven x) [@..n]

Haskell: List of even numbers using chaining

_. def func(nums):

r sift :: [Int] -> [Int] _
" sift [1 =1[1] |
I sift (x:xs) = if (x “mod~ 2 == @) then
. x3 sift xs :
| else |
. sift xs -
I |
. twoMultiples Int :: [Int] .
I twoMultiples n = sift [0..n-1] |
'\Haskell: List of even numbers using recursion)
__________________ 1
def filter_nums(max_val): L
nums = range(max_val) -
return [i for i in nums if i % 2 == 0] |l
L

Python: List of even numbers using
list-comprehension

L n I n L} u _—— n —_— u _— n L} n I n _— u _— n —_— u _—— n L} n I n _— u _— |} _— u I n L}] _— n

if not nums:
return nums
elif nums[0] % 2 == 0:

return [nums[0Q]] + Func(nums[1:])l

else:
return func(nums[1:])

1 Python: List of even numbers using recursion

|
J

Code-to-code Search - In Practice

—

—

—
o)
~
D
>
0p)
~

Word

N Embedding
,{*?}, () GitHub codejam ; t
[Source Code] / Tree

Embedding

[ICSE 2020] [FSE 2021]

12

>,
=
o)
cs
N
©
-
O
-
)
o

Looking Ahead...

Q I'd like Python code that, given an input of [6,2,3,4], produces the output 2

Q What is another way to do this?

Certainl

list. Hert

Are they same? Different?
How do | know?

num numbers:
num < smallest:

smallest = num

@ o

FIND IT THINK IT CHOOSE IT

15

Comparative Comprehension

The cognitive activity of understanding how algorithms behave relative
to each other

def sumup(x):
def sumup(numbers): g =
accumulator = 1 =

for value in numbers: while 1 < len(x):
accumulator += value S += 1
return accumulator 1 +=
return s

16

Controlled Experiment

static boolean isAnagram(S

® 4 independent dimensions of
variation

O Behavior (same or not)
O Language (same or not)
O Structures (similar AST or not)

O Meaningful names (original or
obfuscated)

17

Controlled Experiment

Thinkaloud Interviews

n=16

8888 Undergraduate students
::‘: Graduate students
==== Professionals

Survey

n=95
Slalalatalatatalare
ttttttttt

Unknown

Graduate students

Professionals

18

Comparison Accuracy

Overall correctness: 292 of 439 — 66.5%

Correctness (%) for...

Similarity |[|Dissimilarity

Clone Truth
Language
Structure

Names
(Meaningful|Obf.)

19

Comparison Strategies

extua

=
[=

Schematic

20

Comparison Strategies

extua

“I didn't even need to [understand the
logic] because they were so similar.” - P4

/
/

21

Comparison Strategies

Structural

U4 on cross-language deduplicators

22

Comparison Strategies

Structural

3tic String removeDuplicates(String orig)

[””””””/’/,,,,—/—*'if len(orig) == @: return orig
if (orig.length() == @) return ""; e T

String "”":EEE§Z§E§E§EK§11 —»1 in range(1l, len(orig)):
or (int 1 = 1; i < orig.length(); i++7 if orig[i-1] != orig[i]:

arAt(i)) res += orig[i]

result+= .charAt(i); et origl@) + res

result;

U4 on cross-language deduplicators

23

Comparison Strategies

Schematic

24

Comparison Strategies

Schematic

A
AN
[\

25

Comparison Strategies

Schematic

A
AN
[\

26

What happens when
comparative comprehension
IS done... on real code”?

l.e., software engineering students reviewing code changes on GitHub in a
code base they used in their class project.

it's a step in the right direction.

Refactoring Review Study

Conversation 0 Commits 1 Checks 0 Files changed 1

OjamiddIZ commented on Nov 29, 2021 - edited by kistolee « Member

Adjusting some for-loops within getEntryByDateRange.

RQ1: What barriers do student
developers face when
comprehending code changes?

Instructions:

(fill out the Google form)

iTrust2/src/main/java/edu/ncsu/csc/iTrust2/controllers/api/APILogEntryController.

RQ2: How accurately do student

java @ . .
developers recognize behavioral
() Viewed . . .
impact in code review tasks?
X @@ -110,8 +110,7 @@ public class APILogEntryController extends APICc
110 11@ if (user == null || user.getRoles() == null || user.getRec
111 111 visible = new Arraylist<LogEntry>();
112 112
113 - for (int 1 = B8; 1 < entries.size(); i++) {
114 - final LogEntry le = entries.get(i);
113 + for (final LogEntry le : entries) {

28

Study Context

Junior-level undergraduate students

8 Tasks (40+ minutes)
Interviews (20 minutes) In-class study on refactoring
On Zoom review using GitHub
Before the tasks Familiar code base
n=29 n=44
2880088888 RRa088a0aA
2888008888 aea08a800a
222222288 BR8088800a
SR0088808R
2888

29

Interviews

e Prior to class activity
e 10-20 minutes
e Semi-structured

(2) Review Techniques questions:
(a) When doing code review on new or changed behavior, what
tools and techniques did you have to determine behavior?
(b) Are those techniques good enough, or do you wish you had a
better way?
(c) Do you typically get to see both versions of the code at the
same time?
(3) Quality & Refactoring Questions
(a) Have you made suggestions during code review to improve
code quality without changing the overall behavior?
(b) How do you define code quality in these situations?
(c) What techniques did you have to determine quality?
(d) What techniques did you have to determine if behavior has
been maintained?
(e) Do those techniques typically work as intended and in a timely
manner, or could they be better?

30

Tasks

6 refactoring review tasks were retained for
analysis (some true refactorings, some

)

2. loop — pipeline

4. consolidate conditional
+ extract and move function
5. Replace magic literal
+ Steam.collect.size -
steam.count

Task link here: https://github.ncsu.edu/engr-csc326-fall2021/csc326-ref-activity-
000/pull/30

Is this code change a refactoring (i.e. it does not change the external behavior)?

(O Yes, itis a refactoring.
(O No, it changes the code's behavior.

O | don't know.

What impact does this code change have?

If it is a refactoring, does the refactoring improve the legibility, maintainability, or something
else? If it is not a refactoring, what behavior does this pull request change? If you do not
know, what feature of the code are you unsure about?

Your answer

What tools or strategies did you use to investigate the differences in the code?

Explain in a comment what strategies you used in comparison. Did you use an IDE? Did you
use the unified or split view in GitHub? Did you run the test suite? All of the above? None of
the above?

Your answer

Was there anything difficult about comparing this code?

Your answer

Post-Task Reflection

(1) What was difficult about performing the code review in this study?

(2) What was easy about performing the code review in this study?

(3) What would have helped you perform the code review in this
study more effectively?

(4) How many years of programming experience do you have?

(5) Do you have experience in professional software environments?
With code review? With refactoring?

(6) What is your gender identity? [male/female/non-binary/prefer not
to disclose]

32

Refactoring Review Study

Interviews

RQ1: What barriers do student
developers face when
comprehending code changes?

7

RQ2: How accurately do student
developers recognize behavioral
impact in code review tasks?

Final Reflection

33

Results RQ2 - Accuracy

true refactorings
non-refactorings

Refactoring

#Non-Refactoring

35 (83%)

7 (17%)

2 (5%)

5 (11%)

10 (23%)

4 (11%)

Responses

for loop — for each loop 42
loop -> pipeline 43
consolidate conditional + extract variable 44
consolidate conditional

: 44
+ extract and move function
Replace magic literal
+ Steam.collect.size - steam.count 38
Extract function + slide statement 31

22 (71%)

2 (6%)

Overall Accuracy: 106 / 242 = 43.8%

34

Results RQ1 - Barriers

Interview Activity Reflection

Title Description n=29 n=44 n=44

Context Barriers
i Limited Time Insufficient time to perform the task to the developer’s satisfaction. 2(7%) 4 (9%) 10 (23%)
S Social Friction Dysfunctions or a lack of response from other developers. 12 (41%) 0 (0%) 2 (5%)
Self-Doubt Difficulty because of lack of experience or lack of self-confidence. 1(3%) 3 (7%) 1(2%)
All Context Barriers 13 (45%) 6 (14%) 13 (30%)
Tool Barriers
C Lack of Tests Insufficient automatic verification of the codebase. 4 (14%) 3 (7%) 4 (9%)
4 Limited or Misaligned View Cannot focus on all relevant code at once; limited screen space. 8 (28%) 17 (39%) 7 (16%)
Toolchain Issues Dysfunctions in coordination of tools. 7 (24%) 1(2%) 1(2%)
All Tool Barriers 13 (45%) 18 (41%) 12 (27%)
Code Barriers
Large Scope Large volume ot code to comprehend. 8(28%) 11(25%) 8 (18%)
Unfamiliar Code Code is unfamiliar or uses unfamiliar features. 1(3%) 21(48%) 10 (23%)
Comprehension Code is difficult to understand. 8(28%) 21(48%) 6 (14%)
All Code Barriers 12 (41%) 32(73%) 23 (52%)
I'T}‘ Comparative Comprehension Barriers

Unclear Motivation e developer does not know why code was written or changed. 10 (34%) 3(7%) 2 (5%)
m Deep Changes New version of code looks very different. 0(0%) 7(16%) 2 (5%)
Merge Conflicts Dysfunctions in deciding the authoritative versions. 3 (10%) 0 (0%) 0 (0%)
Delta Comprehension The changes between code versions are difficult to understand. 1(3%) 15(34%) 4 (9%)
All Comparative Comprehension Barriers 13 (45%) 18 (41%) 8 (18%)

35

Results RQ1 - Barriers

Interview Activity Reflection

Title Description n=29 n=44 n=44

Context Barriers
i Limited Time Insufficient time to perform the task to the developer’s satisfaction. 2(7%) 4 (9%) 10 (23%)
Q Social Friction Dysfunctions or a lack of response from other developers. 12 (41%) 0 (0%) 2 (5%)
Self-Doubt Difficulty because of lack of experience or lack of self-confidence. 1(3%) 3 (7%) 1(2%)
All Context Barriers 13 (45%) 6 (14%) 13 (30%)
Tool Barriers
C Lack of Tests Insufficient automatic verification of the codebase. 4 (14%) 3 (7%) 4 (9%)
4 Limited or Misaligned View Cannot focus on all relevant code at once; limited screen space. 8 (28%) 17 (39%) 7 (16%)
Toolchain Issues Dysfunctions in coordination of tools. 7 (24%) 1(2%) 1(2%)
All Tool Barriers 13 (45%) 18 (41%) 12 (27%)
Code Barriers
Large Scope Large volume of code to comprehend. 8 (28%) | 11(25%) 8 (18%)
Unfamiliar Code Code is unfamiliar or uses unfamiliar features. 1(3%) | 21(48%) 10 (23%)
Comprehension Code is difficult to understand. 8 (28%) | 21 (48%) 6 (14%)
All Code Barriers 12 (41%) | 32(73%) 23 (52%)
Comparative Comprehension Barriers

Unclear Motivation The developer does not know why code was written or changed. 10 (34%) 3 (7%) 2 (5%)
m Deep Changes New version of code looks very different. 0(0%) 7(16%) 2 (5%)
Merge Conflicts Dysfunctions in deciding the authoritative versions. 3 (10%) 0 (0%) 0 (0%)
Delta Comprehension The changes between code versions are difficult to understand. 1(3%) 15(34%) 4 (9%)
All Comparative Comprehension Barriers 13 (45%) 18 (41%) 8 (18%)

36

[Code] Comprehension

P25: “The new boolean statements
were somewhat difficult to parse”

P29: “Yes, trying to understand
certain methods and what the code
was accomplishing [was difficult].”

174

175
176
177

4+

137
138
139

140
141
142
143

144
145
146
147

+ + + +

+ + + +

*¢- 50 WEEEE iTrust2/src/main/java/edu/ncsu/csc/iTrust2/forms/ICDCode

else if (!isOphthalmology.equals(other.isOphthal
} else if (obj == null || getClass() !'= obj.getCl
return false;

}

return true;

final ICDCodeForm other = (ICDCodeForm) obj;
final boolean sameCode = code != null && code.equa
final boolean sameDescription = description != nul

description.equals(other.description);

final boolean sameld = id !'= null && id.equals(oth
final boolean sameOpthalmology = isOphthalmology !

isOphthalmology.equals(other.isOph
return sameCode && sameDescription && sameld && sa

37

[Code] Unfamiliar Code

P8: “This was a bit more difficult as |
am not experienced in using array
streams”

P32: “I did not know what the
code’s purpose was, so | had to
look at the entire file...Only looking at
the change lines was difficult.”

v

102
103
104
105
106
107
108
109
110

111
112

103
104
105

106
107
108
109
110

111

3+ 13 EEEE

iTrust2/src/main/java/edu/ncsu/csc/iTrust2/models

* could be found
*/
public static BloodType parse (final String ty
for (final BloodType type : values()) {
if (type.getName().equals(typeStr))
return type;
}
}
return NotSpecified;
return Arrays.stream(values())
.filter(type —> type.getName
.findFirst()
.orElse(NotSpecified);

38

+

v g 212 mEEE iTrust2/src/main/java/edu/ncsu/csc/iTrust2/config/FailureHandler. java [_[;]

158 - // fail for username
159 - final LoginAttempt attempt = new LoginAttempt();
160 - attempt.setTime(ZonedDateTime.now());
161 - attempt.setUser(user);
162 - loginAttemptService.save(attempt);
163 - }
ode] Large Scope RN
85 + handleBadCredentials(request, response, username, addr, user);
165 86
166 87 }
167 ss @@ else if (ae instanceof DisabledException) {
168 - if (username != null) {
169 - user = userService.findByName(username);
P27 “Gi m D
iven that there were a huge 1.
- 172 - // redirect to user lockout or user ban
173 - if (loginBanService.isUserBanned(user)) {
. o . 174 - this.getRedirectStrategy().sendRedirect(request, response, "/login?banned");
change, at first it was overwhelming noo
J 176 - }
177 - else if (loginLockoutService.isUserLocked(user)) {
7 178 - this.getRedirectStrategy().sendRedirect(request, response, "/login?locked");
O reaaq ail O e coage. mo
180 - ¥
181 - // else, otherwise disabled
182 - ¥
183 -
184 - this.getRedirectStrategy().sendRedirect(request, response, "/login?locked");
185 - return;
89 + handleDisabledAccount(request, response, username, user);
186 90 }
187 91 this.getRedirectStrategy().sendRedirect(request, response, "/login?error");
P 1 2 . 11 Th " 188 92 }
Is [pull request] could be e
= [p 94 4+ private void handleBadCredentials(final HttpServletRequest request, final HttpServletResponse response,
95 + final String username, final String addr, User user) throws IOException {
" - 9% + // need to lockout IP
improved bv separatina smaller 7 . .0 lnotwrcmmorsarylonzcaurieyiriain =i 4
98 + loginAttemptService.clearIP(addr);
9 + // Check if need to ban IP
- L 100 + if (loginLockoutService.getRecentIPLockouts(addr) >= 2) {
changes into more commits, but - x
J 102 + final LoginBan ban = new LoginBan();
103 + ban.setIp(addr);
I e . e 104 + ban.setTime(ZonedDateTime.now());
that doesn't appear possible in this |
106 +
107 + loginLockoutService.clearIP(addr);
b} 108 + loggerUtil.log(TransactionType.IP_BANNED, addr, null, addr + " has been banned.");
exal , ’ple. 109 + this.getRedirectStrategy().sendRedirect(request, response, "/login?ipbanned");
110 + }
111+ else {
112 + // lockout IP.
113+ final LoginLockout lockout = new LoginLockout();
114 + lockout.setIp(addr);
115 + lockout.setTime(ZonedDateTime.now());
116 + loginLockoutService.save(lockout);
117 + loggerUtil. log(TransactionType.IP_LOCKOUT, addr, null, addr + " has been locked out for 1 hour.");
118 + this.getRedirectStrategy().sendRedirect(request, response, "/login?iplocked");
119 +
190 . P e Y AN S p S

Results RQ1 - Barriers

Interview Activity Reflection

Title Description n=29 n=44 n=44

Context Barriers
i Limited Time Insufficient time to perform the task to the developer’s satisfaction. 4 (9%) 10 (23%)
Q Social Friction Dysfunctions or a lack of response from other developers. 12 (41%) 0 (0%) 2 (5%)
3(7%) 1(2%)
All Context Barriers 13 (45%) 6 (14%) 13 (30%)
Tool Barriers
C Lack of Tests Insufficient automatic verification of the codebase. 4 (14%) 3 (7%) 4 (9%)
4 Limited or Misaligned View Cannot focus on all relevant code at once; limited screen space. 8 (28%) 17 (39%) 7 (16%)
Toolchain Issues Dysfunctions in coordination of tools. 7 (24%) 1(2%) 1(2%)
All Tool Barriers 13 (45%) 18 (41%) 12 (27%)
Code Barriers
Large Scope Large volume of code to comprehend. 8(28%) 11(25%) 8 (18%)
Unfamiliar Code Code is unfamiliar or uses unfamiliar features. 1(3%) 21(48%) 10 (23%)
Comprehension Code is difficult to understand. 8 (28%) 21 (48%) 6 (14%)
All Code Barriers 12 (41%) 32(73%) 23 (52%)
Comparative Comprehension Barriers

Unclear Motivation The developer does not know why code was written or changed. 10 (34%) 3 (7%) 2 (5%)
m Deep Changes New version of code looks very different. 0(0%) 7(16%) 2 (5%)
Merge Conflicts Dysfunctions in deciding the authoritative versions. 3 (10%) 0 (0%) 0 (0%)
Delta Comprehension The changes between code versions are difficult to understand. 1(3%) 15(34%) 4 (9%)
All Comparative Comprehension Barriers 13 (45%) 18 (41%) 8 (18%)

40

[Context] Social Friction

P12: “I don't know | don't like giving people negative feedback when it's when
it's like really strongly negative.”

P43: “some group members, ... always think that they're right.”

P44: “If | told someone to review code, they could write a comment and there's no
way to check and see if they've actually looked through the code”

41

Results RQ1 - Barriers

Interview Activity Reflection

Title Description n=29 n=44 n=44

Context Barriers
i Limited Time Insufficient time to perform the task to the developer’s satisfaction. 2(7%) 4 (9%) 10 (23%)
Q Social Friction Dysfunctions or a lack of response from other developers. 12 (41%) 0 (0%) 2 (5%)
Self-Doubt Difficulty because of lack of experience or lack of self-confidence. 1(3%) 3 (7%) 1(2%)
All Context Barriers 13 (45%) 6 (14%) 13 (30%)
Tool Barriers
C Lack of Tests Insufficient automatic verification of the codebase. 4 (14%) 3 (7%) 4 (9%)
4 Limited or Misaligned View Cannot focus on all relevant code at once; limited screen space. 8 (28%) 17 (39%) 7 (16%)
Toolchain Issues Dysfunctions in coordination of tools. 7 (24%) 1(2%) 1(2%)
All Tool Barriers 13 (45%) 18 (41%) 12 (27%)
Code Barriers
Large Scope Large volume of code to comprehend. 8(28%) 11(25%) 8 (18%)
Unfamiliar Code Code is unfamiliar or uses unfamiliar features. 1(3%) 21(48%) 10 (23%)
Comprehension Code is difficult to understand. 8 (28%) 21 (48%) 6 (14%)
All Code Barriers 12 (41%) 32(73%) 23 (52%)
Comparative Comprehension Barriers

I Unclear Motivation The developer does not know why code was written or changed. 10 (34%) I 3(7%) 2 (5%)
m Deep Changes New version of code looks very different. o 7 (16%) 2 (5%)
Merge Conflicts Dysfunctions in deciding the authoritative versions. 3 (10%) 0 (0%) 0 (0%)
Delta Comprehension The changes between code versions are difficult to understand. 1(3%) 15(34%) 4 (9%)
All Comparative Comprehension Barriers 13 (45%) 18 (41%) 8 (18%)

42

[Comparative Comprehension]

Unclear Motivation

P23: “When | don't have [change]
documentation, that definitely slows

down the process of me being able to i
understand and interpret what their code is code smell”.

doing.

137
138

139
140
141
142

137
138
139
140
141

142

P2: “The code change was a little
confusing as I didn't see a compelling

mwn»

if (ovf.getId() != null) {

ov.setId(Long.parseLong(ovf.getId()));
String id = ovf.getId();
i (44 '=null } «

ov.setId(Long.parseLong(id));

final ZonedDateTime visitDate = ZonedDateTime.parse(ovf.getDate());
ov.setDate(visitDate); 43
ov.setDate(ZonedDateTime.parse(ovf.getDate()));

Results RQ1 - Barriers

Interview Activity Reflection

Title Description n=29 n=44 n=44

Context Barriers
i Limited Time Insufficient time to perform the task to the developer’s satisfaction. 2(7%) 4 (9%) 10 (23%)
Q Social Friction Dysfunctions or a lack of response from other developers. 12 (41%) 0 (0%) 2 (5%)
Self-Doubt Difficulty because of lack of experience or lack of self-confidence. 1(3%) 3 (7%) 1(2%)
All Context Barriers 13 (45%) 6 (14%) 13 (30%)
Tool Barriers
C Lack of Tests Insufficient automatic verification of the codebase. 4 (14%) 3 (7%) 4 (9%)
4 Limited or Misaligned View Cannot focus on all relevant code at once; limited screen space. 8 (28%) | 17 (39%) 7 (16%)
Toolchain Issues Dysfunctions in coordination of tools. 7 (24%) 1(2%) 1(2%)
All Tool Barriers 13 (45%) 18 (41%) 12 (27%)
Code Barriers
Large Scope Large volume of code to comprehend. 8(28%) 11(25%) 8 (18%)
Unfamiliar Code Code is unfamiliar or uses unfamiliar features. 1(3%) 21(48%) 10 (23%)
Comprehension Code is difficult to understand. 8 (28%) 21 (48%) 6 (14%)
All Code Barriers 12 (41%) 32(73%) 23 (52%)
Comparative Comprehension Barriers

Unclear Motivation The developer does not know why code was written or changed. 10 (34%) 3 (7%) 2 (5%)
m Deep Changes New version of code looks very different. 0(0%) 7(16%) 2 (5%)
Merge Conflicts Dysfunctions in deciding the authoritative versions. 3 (10%) 0 (0%) 0 (0%)
Delta Comprehension The changes between code versions are difficult to understand. 1(3%) 15(34%) 4 (9%)
All Comparative Comprehension Barriers 13 (45%) 18 (41%) 8 (18%)

44

[Tool] Limited or Misaligned Views

P24: “The changes were on two
different files, which made it a bit
trickier to compare them.”

P11: “it was little difficult to
understand since the changed
codes are scattered all around two
different codes.”

197

198

199

200

201

202

P N

34 mEEE @ iTrust2/src/main/java/edu/ncsu/csc/iTri

/ k%
*x Validates an office visit form for contair
correct fields for patients

@@ -470,4 +502,4 @@ public class OfficeVisit exte

this.satisfactionSurvey = satisfactionSur

23 EEEE iTrust2/src/main/java/edu/ncsu/csc/iTri

@@ -196,29 +196,10 @@ public class OfficeVisitSer

if (p == null || p.getDateOfBirth() ==r

) {
return ov; // we're done, patient car

be tested against

}

final LocalDate dob = p.getDateOfBirth();

int age = ov.getDate().getYear() -
dob.getYear();

// Remove the -1 when changing the dob tc
OffsetDateTime

if (ov.getDate().getMonthValue() <

Implications

e Social friction is likely a bigger issue than what we observed
o Industry has seen this, too

e Support is needed to help with comprehension
o Code summarization for single code?

Diffs of code summaries?

Behavioral diffing?

Test case generation to demonstrate differences?

... I'm just speculating here

o O O O

46

Come see us at ICSE 2024!

Barriers for Students During Code Change Comprehension

Justin Middleton
Department of Computer Science
North Carolina State University
USA
jamiddl2@ncsu.edu

ABSTRACT

Modern code review (MCR) is a key practice for many software
engineering organizations, so undergraduate software engineering
courses often teach some form of it to prepare students. However,
research on MCR describes how many its professional implementa-
tions can fail, to say nothing on how these barriers manifest under
students’ particular contexts. To uncover barriers students face
when evaluating code changes during review, we combine inter-
views and surveys with an observational study. In a junior-level
software engineering course, we first interviewed 29 undergrad-
uate students about their experiences in code review. Next, we
performed an observational study that presented 44 students from
the same course with eight code change comprehension activities.
These activities provided students with pull requests of potential
refactorings in a familiar code base, collecting feedback on accuracy

John-Paul Ore

Department of Computer Science
North Carolina State University

USA

jwore@ncsu.edu

Kathryn T. Stolee
Department of Computer Science
North Carolina State University
USA
ktstolee@ncsu.edu

ACM Reference Format:

Justin Middleton, John-Paul Ore, and Kathryn T. Stolee. 2024. Barriers for
Students During Code Change Comprehension. In 2024 IEEE/ACM 46th
International Conference on Software Engineering (ICSE "24), April 14-20,
2024, Lisbon, Portugal. ACM, New York, NY, USA, 13 pages. https://doi.org/
10.1145/3597503.3639227

1 INTRODUCTION

Code review is a useful and popular software engineering practice
wherein team members manually inspect each other’s new code
to verify that it meets expectations before integrating it into the
official product [4]. Not only does code review improve quality
by catching bugs early [41], but it also promotes organizational

47

o ®

FIND IT THINK IT CHOOSE IT

48

Looking Ahead...

Q I'd like Python code that, given an input of [6,2,3,4], produces the output 2

@ What is another way to do this?

Certainl

list. Hert

How to best compare
these options?

num numbers:

num < smallest:

smallest = num

49

Participatory Design - an HCI technique

RQ1: What do
0%
. . <ol ‘&‘(\S?\s &{\% &&\%
developers want to navigate multiple o e 5% g% (o
. . . f) Qr&\'\ Q&O% Qﬁo&' Q‘O&. \)e’b&(\se,%& ?&00
Simi I ar sni p p ets * Position Years Exp. Languages Assignments
P01 Graduate Student Yl Python, Java v v
P02 Graduate Student 6 1 1 Python, Java v
P03 Graduate Student 65 2 Python, Java VA
P04 Graduate Student 11 5 4 Python, Java v
. : PO5 Graduate Student g2 Python, JavaScript | v/ v
RQ2 - What Inte rface arra ngements P06 Software Engineer 12 7 Python, Java v
. P07 Software Engineer 5 1 Python, Java v v
do developers want to navigate POS DataBngincer 25 23 15 JavaScript, C# o
. .. .) P09 Software Engineer 11 7 Python, Java v v
multiple similar snippets” PI0 DataScientist ~ 10 5 Python o
P11 Software Engineer 2 1 JavaScript v Y

50

Participatory Design

Question

Upvotes, Last updated, Reputation Upvotes, Last updated, Reputation Upvotes, Last updated, Reputation
votes, Last updated, Reputatio
Runtime Runtime Runtime

Run with [language] version x

Secondary responses

Code-first
experience

Horizontal
listing

Option B Descriptions

from the authors

OPTION B

Encouraging
interactable
examples

51

Code Comprehenion + Behavioral Diffing?

How does it help with comparative
comprehension?

(Hey grad students! | believe this would

be a straightforward project. Want to
collaborate?)

Augmenting Diffs With Runtime Information

Khashayar Etemadi, Aman Sharma, Fernanda Madeiral, Martin Monperrus

Abstract—Source code diffs are used on a daily basis as part of code review, inspection, and auditing. To facilitate understanding,
they are typically accompanied by explanations that describe the essence of what is changed in the program. As manually crafting
high-quality explanations is a cumbersome task, researchers have proposed automatic techniques to generate code diff explanations.
Existing explanation generation methods solely focus on static analysis, i.e., they do not take advantage of runtime information to
explain code changes. In this paper, we propose COLLECTOR-SAHAB, a novel tool that augments code diffs with runtime difference
information. COLLECTOR-SAHAB compares the program states of the original (old) and patched (new) versions of a program to find
unique variable values. Then, COLLECTOR-SAHAB adds this novel runtime information to the source code diff as shown, for instance, in
code reviewing systems. As an evaluation, we run COLLECTOR-SAHAB on 584 code diffs for Defects4J bugs and find it successfully
augments the code diff for 95% (555/584) of them. We also perform a user study and ask eight participants to score the augmented

N i ad MG T AN Ol Tl I PERY WIRYNY S @y YV TR Y N | YT I TS e BT A T AN e i) R L) Rl T LS RN LA U7 B W OASEaET T T L ety | MRl Y e 1

Code-to-code Search - In Practice

FIND IT

Comparative Comprehension @

The cognitive activity of understanding how algorithms behave relative
to each other

def sumup(x):
def sumup(numbers): s =
accumulator = i=
for value in numbers: while i < len(x):
accumulator += value i
return accumulator

Participatory Design

Question

Code-first
experience

= = Horizontal
listing

THINK IT CHOOSE IT

L — |
!

Option B

A

Teamwork makes it happen.

Teamwork makes it happen.

.... And
more!

55

ICSE 2024: labels vs. explanations

Q2
Says Behavior Says Behavior Total
Labeled as | Changes Does Not Change ota
01 Refactoring 1 248 249
Non-Refactoring 23 12 35
Total 24 260 284

57

